
BULL. AUSTRAL. MATH. SOC. 73DI5, 73GO5, 76Q05

VOL. 8 (1973), 75-92.

Interchange of modal properties

in the propagation of harmonic waves

in heat-conducting materials

P. Chadwick

A study is made of the secular equation governing the

propagation of plane harmonic waves of small amplitude in a

continuum which is able to conduct heat. This equation defines

an algebraic function, called the modal function, whose regular

branches specify the slownesses of the possible modes of

harmonic wave propagation as functions of the frequency. At

each extreme of the frequency range one mode is diffusive in

type and the others wave-like, and we suppos.e here that there i s

a single wave-like mode which produces changes of temperature.

In th is case the mode which is diffusive in type at low

frequencies i s wave-like or diffusive in the high-frequency

limit according as the thermoelastic coupling constant (a

dimensionless measure of the strength of thermo-mechanical

interaction in the continuum) does or does not exceed unity.

This property is shown to have a simple interpretation in terms

of a Riemann surface of the modal function. The results obtain-

ed are quite general, referring to principal longitudinal waves

in a homogeneously deformed isotropic heat-conducting e las t i c

material, to di latat ional disturbances of a stress-free

configuration of such a material, and to acoustic waves in a

heat-conducting inviscid fluid.
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76 P. Chadwick

1. Introduction

We examine in this paper some aspects of the behaviour of plane
progressive harmonic waves of small amplitude travelling through a
homogeneous continuum which permits the transfer of energy by thermal
conduction as well as through the rate of working of the stress. The
dependence upon position and time in such a wave motion is expressed by the
exponential factor

(1) exp{iu(ex«n-t)}

in which w (assumed real) is the angular frequency and 8 (in general
complex) the slowness of the wave, and X, n, t are in turn the position
vector of a representative point of the continuum in i ts undisturbed state,
a unit vector specifying the direction of propagation, and the time. The
slowness is determined by a polynomial relation, often referred to as the
secular equation, in which the coefficients are complex-valued functions of
w , and the roots of the secular equation correspond to possible modes (or
branches) of harmonic wave propagation in the prescribed direction.

When the slowness is given the representation

(2) e = V~ + iuT q ,

where v and q are real, the wave-form (l) becomes

(3) exp(-^x-n)exp{tu(u~ x«n-t)}

from which i t is apparent that v is the speed of propagation and q the

attenuation coefficient of the mode with slowness a . This mode

progresses in the direction of the wave normal n and gives rise to

distributions of displacement and temperature which remain uniformly

bounded as X*n •* °° if and only if

(h) v > 0 and q > 0 .

In the low-frequency limit w •*• 0 a mode for which v approaches a

positive value 0 and q = 0(u> ) is said to be wave-like since the

limiting form of the exponential (3) then satisfies a linear wave equation

(with characteristic wave speed v ); a mode for which there is a constant
* 1 /wi 1

T) such that v ^ nw* , q ^ n ŵ  is referred to as being diffusive in
type as as -*• 0 since the limiting form of (3) then satisfies a linear
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diffusion equation (with diffusivity •jn J. Modes which are wave-like and

diffusive in type in the high-frequency limit are likewise characterized by

the respective properties V -*• V , q = 0(1) and v ^ nu>2 , q % 0 w2 as
u •+• °° .

When heat conduction is the only dissipative process operating in the
continuum one mode of harmonic wave propagation is diffusive in type and
the others wave-like at each extreme of the frequency range for all choices
of wave normal. In published investigations of body waves traversing a
heat-conducting elast ic material which is stress-free in i t s undisturbed
state consideration has been rest r ic ted to circumstances in which the
character (wave-like or diffusive) of each of the possible modes is the
same when w •+ » as when u -»• 0 [2, pp. 280-297, 3]. But recent work on
the propagation of sound in a heat-conducting inviscid fluid [6] and in
mixtures of such fluids [4] indicates the possibi l i ty that two modes, one
wave-like and the other diffusive in type in the low-frequency l imi t , may
undergo an exchange of properties as a> increases, the mode which is wave-
l ike when a) -»• 0 being diffusive and the other mode wave-like in the high-
frequency l imit . In Sections 3 and 4 we give a complete analysis of this
interchange effect, choosing for simplicity the case in which there is a
single wave-like mode giving r ise to a non-uniform temperature
distr ibution. This situation is of basic significance in the theories of
small amplitude wave propagation in isotropic e las t ic solids and inviscid
fluids and the formulation of the appropriate secular eauation presented in
Section 2 i s sufficiently general to allow results pertinent to these
theories to emerge as special cases.

2. The secular equation

We consider in the f i r s t place a homogeneous elast ic body which

possesses a reference configuration R in which the density and

temperature are uniform and the material i s isotropic in i t s mechanical and

thermal response. When disturbed by the passage of small amplitude waves

the body i s assumed to occupy an equilibrium configuration H which is

reached from R by a homogeneous deformation together with a uniform

temperature change. We denote by a, , a** <*••* t h e principal stretches

measured from the reference configuration R , by 0"̂ , o"2> a the
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principal Cauchy stresses and by T the temperature.

With each direction in the configuration B there are associated four

modes of plane harmonic wave propagation, three of them wave-like and the

other diffusive in type at each extreme of the frequency range. Each mode

excites distributions of displacement and temperature change (both

measured from H ) which vary harmonically with place and time according to

( l ) (or (3)) . A mode i s said to be uncoupled i f either the displacement or

the temperature change vanishes identically and coupled i f neither of these

fields is zero, and the terms longitudinal and transverse apply

respectively to modes for which the displacement and the wave normal are

para l le l and orthogonal.

We confine attention to principal waves, that i s waves for which the

direction of propagation is aligned with a principal axis of s tress in H .

Two of the modes are then uncoupled and transverse and the other two

coupled and longitudinal. The uncoupled modes propagate without change of

temperature and they are wave-like when u) •* 0 and when 0) •* °° . At each

of these extremes one of the coupled modes is wave-like and the other

diffusive in type but , as we shall see in Section 4, the character of a

given mode may or may not be the same in both l imi ts .

In general the secular equation governing small amplitude harmonic

disturbances of the homogeneously deformed s ta te H is a bi-quart ic in the

slowness, but in the case of a principal wave two factors, corresponding to

the transverse modes, can be removed leaving a bi-quadratic equation

expressible in the form

(5) w2 - (l+e-2)w - 3 = 0 ,

where

(6) w = (sv)~ , a = i(a)/o)*) ,

and

(7) pv = a.(3o./3a.) , e = [l/p dv ) (3a./321) , ID* = pcv /k. ,

the wave normal n being taken to l i e along the principal axis of stress

associated with the principal value 0 . . In equations (7), P is the

density, c the specific heat at constant deformation and k. the i th
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principal value of the thermal conductivity tensor1, each evaluated in B ,

and the values of a., T and the partial derivatives of a. also relate
% if

to this configuration. We refer to e and <o* in turn as the

thermoelaBtic coupling constant and the dhapacteviatie thezmoelaatic

frequency associated with the configuration B and the wave normal n .

Throughout the later analysis i t is supposed that e is strictly

positive.2

Before embarking upon the discussion of equation (5) which is the main

purpose of this paper we take note of the special cases mentioned in

Section 1.

(a) Waves in a natural configuration of an isotropic heat-conducting

elastic material. When R is a natural (that i s , stress-free)

configuration and B coincides with R the orientation of the principal

axes of stress in B becomes arbitrary and, no matter what the direction

of propagation, a small amplitude disturbance is a principal wave. It can

be shown that, in this case,

(8) 3 V 8 a i = X + 2 y ' ^/W = -°* • ki = k '

where X, JJ are the isothermal Lame constants, a the volume coefficient

of thermal expansion, K = X + \\i the isothermal bulk modulus and k the

thermal conductivity of the material, a l l evaluated in the natural

configuration R . Equations (7) therefore become

(9) v2 = (X+2u)/pQ , e = a2T0K
Z/p*cQv2 , u* = PQcQv2/k ,

the suffix 0 denoting evaluation in R Icf. 2, pp. 276-282].

(b) Waves in a heat-conducting inviscid fluid. A heat-conducting

inviscid fluid may be regarded as a heat-conducting elastic material for

which the Helmholtz free energy and the heat flux depend upon the

1 For an isotropic heat-conducting elastic material at uniform temperature
the thermal conductivity tensor is symmetric and coaxial with the Cauchy
stress tensor.
2 When e = 0 the modes of harmonic wave propagation governed by equation
(5) are uncoupled. We therefore exclude this case from further
consideration, but i t may be noted that the speeds of propagation and the
attenuation coefficients of the modes over the entire frequency range are
found by setting e = 0 in equations (31) and discarding the remainder
terms.
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deformation through the density. I t then follows that the stress is

hydrostatic and hence, denoting the pressure by p ,

(10) a^da^ia^ = p(3p/3p)

which is the isothermal bulk modulus. As in case (a) the principal axes of

stress in H can be chosen arbitrarily which implies that a plane harmonic

disturbance of H is necessarily a principal wave. Further, the

transverse modes have infinite slowness and are therefore unable to

propagate. The appropriate specializations of equations (7) are

(11) v2 - K/p , e = a2TK/pc = Y - 1 , to* = oK/k ,

where the symbols on the right-hand sides retain their previous meanings

but are now evaluated in the undisturbed configuration H , and Y is the

quotient of the specific heat at constant pressure by a , the specific

heat at constant volume lof. 7, pp. 58-6l]. As would be expected in

results referring to a fluid continuum, the formulae (ll) for v, e and

u* no longer involve the reference configuration R .

3. The modal function and Its regular branches

In the discussion of the secular equation (5) which now follows we

regard z as a complex variable and write

(12) z = t. + ix , X = <»>/"* •

I t must of course be borne in mind t h a t , in view of equation (6)2, the only

part of the a-plane concerned in the calculation of modal properties i s

the posi t ive imaginary ax i s , given by 5 = 0 , x £ 0 -

Equation (5) defines a two-valued algebraic function w_ , which we

refer to as the modal function, in the domain M obtained by deleting from

the s-plane the zeros of the discriminant of the left-hand side of (5).

The discriminant i s

(13) -z2 - 2( l-e)a - (1+e)2

and i t s zeros are the conjugate points 2 = Z, Z , where

1

(lU) Z = - (1 -E) + 2ie

At each point of M , u_ has two distinct values and the totality of such
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values determines two regular branches of u, u and u p , which can be

given explicit representations by simply solving the quadratic equation

(5):

(15) W-^z) = j{l+e-z+d(z)} , wz(z) = |{l+e-2-d(z)} .

Here d{z) is a square root of the negative of the discriminant (13) and
l _ l

we select the branch of (z-Z)^(2-Z)2 defined by

(16) d{z) = |z-Z|2|3-'z|2exp{-5

with

(17) -fir < arg(s-Z) 5 \v , —ir < argU-Z") < |ir .

The singular points z = Z, Z of the modal function u are branch

points of W, and «„ and, in accordance with the definitions (17). each

branch is regular in the domain obtained by cutting the 2-plane from

z = Z to infinity and from z = Z to infinity in the manner shown in

Figure 1. A two-sheeted Riemann surface for w_ may then be constructed by

joining the domains of regularity of the branches w and «„ , the left

edges of the cuts on sheet 1 (the domain of regularity of w ) being

attached to the right edges of the cuts on sheet 2 and vice versa. A

sketch of the resulting surface is given in Figure 2 and for ease of

reference we apply the term leaf to the parts of the Riemann surface shown

there as planes3; leaves 1 and 2 contain right half-planes of sheets 1 and

2 respectively.

The positions of the singular points in the 2-plane are determined by

the thermoelastic coupling constant e through equation (lU). As e

increases from zero they move along the upper and lower halves of the

o
parabola given by x = M?+l) , crossing the imaginary axis when e = 1

(see Figure l).

3 The crucial property distinguishing the leaves of the Riemann surface
from the sheets is the inclusion in each leaf of a neighbourhood of the
point at infinity.
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X = 3(C+l)2

Figure 1. Positions in the complex s-plane of the branch points and
branch cuts.
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Branch
points

Positive
imaginary
axis ( r > 1)

Leaf 1 ,

Positive
imaginary
axis (0 < e < 1)

Real axis

Figure 2. Schematic representation of a Riemann surface of the modal
function W_ . Sheets 1 and 2 (the domains of regularity of the
branches w. and «„ ) are indicated by solid and broken lines

respectively.
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4. Properties of the modes of harmonic wave propagation determined by

the regular branches of u

The regular branches of the modal function u are associated with the

possible modes of wave propagation admitted by the secular equation (5) and

we proceed in th is section to derive from equations (15) properties of the

two modes. The modes described by w. and Wp are referred to as mode 1

and mode 2 respectively and we denote by y , u and q. , <?„ their

respective speeds of propagation and attenuation coefficients.

Equations (2) , (6) and (12)2 together yield

(18) {wa(ix)}"^ = f + * 5 c (a = 1> 2) *

and we observe that if

(19) Imua(ix) <0 (a = 1, 2) ,

}~the choice in equation (l8) of the square root of {wa(ix)}~ with

posit ive real part leads to the conditions (k) being sa t is f ied , with CO2

holding as a s t r i c t inequality. At a given frequency, (19) are therefore

sufficient conditions for the modes to propagate and to be asymptotically

stable in the sense explained in Section 1.

(a) The complete solution. The evaluation of the regular branches

u1 and Up on the positive imaginary axis of the 2-plane i s faci l i ta ted

by dividing the frequency range at x = 1 + e and introducing two pairs of
angles, if>, $ and \p, ¥ , defined as follows.

For 0 £ x < 1 + e »

(20) sin<(> = r^~ (0 S <t> < |ir) , tan$sec$ = j ^ - tan(|>sec<t> (~TT < $ < iir) .

For X > 1 + e »

(21) sin* = ^^ - (0 < ill < iv) , tantsecH' = r ^ - tantysecty (~TT < 4" < \v) .
y • c ' J.+E *

As x increases from 0 to 1 + e , <\> increases from 0 to |TT ,

while * increases from 0 to -iw when 0 < e < 1 and decreases from 0
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t o —jir when e > 1 ; as x increases from 1 + e , \j> decreases from

•jTT t o 0 and ¥ decreases from -jir t o 0 or increases from - | i r t o 0

according as 0 < e < 1 or e > l . When e = l , <j> = ¥ = 0 , and we

note the i n e q u a l i t i e s

(22)

(0 < <)>-$ < IT , 0 < <j>+4> < TT f o r 0 < x

(0 < < TT , 0 < (jH-f < IT for x > l + e •

Using the definitions (20) and (21) in conjunction with equations (15),

(16) and the inequalities (17) we find that

(23) 0 < X < 1+e ,

(21*)

where

(25)

(l+e)coseci|«ec1i'cosj(i()-H'){sin|(ijJ-4')-icos|(iJJ+4')}

X > 1+e ,

B =

0 w h e n 0 < £ 5 1 ,

1 when e > 1 .
i

When the dimensionless frequency x n a s the transitional value 1 + £ ,

^(l+£){(l+6)-i(l-6)} when 0 < £ 5 1 ,

(26)

w (i(l+e)) =

where

(27) 6 =

|(l+e)(l+6)(l-i) when £ > 1 ,

i(l+e){(l-6)-i(l+6)} when 0 < e 5 1 ,

i(l+e)(i-6)(i-i) when £ > 1 ,

(0 < 6 < 1) ,

and i t may readily be verified that equations (26) follow from (23) and

(2k) on proceeding to the limits x + 1 + e aD^ X + l+e respectively.
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Inspection of equations (23) to (27) shows that, by virtue of the
inequalities (22), the sufficient conditions (19) are fulfilled for all
X * 0 . The secular equation (5) therefore entails the existence, at all
positive frequencies, of two propagating modes which are asymptotically
stable.

Expressions for the speeds of propagation and attenuation coefficients

of the modes can be derived in a straightforward manner from equations

(23), (2U) and (26) with use of (18). The following formulae specify

V , V and q-. , q as functions of x over the entire frequency range.

For 0 £ X < 1+e ,

vjv = [2m(l+e)sec*cos^(i))-$){l+m~ cosj

- 1 , _ i

(28)

-l-i 4

-n*

= [5m"1(l+e)sin2<(>cos*sec-5((t>-4>){l-m"1cos-5(<(H-$)}]2 ,

m~ (l+e)sin

where m = (l-sin(()sin$)5 .

For x

(29)

v Jv = [2n(l+e)coseci(;secH'cos^(^4'){l+n sini(i/)-1')}"1]2 ,

= [jn"1(l+e)coseci()cos4'cosec5(i(i+1l'){l-w~1cos-j

where n = (l-sinipsin1?^ and B is again given by (25).

For x = l + £ .
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vjv = 2{2(l+e)~2+i+6}" ,

_ i 1

v2/v = 2{2( I+E) z+1-6}"2 ,

when 0 < e s 1 ,

(30)

when £ > 1

(b) The characters of modes 1 and 2. We now derive from equations

(28) to (30) limiting forms of the speeds of propagation and attenuation

coefficients of the modes appropriate to the lower and upper extremes of

the frequency range. Making use of the definitions (20) and (21) we find

that

(31)

vx = v(l+e)^{l+0(X
2)} ,

v = V{2(1+E)" 1 X}2{I+O( X )} ,

5 p
(eo)*/25)(l+e)"2X {

q = (w*/u){-|(l+e)x}2{l+0(x)} ,

as x * 0 ,

(of. [2, p. 285]) and
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(32) as

From equations (31) mode 1 i s seen to be wave-like and mode 2 diffusive in

type in the low-frequency l imit and equations (32), with (25), show that

the modes preserye these characters in the high-frequency limit when

0 < e S 1 . But when e > 1 , mode 1 is diffusive in type and mode 2 wave-

l ike as x "*• °° » putting in evidence the interchange of modal properties

to which we have alluded in Sections 1 and 2. The interchange effect i s

associated with the transfer of the branch points z = K, Z from the lef t

to the right half of the s-plane and i t can be 'interpreted in the

following way with regard to the Riemann surface of the modal function w_

depicted in Figure 2.

When 0 < e < 1 the branch cuts l i e in the lef t half of the s-plane

and a path s tar t ing at the origin of sheet 1 and proceeding along the

posit ive imaginary axis leads to the point at infinity of leaf 1. The

implication is that mode 1 preserves i t s wave-like character throughout the

frequency range and that mode 2 is similarly entirely diffusive in type.

But when S > 1 the branch cuts are situated in the right half of the

s-plane and reference to Figure 2 shows that a description of the positive

imaginary axis of sheet 1 from the origin now leads to the point at

inf ini ty of leaf 2, indicating that mode 1, which is wave-like as ID -»• 0 ,

i s diffusive in type in the high-frequency limit while mode 2 displays the

converse pattern of behaviour.

The right-hand sides of equations (31) supply the leading terms of
expansions of the speeds of propagation and attenuation coefficients in
powers of x • There series are obtained from Taylor expansions of the
regular branches W. and u_ about s = 0 which, as an element of the

domain M , i s an ordinary point of the modal function u . Now a basic

resul t in the theory of algebraic functions LI, pp. 2l»-29] asserts that the
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radius of convergence of such a Taylor series is the distance from the

ordinary point on which i t is centred to the nearest singularity of the

algebraic function. In the present instance this distance is

|z | = |z | = l + e . Expansions of modal properties in direct powers of the

dimensionless frequency x therefore have radius of convergence 1 + e .*

We note in passing that the point z = t(l+e) (corresponding to

X = 1 + £ ) l ies on the circle of convergence with centre 3 = 0 ; this

explains the significance of the division of the frequency range made in

subsection (a). The right-hand sides of equations (32) likewise contain

the leading terms in developments of V, , Up and q., q~ in inverse

powers of X and, by further appeal to the basic theorem mentioned above,

the radius of convergence of such series is found to be (1+E)

(c) The critical case e = 1 . The nature of the interchange effect

revealed by the foregoing analysis is further illuminated by an examination

of the situation, arising when c =- 1 , in which an exchange of modal

characters is imminent. Results referring to this special case have been

given by Di I Ion [5] in connection with small amplitude disturbances of a

natural configuration of an isotropic heat-conducting elastic material and

by McKi nney and Oser [6] for acoustic wave propagation in a heat-conducting

inviscid fluid, but the following simple closed-form solution, obtained by

setting $ = >C = 0 in equations (28) and (29), appears to have passed

unnoticed in previous work.

For 0 S X - 2 ,

1 1
V^/v = (2cosj<J>)2sec£<f> , q.v/u* = 2(sin<j>sin|(f>)2sin-i<)i ,

(33)
i I

V2/v = (2sin!<j>)2sec^(TT-<|>) , q v/u* = 2(sin<j>coS3<t>)*sin-i(TT-(t>) ,

with <j> = s in " 1 ( ^x ) •

For x 2 2 , •

14 This result corrects an erroneous statement about the convergence
properties of such power series made by the author in an ear l ier paper [2,
p. 285].
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Figure 3. Graphical representation of the variation with frequency of the

speeds of propagation and attenuation coefficients of the two modes in the

crit ical case e = 1 . mode 1, mode 2.
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(3U)

1
v /v = (cos^ifj)~2sec-itjj , = (^sinipsin-lf)rising ,

V2/v =

with i|i = sin"1(2/x) .

When X = 2 the values of and a r e equal (ix then

coinciding with a singular point of the modal function u ) and we find

from equations (33) and (3k) that

= v2/v
1 1

2(22-1)2
1 1

q v/u* = (22-1)2 .

In addition,

j i CkI . - JL pal
v
co as -<*> a s

» as x + 2 ,

The graphs of the speeds of propagation therefore cross at X = 2 where

they both have inflexions with vertical tangent, and the graphs of the

attenuation coefficients also meet at X = 2 and each have cusps with

vertical tangent at the point of intersection. These features are

prominent in Figure 3 which shows the variations of V./v, vjv and

q^v/ui*, qJv/iji* with x o n log-linear and log-log scales respectively.

The incipient interchange of modal properties predicted by the analysis is

clearly displayed by these curves.
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