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CONTINUOUS-TIME METHODS IN THE STUDY
OF DISCRETELY SAMPLED FUNCTIONALS OF
LÉVY PROCESSES. I. THE POSITIVE PROCESS CASE

MICHAEL SCHRÖDER ∗

Abstract

In this paper we develop a constructive approach to studying continuously and discretely
sampled functionals of Lévy processes. Estimates for the rate of convergence of the
discretely sampled functionals to the continuously sampled functionals are derived,
reducing the study of the latter to that of the former. Laguerre reduction series for the
discretely sampled functionals are developed, reducing their study to that of the moment
generating function of the pertinent Lévy processes and to that of the moments of these
processes in particular. The results are applied to questions of contingent claim valuation,
such as the explicit valuation of Asian options, and illustrated in the case of generalized
inverse Gaussian Lévy processes.
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1. Introduction

In this paper we demonstrate a constructive approach to the study of functionals of Lévy
processes the basic idea of which is to use continuous-time methods to study discrete-time situa-
tions, and vice versa. The one notion we concentrate on is that of discretely sampled functionals,
a concept made precise in Section 4. Such fundamentals include, as a simple but typical
example, expectations of the form

E[ρ(�)], where � =
∑
u∈T

Xu,

the latter obtained as the sum of finitely many random variables Xu. Taking X as a process, these
discretely sampled functionals can be understood as discrete-time approximations to the second
notion we concentrate on: the continuously sampled functionals given by the expectations

E[ρ(At,T (X))], where At,T (X) =
∫ T

t

Xu du.

Examples of discretely and continuously sampled functionals are common and occur in areas
as diverse as the physics of random media and finance or insurance. In Section 4 we discuss
applications to these last two areas which include the valuation of Asian options. This example
shows that, apart from a structure theory, one wants representations for these functionals which
can be used for numerical work as well.
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Our main contribution in this paper is the development of an approach which addresses both
aspects, giving a structure theory for the above functionals and also furnishing implementable
formulae for their computation. Assuming that X is a Lévy process, the approach is in terms
of the characteristic function of X and derived concepts such as the moments of X. Assuming
additionally that X is positive, it proceeds in three principal steps as follows.

As a first step we develop a method for coping with the principal difficulty in studying
the continuously sampled functionals: integrating with respect to time destroys the law of the
original process. The idea is to study these functionals as limits of discretely sampled ones.
The key difficulty then is to give estimates for the rate of this convergence, and this is addressed
in Section 5. There we show how, under differentiability assumptions on the functions ρ, the
continuously sampled functionals differ from the corresponding discretely sampled ones by an
error proportional to the reciprocal of the number of sample points.

A reduction thus occurs to the study of the discretely sampled functionals alone. Here the
principal difficulty comes from the dimensionality of the problems. Indeed, if the random
variables Xu, for u ∈ T , are independent, each of them adds one dimension to the expectation:
sampling over a three-month period thus results in 60-dimensional integrals. Dependencies
among the Xu will introduce additional relations into these integrals and, thus, additional
difficulties in their computation. As a second step, in Section 6 we therefore develop a
normalization of discretely sampled functionals according to which they are constructed in
terms of independent random variables.

As a third step, in Section 8 we develop Laguerre reduction series for the step-two functionals.
With the pertinent results assembled in Section 3, this development proceeds along the lines of
Schröder (2005a), as follows: expand the probability densities of the above random variables
� into Laguerre polynomials and try to take the expectation through the resulting summation.
We find that the validity of these operations can be characterized in terms of the characteristic
function of X and its asymptotic behaviour, and that the resulting reduction series are indeed
in terms of the moments of X. From the point of view of the general framework developed in
Schröder (2006a), the approach furnished is the one complementary to that of Dufresne (2000),
and yields reduction series particularly apt for computations.

We therefore use these results to develop an explicit valuation of Asian-type options in
Section 9, and illustrate them for generalized inverse Gaussian Lévy processes X, as reviewed
in Section 2. With Schröder (2005a), (2006b) and the literature cited therein addressing the
valuation of continuously sampled Asian options in the Black–Scholes model, these are new
results, and they by no means exhaust the potential of the approach; the general picture is
summarized in Section 10.

2. Preliminaries on Lévy processes

In this section we collect pertinent facts about the Lévy processes associated with generalized
inverse Gaussian distributions.

2.1. Lévy processes

Lévy processes are processes of stationary, independent increments. Working on any filtered
probability space (�, F , F, Q) whose filtration satisfies the usual conditions, we moreover
assume the processes to be càdlàg (continuous from the right with left limits) so that they are
progressively measurable with sample paths continuous almost everywhere. Recall that any
Lévy process X = (Xt , t ≥ 0) is constructed from infinitely divisible distribution functions f ;
see Bauer (1996, Section 37) or Kallenberg (2002, Theorem 15.12). The construction is such
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that f becomes the law of X1, and up to a notion of equivalence this sets up a bijection between
infinitely divisible distributions and Lévy processes.

2.2. GIG Lévy processes

A generalized inverse Gaussian (GIG) Lévy process XGIG(ξ) is a Lévy process that depends
on the parameter triple ξ = (γ, δ, λ) of reals. In the present paper we restrict the first two
parameters to be positive: γ , δ > 0. Such a process is then constructed as indicated in
Section 2.1 using the generalized inverse Gaussian distribution, GIG(ξ), corresponding to ξ .
The latter’s Lebesgue density is given on the positive real line by

dGIG(ξ)(w) = 1

2

(γ /δ)λ

Kλ(γ δ)
wλ−1 exp

(
−1

2

(
δ2

w
+ γ 2w

))
, w > 0.

Here Ka is the K-Bessel function of any complex degree a; see Lebedev (1972, Chapter 5).
From Lebedev (1972, Equation (5.10.25)), in particular recall the integral representation

Ka(z) = 1

2

(
z

2

)a ∫ ∞

0
w−a exp

(
−w − (z/2)2

w

)
dw

w
,

which holds for all complex z with Re(z2) > 0. These functions also enter into the Fourier
transform of these densities by means of the weighted K-Bessel function Fξ defined by

Fξ (z) = Kλ(δ
√

ϕ(z))

(δ
√

ϕ(z))λ

for any complex z with Re(z) < γ 2/2, where ϕ ≡ ϕγ is given by ϕ(z) = γ 2 − 2z. In fact,
from Jørgensen (1982, Equation (2.9)) or Prause (1999, Lemma 1.38), we have

MG(z) = 1

Fξ (0)
Fξ (z), Re(z) <

1

2
γ 2,

where MG is the moment generating function of the time-1 value, XGIG(ξ),1, of XGIG(ξ),
defined by MG(z) = E[exp(zXGIG(ξ),1)] for any complex z with Re(z) < γ 2/2. The moment
generating function, MGt , of XGIG(ξ) at any time t is obtained by raising MG to its t th power:
MGt = MGt . This general property of Lévy processes (see Kallenberg (2002, Corollary 15.8))
enables a two-step computation of their moments. The first step is as follows.

Proposition 2.1. Let X be any Lévy process whose first N time-1 moments exist. Then its first
N time-t moments exist for any time t , and we have

E[Xn
t ] =

n∑
k=1

(−1)k(−t)k

k−1∑
	=0

(−1)	

(k − 	)! 	!F
n
k−	(0)

for any nonnegative integer n ≤ N .

The concepts involved here are as follows. By (a)k we denote the kth Pochhammer symbol
of any complex a, which is recursively defined by (a)0 = 1 and (a)k+1 = (a + k)(a)k for any
nonnegative integer k. The Fn

m are functions on the domain of definition of the time-1 moment
generating function, MGX, of X, and are recursively defined as follows: for any nonnegative
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integers n, m ≤ N , let F 0
m = MGm

X, the mth power of MGX, and let Fn
0 = MG(n)

X , the nth
derivative of MGX, and for such positive integers set

Fn
m =

n∑
k=0

(
n

k

)
Fn−k

1 Fk
m−1.

Hence, we have the multinomial expansion

Fn
m =

∑
L

(
n

L

)
MG(	1)

X · · · MG(	m)
X ,

where the sum is over all m-tuples L = (	1, . . . , 	m) of nonnegative integers with sum |L| =
	1 + · · · + 	m = n; in particular, we obtain

Fn
m(0) =

∑
L

(
n

L

)
E[X	1

1 ] · · · E[X	m

1 ].

Proof of Proposition 2.1. The formula is established by differentiation of the t th power
of MGX. This is seen to reduce to a verification of the differentiation formula

(MGa
X)(n) =

n∑
k=1

(−1)k(−a)kMGa−k
X Uk, where Uk =

k−1∑
	=0

(−MGX)	

(k − 	)! 	! (MGk−	
X )(n).

This result reduces the computation of the moments of GIG Lévy processes to that of their
time-1 moments, and a direct integration of the pertinent densities as in Jørgensen (1982,
Equation (2.16)) is then seen to yield the second step, as follows.

Proposition 2.2. All nonnegative moments of any GIG Lévy process XGIG(ξ) exist, and we have

E[Xn
GIG(ξ),1] =

(
δ

γ

)n
Kλ+n(γ δ)

Kλ(γ δ)

for any nonnegative integer n.

3. Preliminaries on Laguerre reduction series

In this section we assemble pertinent results on the Laguerre reduction series of stochastic
functionals.

3.1. Laguerre series

In this section we recall pertinent properties of Laguerre polynomials from Lebedev (1972,
Section 4) and Sansone (1991). The structural setting for them is a generalization of the classical
Hilbert space of square-integrable functions. For any real α > −1, let L2

α(0, ∞) be the Hilbert
space of all real-valued functions F on the positive reals that are α-square integrable, i.e. such
that

‖F‖2
α :=

∫ ∞

0
wα(x)|F |2(x) dx < ∞,

with the weight wα on (0, ∞) given by wα(x) = xα exp(−x). Then L2
α(0, ∞) carries the

bilinear form 〈 , 〉α given by

〈F, G〉α =
∫ ∞

0
wα(x)F (x)G(x) dx,
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and an orthogonal basis for this Hilbert space is furnished by the α-Laguerre polynomials,
Lα

m(z). For any nonnegative integer m, these are given by

Lα
m(z) =

m∑
k=0

αm,kz
k, where αm,k = (−1)k

k!
(

m + α

m − k

)
,

for any complex number z, and satisfy ‖Lα
m‖2

α = �(m + α + 1)/m!. Expressing any F in
L2

α(0, ∞) in this basis yields its α-Laguerre series,

F =
∞∑

m=0

cmLα
m, where cm = 〈F, Lα

m〉α
〈Lα

m, Lα
m〉α .

The cm are the α-Laguerre coefficients of this series, whose convergence to F is in α-mean:
limM→∞ ‖F − ∑M

m=0 cmLα
m‖α = 0.

3.2. Growth measures

In this section we recall and modify the local growth measures δ and γ of Schröder (2005a,
Section 2.1) and Schröder (2006a, Section 2.2), which encode how Laguerre expandability is
determined by local data. They apply to any complex-valued function f on the positive reals
and the idea of them is to describe the behaviour of f at any point a of the nonnegative real
line or at ∞ by comparison with the behaviour of power maps or powers of the exponential
function, respectively. The exponential growth order, δa(f ), of f near a measures the rate of
exponential decay of f at a and is defined as follows:

δa(f ) = sup
{
δ ∈ R : lim

x→a
exp(δx)f (x) = 0

}
.

The polynomial growth order, γa(f ), of f near a gives for meromorphic functions f the degree
of the leading terms of their Laurent series expansions in a. In general, it is defined as follows.
If a is finite then

γa(f ) = sup
{
γ ∈ R : lim

x→a
f (x)/(x − a)γ = 0

}
,

and otherwise γ∞(f ) = γ0(f
∗), where f ∗(x) = f (1/x). The respective sets of real numbers

defining these growth orders may be empty, in which case the supremum of each is −∞.

3.3. Laguerre reduction series

The notion of a Laguerre reduction series was developed in Schröder (2005a) as an alternative
to Dufresne (2000), and Schröder (2006a) furnishes a common framework for both approaches.
Adopting the setting of Section 3.1, the result which is pertinent and basic to the present paper
is as follows.

Theorem 3.1. Let Y be any positive random variable with probability density gY , and let the
measurable function ρ on the positive reals and the real α > −1 be such that ρ and gY /wα

are both in L2
α(0, ∞). Then we have the absolutely convergent Laguerre reduction series

representation

E[ρ(Y )] =
∞∑

m=0

am〈ρ, Lα
m〉α,
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whose error terms, RM = ∑∞
m=M am〈ρ, Lα

m〉α , satisfy the inequality

R2
M ≤ ‖ρ‖2

α

∞∑
m=M

a2
m‖Lα

m‖2
α.

The coefficients am are the α-Laguerre coefficients of gY /wα , namely

am = 〈gY /wα, Lα
m〉α

〈Lα
m, Lα

m〉α =
m∑

k=0

αm,k

‖Lα
m‖2

α

E[Y k],

given here in terms of the αm,k , the coefficients of Lα
m, and the E[Y k], the kth moments of Y .

Similarly,

〈ρ, Lα
m〉α =

m∑
k=0

αm,k

∫ ∞

0
wα(y)ρ(y)yk dy.

The theorem is quoted directly from Schröder (2005a, Theorem 3.2 and Addendum 3.4) in
the situation β = α and δ = 1 there, or Schröder (2006a, Theorem 5.3 and Proposition 5.1)
in the situation where, moreover, N = 0. It essentially asserts the validity of taking the
expectation through the series for ρgY obtained using the expansion of gY /wα in terms of
α-Laguerre polynomials. Its proof reduces to establishing the error estimates, and these follow
on combining a Cauchy–Schwarz estimate for the remainder term functionals, RM , using the
Parseval identity in L2

α(0, ∞) for the Laguerre expansion of gY /wα . A complete argument was
given in Schröder (2006a, Section 5.5).

3.4. Expandability criterion

Using the concepts and notation of Section 3.3, in this section we develop a new sufficient
criterion for the Theorem 3.1 Laguerre reduction series to exist. In addition to the local growth
measures of Section 3.2, it is given in terms of the moment generating function, MGY , of the
positive random variable Y . This function is defined by MGY (z) = E[exp(zY )] for any complex
z with Re(z) < σsc(Y ), where

σsc(Y ) = sup{Re(z) : E[exp(zY )] is finite}
denotes the abscissa of convergence of MGY . With these concepts, our results are as follows.

Theorem 3.2. In the setting of Theorem 3.1, a sufficient condition for gY /wα to be in L2
α(0, ∞)

is that the following two inequalities be satisfied:

σsc(Y ) > 1
2 , α + 1 < 2(γ∞(|MG−

Y |) − 1),

where MG−
Y (z) = MGY (−z) for any complex z with Re(z) > −σsc(Y ).

Addendum 3.1. We have γ∞(|MG−
Y |) = ∞ if |MG−

Y |(z) decays to 0 exponentially as |z| tends
to ∞.

We precede the proof with two results of independent interest. They explicitly relate the
growth measures δ∞ and γ0 of gY , the density of Y , to the moment generating function of Y .

Lemma 3.1. We have δ∞(gY ) = σsc(Y ).

Lemma 3.2. We have γ0(gY ) = γ∞(|MG−
Y |) − 1.
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Let us prove these two results first. Lemma 3.1 is immediate from the definitions, whereas
Lemma 3.2 is a translation of the Abel asymptotics for MGY at ∞. In fact, Doetsch (1971,
Satz 3, pp. 503f.) showed that if µ > 1 is any real such that

MGY (z) ∼ A

zµ
as |z| → ∞,

for a nonzero constant A, then there exists a nonzero constant B such that

gY (y) ∼ Byµ−1 as y ↓ 0.

With the maximal such µ equal to the polynomial growth order γ∞(|MG−
Y |), the proof of

Lemma 3.2 is complete.

Proof of Theorem 3.2. Sufficient for gY /wα to be in L2
α(0, ∞) is that, firstly, g2

Y /wα is
integrable on any compact subset of the positive reals and, secondly, that the following two
inequalities are satisfied: 2δ∞(gY ) > 1 and α + 1 < 2γ0(gY ). Using the above two lemmas,
these two inequalities translate into those of the theorem. Sufficient for the integrability of
g2

Y /wα on compact sets, on the other hand, is the integrability of gY there. This is implied by
the finiteness of MGY at any z with Re(z) < σsc(Y ); thus, the proof of Theorem 3.2 is complete.

4. Basic setting

The aim guiding the development of this paper is to study discretely sampled stochastic
functionals of Lévy processes in order to understand the continuously sampled ones, and vice
versa. To proceed we let X be any Lévy process as described in Section 2.1 and consider it on
the subset [t0, T ] of the nonnegative real line. To speak of discretely sampled functionals then
requires us to choose finitely many (in fact N ) points tm with t1 < t2 < · · · < tN in this time
interval, where we let N ≥ 1 and assume that tN = T . It also means considering expectations
of the form

E[R(Xt1 , . . . , XtN ) | Ft ],
which are conditional on Ft , the information available at any time t in [t0, T ]. Here R is
any FT -measurable, complex-valued map on the N -fold product of the codomain of X. We
will return to this general situation in Section 10. Here, we let X be any positive process and
specialize the maps R as follows. We concentrate on maps that factorize over lower-dimensional
ones; in fact, we consider maps that factorize over one-dimensional ones as follows:

R = ρ ◦ σN .

Here ρ is a map on the positive reals and σN is any real-valued map on R
N sending the positive

cone there into the positive reals: σN((R>0)
N) ⊆ R>0. Specializing further, we finally take σN

to be any element of the dual space of R
N . It then corresponds to an N -tuple a = (a1, . . . , aN)

of positive reals, and we let

�a
N := σN(Xt1 , . . . , XtN ) =

N∑
m=1

amXtm.

While not restricted to this context, our motivation for considering functionals of the final form
comes from the risk-neutral valuation of contingent claims. To conclude this section, as well
as to fix ideas, we now present four examples of Asian-type contingent claims.

https://doi.org/10.1239/aap/1175266477 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1175266477


252 M. SCHRÖDER

Example 4.1. Consider options on averages of prices such as the discretely monitored Asian
options. In the above setting, these are contingent claims with time-T payoff ρ(�a

N), where ρ

is the payoff of any put or call option, the weights am are all equal to 1/N , and X is interpreted
as the price process in continuous time of any asset under any equivalent martingale measure.
Assuming a deterministic short rate, the above stochastic functionals give the risk-neutral values
of these options on discounting. This example is considered in more detail in Section 9.

Example 4.2. Consider interest rate derivatives. Here the above discussion in particular
pertains to the discrete-time construction of new rates, �a

N , from rates X modelled in continuous
time, and to the risk-neutral valuation of contingent claims written on them. We give a more
detailed discussion of these futures-type contingent claims in Section 7. Our approach can
also be adapted to the interest rate derivatives presented in Musiela and Rutkowski (1997,
Section 10). Assuming Lévy process term structures, as it stands this approach extends to the
risk-neutral valuation of swap-type or swaption-type contingent claims. Higher-dimensional
versions of it will be needed in valuing caps or captions; these are sketched in Section 10.

Example 4.3. Consider embedded options in insurance contracts and, in particular, index-
linked life insurance contracts. To place these in the above setting, we note that a simple
version of the second type of contract asks for N premium payments to take place at the points
in time tm. Any mth premium is split: an amount am is immediately invested in a mutual fund
and the remainder furnishes the premium payment for a standard life insurance contract. If the
contract terminates at time t then its payoff consists of two components: the stipulated amount
from its life insurance component and the excess over this amount of the time-t value of the
mutual fund portfolio built up until time t . Computation of the fair prices of the contracts
requires the risk-neutral values of these embedded options; see Aase Nielsen and Sandmann
(1995), (1996), (2002) for the precise statements and some calculations. To cast this last problem
in our framework reduces to constructing the value of the mutual fund portfolio as a random
variable, �a

N , for any fixed time t . This value is explicitly given by
∑

tm≤t am(St/Stm), where
Su denotes the time-u value of the mutual fund. To complete the picture, let X be any process
whose time-tm value coincides with the respective time-tm mutual fund price quotient St/Stm .

Example 4.4. Consider contingent claim valuation in stochastic volatility models of Hull–
White type. By this we understand models with the following two properties. Firstly, X is
interpreted as generalizing the variance of an asset, �a

N thus generalizing the discretely sampled
average variance. Secondly, the valuation of any contingent claim reduces to computing the
above expectations withρ(v)given as the risk-neutral, time-t value of the contingent claim under
consideration, conditional on having �a

N = v for any real v > 0. While the construction of
models with these two properties is straightforward in principle, the condition of X being a Lévy
process is too strict. For instance, it does not apply to the Ornstein–Uhlenbeck process used to
model variance in Hull and White (1987) or the generalized Ornstein–Uhlenbeck processes used
to do so in Barndorff-Nielsen and Shephard (2001). However, these processes are stochastic
integrals with respect to Lévy process integrators, and this makes it possible to apply to them
the theory developed for Lévy processes in the present paper, with the necessary changes; see
Schröder (2005c).

5. Convergence theorems

In this section we address the first main step of our approach. Working in the setting of
Section 4, we study the convergence of discretely sampled stochastic functionals of positive
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Lévy processes to the continuously sampled ones as sample size increases. The main results,
Theorems 5.2 and 5.3, give explicit estimates for the rate of this convergence, and thus in
principle reduce the study of the continuously sampled functionals to that of the discretely
sampled ones.

5.1. Basic setting

Adopting the principal setting of Section 4, we focus on equipartitions of [t0, T ] by the
points tm = t0 + mτN , where τN = (T − t0)/N , and associate with the positive Lévy process
X the random variables �N(X) and At,T (X), for any nonnegative reals t < T , according to

�N(X) = 1

N

N∑
m=1

Xtm and At,T (X) = 1

T − t

∫ T

t

Xu du.

The latter are well defined since, by hypothesis, X has sample paths which are continuous
almost everywhere. We call the functionals of type �N(X) discretely sampled and those of
type At,T (X) continuously sampled. We will work with those that are explicitly given by the
expectations

E[ρ(�N(X)) | Ft ] and E[ρ(At0,T (X)) | Ft ],
which are conditional on time-t information Ft for any t in [t0, T ), and moreover assume the
maps ρ on the positive reals to be such that these expectations are well defined and finite. Since
we have convergence of �N(X) to At0,T (X) as N tends to ∞, we should, under continuity
assumptions on ρ, expect convergence of the discretely sampled stochastic functionals to the
continuously sampled ones with increasing sample size, i.e. limN→∞ �t,N(X) = 0 with

�t,N(X) := E[ρ(�N(X)) − ρ(At0,T (X)) | Ft ].
Our principal finding is that we can in fact make explicit the rate of this convergence if we place
on ρ additional differentiability assumptions such as the following (referred to as condition (R)).

(R) The map ρ on the positive reals is almost everywhere differentiable and its derivative is
bounded by a constant Mρ .

5.2. Main convergence results

Using the notation and concepts of Section 5.1, in this section we formulate and discuss our
main results concerning the convergence of �t,N , in three steps. As a first step, we linearize
the problem as follows.

Theorem 5.1. In the setting of Section 5.1, assuming the validity of condition (R) in particular,
there exists a random variable R which is bounded almost everywhere by Mρ and is such that

�t,N(X) = E[(�N(X) − At0,T (X))R | Ft ].
This is proved by constructing R from, essentially, the first-order Taylor series expansion

of ρ, as

R = R1(A, �), where R1(a, σ ) =
∫ 1

0
ρ′((1 − w)a + wσ) dw

for any reals a and σ and we have simplified the notation using � ≡ �N(X) and A ≡ At0,T (X).
In fact, if A and � were constant then this would just be the error term of the first-order Taylor
expansion of the value of ρ at � around the point A. In the general case, however, we proceed
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as follows. Condition the expectation defining � ≡ �t,N(X) on A and write it as a double
integral. At this point handle the ρ-difference factor of the integrand as above using first-order
Taylor expansions. Then reverse the conditioning steps to obtain the theorem’s representation
of � with the above random variable R. Strictly speaking, this construction determines R only
outside the inverse image under A of the points of nondifferentiability of ρ. This, however, is
a null set. The proof of Theorem 5.1 is thus complete.

As a first consequence, this result enables a decomposition, �t,N(X) = �ns +�s, of � into
a part, �ns, of a nonstochastic nature and a part, �s, of a stochastic nature:

�ns = 1

T − t0
E

[(
τN

∑
tm≤t

Xtm −
∫ t

t0

Xu du

)
R

∣∣∣∣ Ft

]
,

�s = 1

T − t0
E

[(
τN

∑
tm>t

Xtm −
∫ T

t

Xu du

)
R

∣∣∣∣ Ft

]
.

Majorizing �t,n(X) thus reduces to majorizing �ns and �s separately, and in doing so we
moreover assume that t = tnt for some nonnegative integer nt ≤ N , for simplicity.

Majorizing �ns reduces to a standard piece of numerical integration. Proceeding along the
lines of, for example, Hämmerlin and Hoffmann (1989, Chapter 7, Section 1), our result is as
follows.

Theorem 5.2. In the above setting, assuming the validity of condition (R) in particular, we
have

|�ns| ≤ Mρ

t − t0

T − t0
ωh(τN).

Here ωh is the modulus of continuity of the function on [t0, t] given by h(u) = Xu, i.e. ωh(δ) =
sup{|h(x) − h(y)| : x, y ∈ [t0, t], |x−y| ≤ δ} for any real δ > 0.

This result enables us to develop a first intuition about the size of �. In fact, if h were
differentiable on [t0, t] then we would clearly haveωh(δ) ≤ (δ/2)‖h′‖∞(t−t0), where‖h′‖∞ =
sup{|h′(u)| : u ∈ [t0, t]}. This suggests that at least the summand �ns of �t,N(X) behaves like
a scalar multiple of 1/N as N tends to ∞.

The majorization of �s, on the other hand, is based on stochastic information. Our result
here, whose proof is presented in Section 5.4, is the following moment estimate.

Theorem 5.3. In the above setting, assuming the validity of condition (R) in particular, we
have

|�s| ≤ Mρ E[X1](T − t0)
N − nt

2N2 .

A number of ways of extending our results to functionals of random variables of a more
general nature are also conceivable. They immediately extend, for example, to stochastic
functionals of a finite number of random variables �N(X) in an obvious way.

5.3. GIG Lévy process case

This section is the specialization of Section 5.2 to the case in which X is a GIG Lévy process
XGIG(ξ) with parameters ξ = (λ, γ, δ), as described in Section 2.2. We moreover let t = t0, and
thus focus on �N(X), the approximation error with no nonstochastic parts, given by

�N(X) = E[ρ(�N(X)) − ρ(At0,T (X)) | Ft0 ].
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According to Theorem 5.3, the moment estimate of the approximation error then takes the
following explicit form.

Theorem 5.4. In the setting of Sections 5.1 and 5.2, assuming the validity of condition (R) in
particular, for any positive integer N we have

|�N(XGIG(ξ))| ≤ c(ξ)

2N
,

where

c(ξ) = (T − t0)Mρ

δ

γ

Kλ+1(γ δ)

Kλ(γ δ)

and Kν denotes the K-Bessel function of order ν.

Theorem 5.4 follows on substitution into Theorem 5.3 of the explicit formula for the first
time-1 moment of XGIG(ξ) from Proposition 2.2.

To interpret this result, the estimate predicts an initial accuracy which is solely determined
by the constant c(ξ). This initial accuracy is then predicted to improve by order 1/N , the
reciprocal of the number of sample points, N .

Examples seem to indicate that, to within an accuracy of a few decimal places, the con-
vergence of discretely sampled contingent claim values to continuously sampled ones can be
achieved using a relatively small number of sample points. Their number seems to increase
exponentially in the required order of accuracy.

5.4. Proof of the moment estimate

This section establishes the estimate of Theorem 5.3 for �s. In particular, recalling the
random variable R constructed in Theorem 5.1, this is based on the following result.

Lemma 5.1. We have

�s = N − nt

N
E[RA0,τN

(X) | Ft ],
where A0,τN

(X) is independent of the time-t information Ft .

Proof. Using the simplified notation τ ≡ τN , in the definition of �s we express the integral
over [t, T ] as a sum of integrals over the intervals [t	−1, t	] of length τ and, looking at time
increments in any one of them, make the change of variable w(u) = u − t	−1. We thus obtain

�s = 1

T − t0

N∑
	=nt+1

E	,

where the E	 are the expectations

E	 = E

[(
τ(Xt	 − Xt	−1) −

∫ τ

0
(Xw+t	−1 − Xt	−1) dw

)
R

∣∣∣∣ Ft

]
.

We first analyse any one difference Xt	 − Xt	−1 = (Xt	 − Xt) − (Xt − Xt	−1) by successively
restarting X in two steps, as follows. On restarting at time t , as a first step, the difference is
equal in law to Xt	−t − Xt	−1−t and is independent of Ft . On restarting this restarted process
at time t	−1 − t , as a second step, the difference is equal in law to Xt	−t	−1 = Xτ . Working at

https://doi.org/10.1239/aap/1175266477 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1175266477


256 M. SCHRÖDER

the process level, analogous restarting arguments apply to the integrated process part, and we
hence have

E	 = E

[(
τXτ −

∫ τ

0
Xu du

)
R

∣∣∣∣ Ft

]
=: E∗,

independently of 	, with the random variables in round brackets independent of the time-t
information Ft . Rewriting the differences as integrals and reversing time then gives

E∗ = E

[
R

∫ τ

0
(Xτ − Xτ−u) du

∣∣∣∣ Ft

]
.

Using the Markov property of X, the processes (Xτ − Xτ−u)u∈[0,τ ] and (Xw)w∈[0,τ ] are equal
in law. Noting that there are N − nt summands E∗ in �s completes the proof of Lemma 5.1.

Proof of Theorem 5.3. Using the simplified notation τ ≡ τN , by inspection we are reduced
to showing that

|�s| ≤ Mρ

N − nt

N
E[A0,τ (X)],

where
E[A0,τ (X)] = 1

2τ E[X1].
Given the boundedness in absolute value of R by Mρ , the first inequality is immediate from
Lemma 5.1, and it thus remains to establish the expression for the first moment of A0,τ (X). To
do so we first apply Tonelli’s theorem, to obtain

E[A0,τ (X)] = 1

τ

∫ τ

0
E[Xu] du.

With MG denoting the time-1 moment generating function of X, we have

E[Xu] = d

du
MGu(0) = uMGu−1(0)MG′(0).

Hence, integration yields the result and the proof of Theorem 5.3 is complete.

6. Normalization of stochastic functionals

As the second main step of our approach to stochastic functionals, in this section we develop
a normalization procedure. Thus, taking up the discussion of Section 4, as regards working
with the Section 4 functionals

E[R(Xt1 , . . . , XtN ) | Ft ],
we would like the random variables Xtm to be independent. Unfortunately, in most cases this is
not only false but also too strong a property to require from the point of view of applications.
Independence of their time increments, on the other hand, is a property which not only often
holds for the Xtm but is often true in applications as well. This suggests regarding the above
functionals of the Xtm as functionals of the time increments of these variables. While we return
to the general situation in Section 10, we exemplify this perspective here by concentrating on
the class of functionals arrived at in Section 4. With X now any Lévy process, these are given
by the expectations

E[ρ(�a
N) | Ft ], where �a

N =
N∑

m=1

amXtm,
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and are conditional on the time-t information Ft for any t in [t0, T ]. Here ρ is any measurable
function now on (all) the reals and a = (a1, . . . , aN) is now any N -tuple of reals. The principal
idea is to develop a normalizing procedure for these functionals which represents them in terms
of independent random variables. In the present context, our principal result is as follows.

Proposition 6.1. In the above setting there is a method of construction that depends on time t

and yields maps ρt on the reals, random variables Y1, . . . , Ynt , reals γ1, . . . , γnt , and positive
reals τ1, . . . , τnt such that the following two assertions hold.

1. E[ρ(�a
N) | Ft ] = E[ρt (�

γ
nt

)], where �
γ
nt

= ∑nt

k=1 γkYk .

2. The Yk are independent of each other and the time-t information Ft , and satisfy Yk
d= Xτk

,
where ‘

d=’ denotes equality in law.

Addendum 6.1. If the coefficients am are positive, then the γk are positive. If, moreover, the
Xtm are positive, then the random variables �

γ
nt

are positive.

We begin the construction described in Proposition 6.1 by decomposing �a
N into a part

deterministic at time t and a part stochastic at time t . We do this, however, in a normalizing
way. By subtracting suitable multiples of Xt , we represent the latter part as

� =
∑
tm>t

am(Xtm − Xt),

i.e. as a sum of nt terms, meaning that the former part becomes At = ∑N
m=1 amXtm∧t . Defining

the function ρt on the reals by

ρt (x) = ρ(At + x), x ∈ R,

we have ρ(�a
N) = ρt (�), and the task is to construct the random variable � from random

variables Yk as above.
This we achieve by consecutively restarting X and using its Markov property. First restart

X at time t , to obtain the process X∗, and thus express � in law by then summing the values
X∗(τ ∗

m) with τ ∗
m = tm − t . As a next step, represent each X∗(τ ∗

m) as a telescoping sum of the
consecutive differences Yk given by

Yk = X∗
τ∗
mt +k

− X∗
τ∗
mt +k−1

, 1 ≤ k ≤ nt ,

where mt = N − nt is the largest index m such that tm ≤ t , and where we formally set τ ∗
0 = 0.

On interchanging the order of summation, we obtain

�
d=

nt∑
	=1

amt+	

	∑
k=1

Yk =
nt∑

k=1

γkYk,

where we have set

γk =
nt∑

	=k

amt+	.

Here the Yk are independent as increments of the Lévy process X∗, and they are independent
of the time-t information Ft since X∗ has this property. Keeping track of the explicit differences
defining them, the Yk moreover satisfy

Yk
d= Xτk

, where τk = τ ∗
mt+k − τ ∗

mt+k−1,
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whence τ1 = tmt+1 − t and τk = tmt+k − tmt+k−1 for k ≥ 2. This completes the proof of
Proposition 6.1, and the assertions of Addendum 6.1 are obvious by inspection.

Writing n ≡ nt and defining

�
γ
m,n =

n∑
k=m

γkYk

for any positive integer m ≤ n, we record three consequences of the Proposition 6.1 normal-
ization procedure. The first is immediate from the above construction of the Yk .

Proposition 6.2. The above random variables Ym and �
γ
m+1,n are independent, �

γ
m,n is inde-

pendent of time-τm−1 information, and we have �
γ
m,n = γmYm + �

γ
m+1,n.

The independence of the Yk translates into a product structure for the moment generating
functions, as follows.

Proposition 6.3. The moment generating function, MG�, of any � ≡ �
γ
m,n is expressible as

the product,

MG� =
n∏

k=m

MGγkYk
=

n∏
k=m

γ ∗
k (MGYk

),

of the moment generating functions of the summands of �, and its domain of definition is the
intersection of the domains of definition of the latter n − m functions.

Here we have let γ ∗
k (MGYk

)(z) = MGYk
(γkz), meaning that γ ∗

k (MGYk
)(z) = MGγkYk

(z),
the moment generating function of any γkYk .

On differentiation of this product representation, we finally obtain the following characteri-
zation of the moments of � in terms of those of X itself.

Proposition 6.4. Let M be any nonnegative integer. For the Mth moment of any �
γ
m,n we then

have the recurrence rule

E[(�γ
m,n)

M ] =
M∑

k=0

(
M

k

)
γ k
m E[Xk

τm
] E[(�γ

m+1,n)
M−k],

if m < n, and the multinomial expansion

E[(�γ
m,n)

M ] =
∑

|J |=M

(
M

J

)
γ J

n∏
k=m

E[Xjk
τk

],

where the sum is over all (n − m)-tuples J = (jm, . . . , jn) of nonnegative integers with
|J | = jm + · · · + jn = M , and γ J = ∏n

k=m γ
jk

k .

7. Applications to futures-type stochastic functionals

In this section we focus on a class of discretely sampled stochastic functionals originating
in interest rate futures contracts. Illustrating as well as extending the results of Section 6, we
develop, again in three stages, both normalizations for such stochastic functionals and explicit
formulae for their values.

Let [t0, T ] once more be any compact subinterval of the nonnegative reals, and for any
integer N ≥ 1 choose in it N time points tk with t1 ≤ t2 ≤ · · · ≤ tN = T . Let Z be any process
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on [t0, T ], and for any time t in this interval consider the functionals given by the expectations
conditional on time-t information Ft as follows:

E[ρ(RT ) | Ft ].
Here ρ is any measurable function on the reals and

RT = R0

∏
tk≤T

(1 + akZtk )

for any reals R0 and ak . Then Rt is the part of RT which is deterministic at time t , while the
remaining nt factors are stochastic. Expanding the product of stochastic factors yields

RT = Rt + Rt

nt∑
k=1

∑
Jk

aJk
πJk

(Z),

where

πJk
(Z) =

k∏
	=1

Ztj	
.

In this expression for RT , any kth summand of its first sum represents the kth symmetric
polynomial in a	Zt	 with indices 	 such that t	 > t . Denoting by 	t = max{	 : t	 ≤ t} the index
of the last time, t	, before or equal to t , the second sum is over all k-tuples Jk = (j1, . . . , jk)

of integers with 	t + 1 ≤ j1 < j2 < · · · < jk ≤ N , and for any of these k-tuples we let
aJK

= ∏k
	=1 aj	

.
The definition of these functionals is motivated by the valuation of futures, whose time-t

values are equal to the risk-neutral expectations of their delivery values conditional on the time-t
information Ft ; see Duffie (1996, Section 8C). This corresponds to the case in which ρ is the
identity map, and, by thinking of RT as a new synthetic interest rate to be delivered at time T ,
we can in fact interpret its representations above as follows: they show how the rate delivered
at time T is constructed from the finitely many standard interest rates Ztk . Examples of such
constructions include the futures contracts indexed on the Euro overnight index average; see
LIFFE (2004).

A principal problem in working with these representations of RT , however, is that the Ztk

are in general not independent. To adapt the technique developed for this purpose in Section 6,
we therefore specialize to the two cases in which Z itself is respectively a Lévy process and an
exponential Lévy process. Here the idea is to express any πJk

(Z) as a multinomial expansion
in terms of Z-increments subordinated to the index set Jk .

If we first let Z be a Lévy process, then we have a general method for constructing such
increments. By adapting the construction described in Proposition 6.1, we define the random
variables �m ≡ �Jk,m(Z) by Ztjm

= Ztjm−1
+ �m for m ≥ 2, with Ztj1

= Zt + �1 and
�0 = Zt . The �m then are independent random variables that can be regarded as being
independent of the time-t information Ft and as satisfying the identity in law

�m ≡ �Jk,m(Z)
d= Zτm(Jk),

where τm(Jk) = tjm − tjm−1 for m ≥ 2, τ1(Jk) = tj1 − t , and τ0(Jk) = t .
To study the effect of the variables �m on πJk

(Z), represent any 	th factor of πJk
(Z) as the

telescoping sum of the first 	 + 1 of them. Picture the product πJk
(Z) as a triangular array of
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k lines, corresponding to its factors, and k + 1 columns, corresponding to the �m each factor
uses. The combinatorial problem to be solved for expanding this product is to characterize
and enumerate the different k-tuples Lk each of whose mth entry, 	m, is obtained by choosing
any element from the mth row of the above array. To fix ideas, we have one �k from the last
row which either occurs or, respectively, does not occur in Lk according to whether 	k = 1 or
	k = 0. We have two �k−1s from the last and the next-to-last rows which cannot, however,
both occur in Lk if �k already does. Thus, we have 	k−1 ≤ 1 + (1 − 	k) occurrences of �k−1
which moreover arise by making 	k−1 choices from 1 + (1 − 	k) possibilities. Proceeding
inductively, we thus arrive at the following result.

Proposition 7.1. If, in the above setting, Z is a Lévy process, then we have the representation
in law

πJk
(Z)

d=
∑
Lk

�(Lk)Z
k−|Lk |
t

k∏
m=1

�	m
m ,

where the sum is over all k-tuples Lk = (	1, . . . , 	k) of nonnegative integers with length
|Lk| = 	1 + · · · + 	k which satisfy 	m ≤ λ(m). Here λ ≡ λLk

is recursively defined by
λ(k) = 1 and λ(k − m) = λ(k − (m − 1)) + 1 − 	k−(m−1) for any positive integer m ≤ k − 1,
and the multiplicity factor �(Lk) is given by the following product of binomial coefficients:

�(Lk) =
k−1∏
m=1

(
λ(m)

	m

)
.

This result affords us a representation of RT in terms of independent random variables, as
desired. Its effect on stochastic functionals, however, depends on the maps ρ. The futures value
case represents a case of maximal simplicity, in that ρ is the identity map there, and is treated
as follows.

Corollary 7.1. In the setting and notation of Proposition 7.1, we have the representation

E[πJk
(Z) | Ft ] =

∑
Lk

�(Lk)Z
k−|Lk |
t

k∏
m=1

E[Z	m

τm(Jk)
].

Here both sides are well defined and finite if and only if, for any τ ≡ τm(Jk), the moments
E[Za

τ ] are well defined and finite for all nonnegative integers a ≤ k.

When Z is an exponential Lévy process we use the �-construction as follows.

Proposition 7.2. If, in the above setting, Z = exp(X) for a Lévy process X, then we have the
representation

πJk
(Z) = Zk

t

k∏
	=1

Y k+1−	
	 ,

where we define the random variables Y	 ≡ YJk,	(Z), for any positive integer 	 ≤ n, by
Y	 = exp(�Jk,	(X)).

Proof. On substitution of Ztj	
= Zt

∏	
m=1 Ym into the defining relationship for πJk

, we have
πJk

(Z) = ∏k
	=1 Zt

∏	
m=1 Ym. Then interchanging the order of the two products completes the

proof of Proposition 7.2.
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The expectations of the πJk
(Z), as they are relevant for the futures case, will now be obtained

in terms of the moment generating function of the exponentiated process.

Corollary 7.2. In the setting of Proposition 7.2, assume that the interval [1, k] is contained in
the domain of definition of the moment generating function, MGX, of X. Then we have

E[πJk
(Z) | Ft ] = Zk

t

k∏
	=1

MGX(k + 1 − 	)τ	(Jk).

To conclude this section, note how the explicit formulae in Corollaries 7.1 and 7.2 are
expressed in terms of moment generating functions, or items derived from them such as the
moments themselves. This is a characteristic feature of our approach to stochastic functionals
as developed in the rest of the paper using Laguerre reduction series.

8. Laguerre reduction series for discretely monitored stochastic functionals

As the third main step in our approach, following on from Sections 5 and 6, in this section
we develop Laguerre reduction series for discretely sampled stochastic functionals of positive
random variables of the form

E[ρ(�)], where � =
n∑

k=1

γkYk > 0.

Here ρ is any measurable function on the positive reals, γ1, . . . , γn are any positive reals, and
Y1, . . . , Yn are any independent random variables, which we specialize in three stages from this
basic setting to the one envisaged in the normalization procedure of Section 6.

8.1. Basic setting

As a first subsidiary step, we specialize the two main results about Laguerre reduction series
of Section 3 to the above situation. Using the concepts developed there, we first have the
following immediate translation of Theorem 3.1.

Theorem 8.1. Denote by g� the probability density function of �, and let the real α > −1
be such that ρ and g�/wα are both in L2

α(0, ∞). Then we have the absolutely convergent
Laguerre reduction series representation

E[ρ(�)] =
∞∑

m=0

am〈ρ, Lα
m〉α,

whose error terms, RM = ∑∞
m=M am〈ρ, Lα

m〉α , satisfy the inequality

R2
M ≤ ‖ρ‖2

α

∞∑
m=M

a2
m‖Lα

m‖2
α.

Recall from Section 3.1 the representation

am =
m∑

k=0

αm,k

‖Lα
m‖2

α

E[�k],
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which is in terms of the coefficients, αm,k , of Lα
m and the kth moments, E[�k], of �. For the

latter recall from Proposition 2.1 the multinomial representation in terms of the moments of
Y	, given by

E[�k] =
∑
|J |=k

(
k

J

)
γ J

n∏
	=1

E[Y j	

	 ],

where the sum is over all n-tuples J = (j1, . . . , jn) of nonnegative integers with |J | = j1 +
· · · + jn = k, and where γ J = γ

j1
1 · · · γ jn

n .
Note how the reduction series separates the stochastic side of the problem from the analytic

side. The coefficients am are expressed solely in terms of the moments of the Yk , whereas the
function ρ enters by means of the inner product factors of the reduction series summands.

Sufficient conditions for the existence of the Theorem 8.1 Laguerre reduction series can be
given in terms of data from the moment generating functions, MGk , of any single Yk . This
requires concepts from Section 3.4 as well as the growth measure γ∞ of Section 3.2, and our
precise result is as follows.

Theorem 8.2. In Theorem 8.1, in order that g�/wα be in L2
α(0, ∞) it is sufficient that the

following two inequalities be satisfied:

1 < 2 min
1≤k≤n

{
σsc(Yk)

γk

}
, α + 3 < 2

n∑
k=1

γ∞(|MG−
k |).

This is a translation of Theorem 3.2 which in the present context requires that the two
inequalities σsc(�) > 1

2 and α + 3 < 2γ∞(|MG−
�|) be satisfied. Here the moment generating

function, MG�, of � is, by Proposition 6.3, the product of the γ ∗
k (MGk). Its abscissa of conver-

gence, σsc(�) := sup{Re(z) : E[exp(z�)] is finite}, is thus the minimum of the corresponding
abscissae of convergence σsc(γkYk). The relation γkσsc(γkYk) = σsc(Yk) can be checked to
hold using the positivity of the reals γk . Similarly, the polynomial growth order at ∞ of
MG−

�(z) := MG�(−z) is the sum of the corresponding growth orders γ∞((γ ∗
k MGk)

−), and
the latter can be checked to be equal to γ∞(MG−

k ). This proves Theorem 8.2.
While the form of the Theorem 8.1 Laguerre reduction series remains unchanged, it is

the expandability criterion of Theorem 8.2 which becomes sharper and more concrete upon
specializing the Yk . This we describe in the next two sections.

8.2. Lévy process setting

As a second subsidiary step, we specialize to discretely sampled functionals of positive Lévy
processes X as introduced in Section 4. Here the idea is first to apply to them the normalization
procedure of Section 6. Recall that this entails changing not only the representing variables but
also the representing functions as summarized in Proposition 6.1. The point is that, since we
consider functionals of positive linear combinations of positive random variables, positivity of
the representing variables is preserved as described in Addendum 6.1. This then puts us in the
basic setting of Section 8.1 with the random variables Yk satisfying

Yk
d= Xτk

for positive reals τk .
The effect of this specialization on the Theorem 8.1 Laguerre reduction series is restricted

to its coefficients am: these are now expressed in terms of the moments of the Xτk
by way of
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the moments of �. Our sufficient conditions for this Laguerre reduction series to exist, on the
other hand, become simpler and now just need the moment generating function, MGX, of X.
Our precise result is as follows.

Theorem 8.3. In the above Lévy process setting, sufficient for the absolute convergence of
the Theorem 8.1 Laguerre reduction series for E[ρ(�)] is that ρ be in L2

α(0, ∞) and that the
following two inequalities be satisfied:

max
1≤k≤n

{γk} < 2σsc(X1), α + 3 < 2(T − t)γ∞(|MG−
X|).

To see how this result is obtained by translating Theorem 8.2 to the current situation, first
note that now the moment generating function, MGk , of any Yk is the τkth power of the moment
generating function, MGX, of X. Hence, each abscissa of convergence σsc(Yk) is equal to the
abscissa of convergence σsc(X1) of this last function, and the first inequality of the theorem
thus follows on translating the first inequality of Theorem 8.2. To obtain the second inequality
we use the fact that γ∞ is log-additive in the sense that raising its argument to the ath power
results in multiplication by a, i.e. γ∞(f a) = aγ∞(f ). In the second inequality of Theorem 8.2
we thus have

∑n
k=1 γ∞(|MG−

k |) = ∑n
k=1 τkγ∞(|MG−

X|). Since the τk give rise to a telescoping
sum, the second inequality of Theorem 8.3 follows.

8.3. GIG Lévy process setting

As a third subsidiary step, we now specialize the setting of Section 8.2 to the case in which
X is the GIG Lévy process associated with any triple ξ = (γ, δ, λ) in the sense of Section 2.2.

In the coefficients, am, in the Theorem 8.1 Laguerre reduction series for E[ρ(�)], the
moments of the Yk are now explicitly given by combining Propositions 2.1 and 2.2. Drastic
simplifications occur in the conditions sufficient for these reduction series to converge. We
state them as follows.

Theorem 8.4. In the above GIG Lévy process setting, sufficient for the absolute convergence
of the Theorem 8.1 Laguerre reduction series for E[ρ(�)] are the following two conditions:
ρ is in L2

α(0, ∞) and max{γk : 1 ≤ k ≤ n} < γ 2.

To see how this result is obtained by translating Theorem 8.3 to the present situation, first note
from Section 2.2 that we have σsc(X1) = γ 2/2 for the abscissa of convergence of the moment
generating function of X. The first inequality of Theorem 8.3 thus translates into the inequality
of Theorem 8.4. To analyze the second inequality required to be satisfied in Theorem 8.3,
recall the asymptotic behaviour of K-Bessel functions: Ka(z) ∼ √

π/(2z) exp(−z) as |z| tends
to ∞ in {Re(z) > 0}; see Lebedev (1972, Equation (5.11.9)). By inspection this implies
the exponential decay to 0 of the moment generating function, MGX, of X as |z| tends to
∞ in {Re(z) < 0}, since this function is a scalar multiple of a K-Bessel function. Hence,
γ∞(|MG−

X|) = ∞ as noted in Addendum 3.1. Thus, the second inequality of Theorem 8.3 is
trivially true in the present situation, and it remains to require the α-square integrability of ρ in
Theorem 8.3 also in Theorem 8.4. The proof of this result is then complete.

9. Applications to Asian-type options

To both illustrate and summarize our main results, in this section we study the explicit
valuation of discretely sampled Asian-type options, discussed in Section 4, in certain Lévy
process models. The results for such general options are given in Section 9.2, while in
Section 9.3 we focus on Asian options proper.
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9.1. General setting

Let X be any positive Lévy process as in Section 2.1, partition any subinterval [t0, T ] of
the nonnegative reals by the choice of N times tm with t1 < · · · < tN = T , and consider the
stochastic functionals given by the expectations

H�,t (ρp,K) = E[ρp,K(�) | Ft ], where � ≡ �a
N =

N∑
m=1

amXtm.

Here the expectations are conditional on the information, Ft , at any time t in [t0, T ]; the
functions ρp,K are, for any integer p ≥ 1 and any real K > 0, given by

ρp,K(y) = (y − K)
p
+

on the reals, where (x)+ = max{0, x} for any real x; and the am are any positive reals. We thus
consider contingent claims on [t0, T ] with time-T payoff given by the pth power of the excess
over K of �, the generalized average over time. We assume, moreover, that the valuation
of these Asian-type options reduces to computing the functionals H�,t . This will be the case
in their risk-neutral valuation under deterministic interest rates, with X modelling the price
process of the underlying asset. Our argument is based on the normalization procedure of
Section 6, and is given in terms of the random variables � and their moments.

Summarizing Proposition 6.1, these random variables are the sums

� =
n∑

k=1

γkYk,

expressed in terms of the following quantities. Firstly, n ≡ nt denotes the number of summands
in � which are stochastic at time t , or, alternatively, n = N −mt , where mt = max{m : tm ≤ t}
is the index of the last time, tm, before or equal to t . Secondly, the γk are the positive reals given
by γk = ∑n

	=k amt+	. Thirdly, the Yk are independent random variables which are independent
of time-t information and determined in law by

Yk
d= Xτk

,

where τ1 = tmt+1 − t and τk = tmt+k − tmt+k−1 for 2 ≤ k ≤ n. From Addendum 6.1, note,
moreover, that � is positive: � > 0.

As for the Mth moments of �, refer to the recurrence rule of Proposition 6.4 and recall the
multinomial expansion given there in terms of the moments of the Xτk

by

E[�M ] =
∑

|J |=M

(
M

J

)
γ J

n∏
k=1

E[Xjk
τk

],

where the sum is over all n-tuples J = (j1, . . . , jn) of nonnegative integers with |J | = j1 +
· · · + jn = M , and where γ J = γ

j1
1 · · · γ jn

n .

9.2. Reduction series for Asian-type options

Applying the concepts and notation of Section 9.1, in this section we develop a constructive
structure theory for the functionals H�,t based on the Laguerre reduction series of Section 8.

https://doi.org/10.1239/aap/1175266477 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1175266477


Discretely sampled functionals of Lévy processes. I. 265

Here we observe a dichotomy in dependency on the sign of the parameter q ≡ qt defined as

q = K − At, where At =
N∑

m=1

amXtm∧t .

With proofs deferred to the end of the section, our results can be summarized in two stages. If
q is nonpositive then the functionals H�,t are linear combinations of finitely many moments
of the random variable � of Section 9.1.

Theorem 9.1. If q ≤ 0 then H�,t (ρp,K) = ∑p
m=1(−q)p−m

(
p
m

)
E[�m].

If q is positive then we represent the functionals H�,t by Laguerre reduction series.

Theorem 9.2. For q > 0, let the reals α > −1 and c > 0 be such that the following two
inequalities are satisfied:

c

q
max

1≤k≤n
{γk} < 2σsc(X1), α + 3 < 2(T − t0)γ∞(|MG−

X|).

Then we have the absolutely convergent Laguerre reduction series representation

H�,t (ρp,K) =
(

q

c

)p ∞∑
m=0

am(c)〈ρp,c, L
α
m〉α,

whose error terms, RM = ∑∞
m=M am(c)〈ρp,c, L

α
m〉α , satisfy

R2
M ≤ ‖ρp,c‖2

α

∞∑
m=M

am(c)2‖Lα
m‖2

α.

Refer to Section 3.4 for the definition of the abscissa of convergence, σsc(X1), of MGX(z) =
E[exp(zX1)], the moment generating function of X, and to Section 3.2 for the definition of the
growth measure γ∞, which here is applied to the function MG−

X(z) = MGX(−z). Of the other
quantities introduced, the coefficients am(c) are given by

am(c) =
m∑

k=0

αm,k

‖Lα
m‖2

α

(
c

q

)k

E[�k],

in terms of the coefficients, αm,k , of the mth α-Laguerre polynomial, Lα
m, as defined in

Section 3.1 and the kth moments, E[�k], of � as recalled in Section 9.1. Finally, we have

〈ρp,c, L
α
m〉α =

m∑
k=0

αm,k

p∑
	=0

(−1)p
cp

c	

(
p

	

)
γ (α + k + 	 + 1, c)

and

‖ρp,c‖2
α =

2p∑
	=0

(−1)	
c2p

c	

(
p

	

)
γ (α + 	 + 1, c),

in terms of the (lower) incomplete gamma function, given by γ (s, x) = ∫ x

0 us−1 exp(−u) du

for any positive reals s and x; see Erdélyi et al. (1981, Chapter IX) for more details of this
function.

Specializing X to any GIG Lévy process, we have the following consequence of this last
result.
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Corollary 9.1. Let X be the GIG Lévy process associated with a triple ξ = (γ, δ, λ) as
described in Section 2.2. Then validity of the inequality 0 < 2(c/q) max{γk : 1 ≤ k ≤ n} < γ 2

is sufficient for the absolute convergence of the Laguerre reduction series of Theorem 9.2.

Deferring the proofs briefly, note in this situation the recurrence rule and the explicit formulae
for the moments of X in Section 2.2. For any positive integer M , they assert that

E[XM
τ ] =

M∑
m=1

(−1)m(−τ)m

m−1∑
	=0

(−1)m

(m − 	)! 	!F
M
m−	(0),

where

Fm
M(0) =

∑
|L|=M

(
n

L

) m∏
j=1

(
δ

γ

)	j Kλ+	j
(γ δ)

Kλ(γ δ)

with the sum running over all m-tuples L = (	1, . . . , 	m) of nonnegative integers such that
|L| = 	1 + · · · + 	m = M , and with Ka the K-Bessel function of any complex order a; see
Lebedev (1972, Chapter 5) for more details of these functions.

Proof of Theorems 9.1 and 9.2 and Corollary 9.1. The starting point for this section’s re-
sults is the identity

H�,t (ρp,K) = E[ρp,q(�)].
On recalling that q = K − At , this simply gives expression to the normalization procedure of
Section 6 as summarized by Proposition 6.1, and Theorem 9.1 follows immediately.

Thus, assuming that q > 0, note that this section’s framework places us variously in the
general Lévy process setting of Section 8.2 and the GIG Lévy process setting of Section 8.3.
We prove the remaining two results by translating the pertinent results of those sections.
Temporarily writing �a = a� for any positive real a, the proofs are now based on the identity

E[ρp,q(�)] = (q/c)p E[ρp,c(�c/q)],

which follows directly from the homogeneity properties of ρ. The principal idea of using
this identity is to obtain expansions into Laguerre reduction series by applying Theorem 8.1
to the right-hand side and then to use the sufficiency criteria of Theorem 8.3 or Theorem 8.4
(as appropriate to the type of process considered) to ensure convergence.

First considering the general Lévy process case, grant for a moment that the assumptions of
Theorem 9.2 imply satisfaction of the sufficient conditions expressed by the two inequalities
of Theorem 8.3. Then, applying Theorem 8.1 with ρ = ρp,c and � = �c/q , the Theorem 9.2
reduction series follows immediately, and direct computations moreover establish the explicit
formulae for the pertinent values of the bilinear form. To reduce the two inequalities of
Theorem 8.3 to those of Theorem 9.2, first note that the respective second inequalities are iden-
tical. The first inequality of Theorem 8.3, on the other hand, requires that max{γ ∗

k } < 2σsc(X1),
with γ ∗

k the coefficients of �c/q . These are the products of c/q and the respective coefficients,
γk , of �, and the proof of Theorem 9.2 is complete.

In the GIG Lévy process case, a similar translation of the inequalities of Theorem 8.4
establishes the assertions of Corollary 9.1. The proof of this section’s results is thus complete.
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9.3. Reduction series for Asian options

In this section we spell out the implications of the Section 9.2 results for the risk-neutral
valuation of discretely monitored Asian options. Assuming there to be a constant short rate
r > 0, we focus on the functionals Ct(K) given by

Ct(K) = exp(−r(T − t))H�,t (ρp,K),

where

H�,t (ρp,K) = E

[
ρp,K

(
1

N

N∑
m=1

Xtm

) ∣∣∣∣ Ft

]
.

Working under any equivalent martingale measure as indicated in Section 9.1, these represent
the time-t values of a certain contingent claim, namely the Asian p-power call, discretely
sampled at finitely many time points, t1, . . . , tN , of its monitoring period [t0, T ], written on an
asset with price process X and strike price K .

In the setting of Section 9.1, this corresponds to taking equal weights a = (a1, . . . , aN),
where am = 1/N for all m. The parameter q ≡ qt , which determines the structure of the
functionals H�,t , is thus given by

q = K − 1

N

N∑
m=1

Xtm∧t ,

and the normalized coefficients γk become γk = (1/N)(nt − k + 1) for 1 ≤ k ≤ nt .
This entails simplifications in the sufficient conditions developed in Section 9.2 for the

convergence of the Laguerre reduction series for the functionals H�,t . First, for general Lévy
processes X, we have the following specialization of Theorem 9.2.

Theorem 9.3. Let q > 0. Then the Theorem 9.2 Laguerre reduction series for H�,t (ρp,K),
for any reals α > −1 and c > 0, is absolutely convergent if the following two inequalities are
satisfied:

c

q

nt

N
< 2σsc(X1), α + 3 < 2(T − t)γ∞(|MG−

X|).

Second, specializing X to be any GIG Lévy process as in Section 2.2, Corollary 9.1 translates
to the following result.

Theorem 9.4. Let X be the GIG Lévy process associated with any triple ξ = (γ, δ, λ) as
described in Section 2.2, and assume that q > 0. Then the Theorem 9.2 Laguerre reduction
series for H�,t (ρp,K), for any reals α > −1 and c > 0, is absolutely convergent if the following
single inequality is satisfied: c/q < (N/nt )γ

2.

9.4. Complements

To conclude, in particular, the discussion in this section of Asian option valuation, it remains
to address two issues of practical relevance: the computation and the construction of the
functionals H�,t .
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First we address computation with the reduction series. On having chosen any equivalent
martingale measure, this principally proceeds along the lines developed in Schröder (2005a,
Sections 9.2 and 9.3) and Schröder (2006b, Section 8.2) for valuing continuously sampled
Asian options in the Black–Scholes model, as follows. As a first step, compute the number of
moments of � to be worked with as indicated in Section 9.1. As a second step, then use the
Theorem 9.2 error estimate to determine ‘maximal accuracies’ of the reduction series by way
of determining ‘good choices’ for the parameters α and c. As a third and final step, sum the
resulting reduction series. The explicit determination of equivalent martingale measures is given
ample space in the theses of Prause (1999) and Raible (2000), as summarized in Eberlein (2001)
and Nicolato and Venardos (2003). The empirical work reported in these references moreover
provides realistic size ranges for the model parameters. These we have used in preliminary
computations which seemed to indicate that the convergence behaviour of the present paper’s
reduction series resembles the one observed in Schröder (2005a), (2006b) in qualitative and
absolute terms. The author hopes to be able to consider these issues in future.

To now address construction of the functionals, Schröder (2006a) has stressed for this the
importance of ladder height reduction series. Originating with Dufresne (2000), this concept
was in fact developed with properties and usages complementary to those of the present paper’s
reduction series. To fix ideas about a typical application, and to indicate the potential of this
notion, Schröder (2006a, Section 6.4), for example, in the present setting, obtained a principal
method for explicitly determining risk-neutral parameters for Asian option valuation using the
prices of ‘plain-vanilla’ options quoted on the markets.

10. Epilogue

The principal validity of the present paper’s approach goes beyond the class of stochastic
functionals we have concentrated on up to now. To conclude the paper, we turn from our main
focus to reconsider from Section 4 the discretely sampled stochastic functionals in N positive
random variables, i.e.

E[R(Xt )].
We will use multi-index notation to stress the analogy with the one-dimensional case. Thus, we
have a vector t = (t1, . . . , tN ) of sample times and a vector Xt = (Xt1 , . . . , XtN ) of positive
random variables Xtm . Proceeding along the lines indicated in Section 6, to begin with we now
consider the functionals not as functionals of the process X but as functionals of the increments
of X:

E[R(Xt )] = E[λ∗(R)(�t (X))].
Here �t (X) = (�1X, . . . , �NX) is the vector of increments �mX = Xtm − Xtm−1 , where
Xt0 = x0 is any positive real, and λ∗(R) = R ◦ λ, where λ = (λ1, . . . , λN) with the maps λm

given by λm(x1, . . . , xN) = x0 + ∑m
	=1 x	.

Next we seek Laguerre reduction series for these functionals, and in analogy with the results
of Sections 3 and 8 the result ought to be the absolutely convergent series

E[λ∗(R)(�t (X))] =
∑
J

〈R, Lα
J 〉α 1

‖Lα
J ‖α

E[Lα
J (�t (X))].

To make sense of this expression, the idea is to apply consecutively the results about single-
variable Laguerre reduction series of Sections 3 and 8. As a first step, thus consider its left-
hand side to be a functional of �NX alone and represent this partial functional by its Laguerre
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reduction series. The independence of the increments �mX then entails that the effect of �NX

on the coefficients of this series is averaged out by the respective integrations. Each of them
thus becomes a functional of the first N − 1 increments, �1X, . . . , �N−1X. Now iterate the
construction with each of these coefficients. As it is the result of this construction process
taken over N steps, the above sum extends over all N -tuples J = (j1, . . . , jN) of nonnegative
integers and represents an element of the space L2

α((R>0)
N), where α = (α1, . . . , αN) for

reals αm > −1; see Thangavelu (1993, Chapter 6). These spaces are obvious extensions of the
one-dimensional ones recalled in Section 3.1. Thus, they carry the bilinear form

〈f, g〉α =
∫

(R>0)N
wα(x)f (x)g(x) dx,

where

wα(x1, . . . , xN) =
N∏

m=1

wαm(xm),

with respect to which the polynomials Lα
J = ∏N

m=1 L
αm

jm
furnish an orthogonal basis. Condi-

tions analogous to those of Theorems 3.1 and 8.3 (as appropriate) then do indeed guarantee the
absolute convergence of the above series.

On the probabilistic side, computing these functionals is thus reduced to computing the
multimoments of �t (X) implicit in E[Lα

J (�t (X))], and thus to computing the moments of any
single �mX. On the analytic side, however, the coefficients 〈R, Lα

J 〉α are expressed in terms
of N -dimensional integrals. Tractability of the problem from the stochastic point of view thus
has a price from the analytic point of view.

This should in fact be taken as justifying our strategy as outlined in Section 4: put restrictions
on R that ensure the analytic tractability of the approach while still being general enough to
permit meaningful applications. The factorization scheme outlined in Section 4 provides a
systematic way of developing such specializations and permits one to address quite a broad
range of problems. In Schröder (2005b), for example, this paper’s results were extended
from positive Lévy processes to exponential Lévy processes. We would therefore be more
than gratified if the present paper was to initiate further work in this area connecting analysis,
stochastics, and their applications.
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