NOTE ON THE SUPPORT OF SOBOLEV FUNCTIONS

THOMAS BAGBY AND P. M. GAUTHIER

Abstract. We prove a topological restriction on the support of Sobolev functions.

THEOREM. Let k and n be integers such that $0<k<n$, and suppose that $p>1$ and $p>k-1$. Then the only distribution in the Sobolev space $W_{1, p}\left(\mathbf{R}^{n}\right)$ which is supported by a k-cell is the zero distribution.

Here the Sobolev space $W_{1, p}\left(\mathbf{R}^{n}\right)$ is the set of all distributions u on \mathbf{R}^{n} such that u and each of its first-order partial derivatives are represented by functions in $L_{p}\left(\mathbf{R}^{n}\right)$. A k-cell is a homeomorph of the closed unit ball of \mathbf{R}^{k}.

In case $p>n$ this theorem is well known; in fact, in this case the Sobolev imbedding theorem states that any distribution in $W_{1, p}\left(\mathbf{R}^{n}\right)$ is represented by a continuous function on \mathbf{R}^{n} (and hence can be supported by a nowhere-dense compact set only if it is zero). On the other hand, if $1<p \leq n$, Polking [P , Theorem 4] has shown that there is a nonzero element of $W_{1, p}\left(\mathbf{R}^{n}\right)$ whose support is a nowhere-dense compact set. It is possible to characterize the compact subsets of \mathbf{R}^{n} which support nonzero Sobolev functions, by adapting certain concepts from classical potential theory (see [AH, Theorem 11.3.2] and the references given there); however, our proof of the theorem above makes no use of such results.

Our theorem is related to the theory of harmonic approximation developed by Keldysh, Deny, and Havin, and discussed in the paper of Hedberg [H]. From [H, Theorem 11.9] and the classical Runge property for harmonic functions proved by Walsh [W, p. 541] [GH, Théorème 2.1.4] we deduce that for a compact set $K \subset \mathbf{R}^{n}$ whose complement $\mathbf{R}^{n} \backslash K$ is connected, the following properties are equivalent:
(a) the only distribution $u \in W_{1,2}\left(\mathbf{R}^{n}\right)$ supported by K is the zero distribution.
(b) every continuous function on K can be uniformly approximated by functions harmonic on \mathbf{R}^{n}.

From this equivalence, and the theorem above when $p=2$, we obtain a uniform approximation theorem: if $k=1$ or $k=2$, and $k<n$, then every continuous function on a k-cell in \mathbf{R}^{n} can be uniformly approximated by functions harmonic on \mathbf{R}^{n}. In the case $k=1$ this is included in the main theorem of [BCG]; and in the case $k=2, n=3$ this was proved by Keldysh and Lavrent'ev, and is included in the book of Landkof

[^0][L, Theorem 5.20]. The present paper gives in particular a simple proof of the KeldyshLavrent'ev theorem, but we do not know if the analogous approximation theorem holds for k-cells with $k \geq 3$.

It is a pleasure to acknowledge helpful discussions with Eric Bedford, Mohamad Pouryayevali and Stephen Semmes concerning this paper.

We turn now to the preliminaries for the proof. We will use the notation λ_{d} for d dimensional Lebesgue measure, and we assume that $1<p<\infty$. We set $\mathbf{B}_{r}^{d}(a)=\{x \in$ $\left.\mathbf{R}^{d}:\|x-a\|<r\right\}$ if $a \in \mathbf{R}^{d}$ and $r>0$, and we define $\mathbf{B}^{d}=\mathbf{B}_{1}^{d}(0)$. We let $\varphi \in C_{0}^{\infty}\left(\mathbf{B}^{n}\right)$ be a fixed nonnegative function with $\int \varphi d \lambda_{n}=1$.

If $u \in W_{1, p}\left(\mathbf{R}^{n}\right)$ has compact support and $\varepsilon>0$, we define $u_{\varepsilon}=u * \varphi_{\varepsilon}$, where $\varphi_{\varepsilon}(x) \equiv \varepsilon^{-n} \varphi(x / \varepsilon)$. It is well known [EG, Section 4.2, Theorem 1] that $u_{\varepsilon} \in C^{\infty}\left(\mathbf{R}^{n}\right)$ for each $\varepsilon>0$; and that the function $x \longmapsto \lim _{\varepsilon \rightarrow 0} u_{\varepsilon}(x)$ is defined for λ_{n}-a.e. point $x \in \mathbf{R}^{n}$, is in $L_{p}\left(\mathbf{R}^{n}\right)$, and represents the distribution u. Moreover, the arguments used to prove [GZ, Theorem 3.2] yield the following result (see also [M, Theorem 5]).

LEMMA 1. If $u \in W_{1, p}\left(\mathbf{R}^{n}\right)$ has compact support, then there is a sequence $\varepsilon_{j} \downarrow 0$ with the following property. If M is any subspace of \mathbf{R}^{n} of dimension ℓ, where $0<\ell<n$ and $\ell<p$, and M^{\perp} is the orthogonal complement of M in \mathbf{R}^{n}, then for $\lambda_{n-\ell}$-a.e. point $a \in M^{\perp}$, the sequence $\left\{u_{\varepsilon_{j}}\right\}$ is uniformly Cauchy on the ℓ-plane through a and parallel to M.

The following lemma is analogous to a well-known result of Moore [Mo]. For each integer $k \geq 2$ we define $Y_{k}=P \cup Q$, where

$$
\begin{gathered}
P=\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbf{R}^{k}: x_{1}^{2}+\cdots+x_{k-1}^{2} \leq 1, x_{k}=0\right\} \\
Q=\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbf{R}^{k}: x_{1}=\cdots=x_{k-1}=0,0 \leq x_{k} \leq 1\right\}
\end{gathered}
$$

LEMMA 2. Fix $k \geq 2$. Suppose that for each j in an uncountable set \mathcal{I} we have a continuous injection $f_{j}: Y_{k} \rightarrow \mathbf{R}^{k}$. Then the images $f_{j}\left(Y_{k}\right)$ cannot be mutually disjoint.

To prove Lemma 2 we let

$$
\begin{aligned}
b P & =\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbf{R}^{k}: x_{1}^{2}+\cdots+x_{k-1}^{2}=1, x_{k}=0\right\} \\
1_{k} & =\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbf{R}^{k}: x_{1}=\cdots=x_{k-1}=0, x_{k}=1\right\} .
\end{aligned}
$$

For each index $j \in \mathcal{I}$ the distance d_{j} from $f_{j}(Q)$ to $f_{j}(b P)$ and the distance e_{j} from $f_{j}\left(1_{k}\right)$ to $f_{j}(P)$ are strictly positive. Since \mathcal{I} is uncountable, we may assume without loss of generality that there is a positive number ρ such that $d_{j} \geq \rho$ for all $j \in \mathcal{I}$, and in fact it is no loss of generality to assume that $\rho=2$. With this convention, we may also assume that for each j the diameter of $f_{j}(Q)$ is less than $1 / 3$ (this can be achieved by replacing f_{j} by a function g_{j}, where $g_{j}=f_{j}$ on P, and $g_{j}(t)=f_{j}\left(T_{j} t\right)$ for t in Q, with T_{j} an appropriate number in $[0,1])$. It follows that $e_{j} \leq 1 / 3$ for each j. Using again the fact that \mathcal{I} is uncountable, we may assume that there is a positive number $\sigma \leq 1 / 3$ such that $e_{j} \geq \sigma$ for all $j \in \mathcal{I}$. Using once more the fact that \mathcal{I} is uncountable, we may assume that all points $f_{j}\left(1_{k}\right)$ lie in an open ball G of radius $\sigma / 3$, and in fact it is no loss of generality to assume
that G is centered at the origin of \mathbf{R}^{k}. Note that for each j we have $f_{j}(0) \in f_{j}(Q) \subset \mathbf{B}^{k}$, but the set $f_{j}(b P)$ does not intersect \mathbf{B}^{k}.

For each j we let W_{j} be the component of $\mathbf{B}^{k} \cap f_{j}(P)$ which contains $f_{j}(0)$. From [I, Chapter V, Theorem 4.6, p. 274] it follows that the set $\mathbf{B}^{k} \backslash W_{j}$ is not connected, and we refer to its components as the complementary components of W_{j}. We see from the preceding paragraph that the distance from the ball G to the set $f_{j}(P)$ is at least $\sigma / 3$, and hence one of the complementary components C_{j} of W_{j} contains the ball G. We let D_{j} be a complementary component of W_{j} other than C_{j}.

To complete the proof of the lemma we now suppose that the images $f_{j}\left(Y_{k}\right)$ are mutually disjoint.

Let i and j be any pair of distinct indices in \mathcal{I}. We then have $f_{i}(0) \in C_{j}$ (for otherwise the connected set $f_{i}(Q) \subset \mathbf{B}^{k}$ would contain points in distinct complementary components of W_{j}, and therefore would intersect W_{j}). It follows that the connected set W_{i} lies in C_{j}, and hence D_{j} must be one of the components of the set $\mathbf{B}^{k} \backslash\left(W_{i} \cup W_{j}\right)$. Similarly, D_{i} must be one of the components of the set $\mathbf{B}^{k} \backslash\left(W_{i} \cup W_{j}\right)$. But the sets D_{i} and D_{j} cannot be identical (since $\mathbf{B}^{k} \cap \partial D_{i} \subset W_{i}$ and $\mathbf{B}^{k} \cap \partial D_{j} \subset W_{j}$), and we conclude that D_{i} and D_{j} must be disjoint.

According to the preceding paragraph the sets $\left\{D_{j}\right\}_{j \in \mathcal{I}}$ form an uncountable mutuallydisjoint family of nonempty open subsets of \mathbf{B}^{k}, which is impossible. This completes the proof of Lemma 2.

To prove the theorem, we let $X \subset \mathbf{R}^{n}$ be the image of the closed unit ball in \mathbf{R}^{k} under a homeomorphism H, and we let u be any element of $W_{1, p}\left(\mathbf{R}^{n}\right)$ which is supported in X. If $\left\{\varepsilon_{j}\right\}$ is the sequence given in Lemma 1, we let $\tilde{u}(x) \equiv \lim _{j \rightarrow \infty} u_{\varepsilon_{j}}(x)$ wherever this limit exists. Since the support of u is contained in X, and the support of φ_{ε} is contained in $\mathbf{B}_{\varepsilon}^{n}(0)$ for each $\varepsilon>0$, it is clear that $\tilde{u} \equiv 0$ on $\mathbf{R}^{n} \backslash X$. We suppose that u is not the zero element of $W_{1, p}\left(\mathbf{R}^{n}\right)$, and hence the set $E=\left\{x \in \mathbf{R}^{n}: \tilde{u}(x)\right.$ is defined and nonzero $\}$ has positive Lebesgue measure.

We next complete the proof in the case $k=1$. From Lemma 1 and the hypotheses of the theorem we see that \tilde{u} is continuous on λ_{n-1}-a.e. line parallel to the x_{1}-axis. Thus we may find a set $E_{0} \subset E$ such that $\lambda_{n}\left(E \backslash E_{0}\right)=0$, and every point $a \in E_{0}$ is the center of an open line segment, parallel to the x_{1} axis, contained in E. The set E_{0} has positive λ_{n}-measure, so by Fubini's theorem the projection of E_{0} on the x_{n}-axis is uncountable. We thus see that the set $E \subset X$ contains an uncountable family of mutually disjoint homeomorphs of the open unit interval, so $H^{-1}(X)=[-1,1]$ has the same property, and this is impossible. This completes the proof of the theorem in the case $k=1$.

To complete the proof in case $k \geq 2$ we introduce the following notation: for each point $a \in \mathbf{R}^{n}$ we let $P(a)$ be the ($k-1$)-plane which is parallel to the coordinate $x_{1} \cdots x_{k-1^{-}}$ plane and contains the point a, and we let $Q(a)$ be the line which is parallel to the x_{k}-axis and contains the point a; if $r>0$, we set $P_{r}(a)=P(a) \cap \overline{\mathbf{B}_{r}^{n}(a)}$ and $Q_{r}(a)=Q(a) \cap \overline{\mathbf{B}_{r}^{n}(a)}$. From Lemma 1 and the hypotheses of the theorem we see that \tilde{u} is continuous on $\lambda_{n-k+1^{-}}$ a.e. $(k-1)$-plane parallel to $P(0)$. Thus we may find a set $E_{1} \subset E$ such that $\lambda_{n}\left(E \backslash E_{1}\right)=0$, and for every point $a \in E_{1}$ there is some $r>0$ such that $P_{r}(a) \subset E$. Moreover, from

Lemma 1 and the hypotheses of the theorem we see that \tilde{u} is continuous on λ_{n-1}-a.e. line parallel to the x_{k} axis. Thus we may find a set $E_{2} \subset E_{1}$ such that $\lambda_{n}\left(E_{1} \backslash E_{2}\right)=0$, and for every point $a \in E_{2}$ there is some $s>0$ such that $Q_{s}(a) \subset E$. The set E_{2} has positive λ_{n}-measure, so by Fubini's theorem the projection of E_{2} on the x_{n}-axis is uncountable. We conclude that the set $E \subset X$ contains an uncountable family of mutually disjoint homeomorphs of the set Y_{k}, so $H^{-1}(X)=\overline{\mathbf{B}^{k}}$ has the same property. This contradicts Lemma 2, so the theorem is proved in all cases.

References

[AH] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory. Springer-Verlag, New York, Berlin, Heidelberg, 1996.
[BCG] T. Bagby, A. Cornea, and P. M. Gauthier, Harmonic approximation on arcs. Constr. Approx. 9(1993), 501-507.
[EG] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, Ann Arbor, London, 1992.
[GH] P. M. Gauthier and W. Hengartner, Approximation Uniforme Qualitative sur des Ensembles Non Bornés. Les Presses de l’Université de Montréal, 1982.
[GZ] C. Goffman and W. P. Ziemer, Higher dimensional mappings for which the area formula holds. Ann. of Math. 92(1970), 482-488.
[H] L. I. Hedberg, Approximation by harmonic functions, and stability of the Dirichlet problem. Exposition. Math. 11(1993), 193-259.
[I] B. Iversen, Cohomology of Sheaves. Springer-Verlag, New York, Heidelberg, Berlin, 1986.
[L] N. S. Landkof, Foundations of Modern Potential Theory. Springer-Verlag, New York, Heidelberg, Berlin, 1972.
[M] N. G. Meyers, Continuity of Bessel potentials. Israel J. Math. 11(1972), 271-283.
[Mo] R. L. Moore, Concerning triods in the plane and the junction points of plane continua. Proc. Nat. Acad. Sci. U.S.A. 14(1928), 85-88.
[P] J. C. Polking, A Leibniz formula for some differentiation operators of fractional order. Indiana Univ. Math. J. 21(1972), 1019-1029.
[W] J. L. Walsh, The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions. Bull. Amer. Math. Soc. 35(1929), 499-544.

Department of Mathematics	Département de mathématiques et de statistique
Rawles Hall	et
Indiana University	Centre de recherches mathématiques,
Bloomington, Indiana 47405	Université de Montréal
U.S.A.	CP 6128 Centreville
	Montréal, Québec
	H3C 3J7

[^0]: Received by the editors July 26, 1996.
 Research supported in part by NSERC-Canada and FCAR-Québec. AMS subject classification: Primary: 46E35; secondary: 31B05.
 Key words and phrases: Sobolev spaces, harmonic approximation.
 (c) Canadian Mathematical Society 1998.

