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2 Epidemiology Research Unit, SAC (Scottish Agricultural College), King’s Buildings, West Mains Road,
Edinburgh, UK

(Accepted 4 September 2011; first published online 23 September 2011)

SUMMARY

Identification of covariates associated with disease is a key part of epidemiological research.

Yet, while adjustment for imperfect diagnostic accuracy is well established when estimating

disease prevalence, similar adjustment when estimating covariate effects is far less common,

although of important practical relevance due to the sensitivity of such analyses to

misclassification error. Case-study data exploring evidence for seasonal differences in Salmonella

prevalence using serological testing is presented, in addition simulated data with known

properties are analysed. It is demonstrated that : (i) adjusting for misclassification error in models

comprising continuous covariates can have a very substantial impact on the resulting conclusions

which can then be drawn from any analyses ; and (ii) incorporating prior knowledge through

Bayesian estimation can provide potentially more informative assessments of covariates while

removing the assumption of perfect diagnostic accuracy. The method presented is widely

applicable and easily generalized to many types of epidemiological studies.
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INTRODUCTION

A primary objective of many epidemiological studies

is to test hypothesized relationships, for example

between specific covariates of interest and some re-

sponse variable, denoting say the presence of, or ex-

posure to, a pathogen or parasite [1–5]. If, however,

the method of diagnosis used to classify subjects as

disease positive (negative) suffers from imperfect sen-

sitivity and/or specificity then the observed response

variable is an estimate of the diagnosis positive frac-

tion of subjects in the study population – typically

referred to as apparent prevalence. In contrast, what

is actually desired is an estimate of the disease positive

fraction – the true prevalence. Moreover, analyses

of diseases which have low prevalence represent a

particular challenge because even when using a diag-

nostic with very high specificity, false positives may be

more numerous than true positives.

A complication in performing any data analyses is

that the true prevalence in a study with an imperfect

diagnostic is not directly observed, but rather con-

tained latently within the data collected. The analytical

challenge for the epidemiologist is to release this latent

information, and thus enable estimation of the effects

of the covariates of interest, after adjusting for diag-

nostic misclassification. Analytical approaches for

misclassification in regression models in epidemiology
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were introduced some years ago [6–8] ; however, the

use of such approaches is far from common practice.

It is intuitively obvious that additional uncertainty

must be introduced into any analyses when an im-

perfect rather than gold-standard test is used, and

thus a resulting reduction in statistical power. What

may be surprising in practice is just how large an im-

pact this may have on the conclusions which can then

be drawn from any analyses. This is the key message

of this article, i.e. that misclassification error, can and

should, always be investigated to ensure scientifically

credible conclusions of regression analyses involving

imperfect diagnostics. The impact of an imperfect di-

agnostic is first examined using simulated data, fol-

lowed by analyses which explore temporal (seasonal)

fluctuations in Salmonella prevalence in farmed pigs.

Salmonella is zoonotic, and one of the main risks from

this pathogen to humans is through the consumption

of pork products which accounts for up to 20% of

human salmonellosis cases found in some European

countries, and it remains the second highest (regard-

ing occurrence) in the list of human zoonotic diseases

across the European Union [9–12]. Frequentist and

Bayesian estimations are both considered and viewed

as complementary approaches.

There exists an extensive literature on the study and

development of methods for analysing results from

imperfect diagnostic tests, both from frequentist and

Bayesian perspectives [13–17]. Adopting a no-gold

standard (NGS) approach does, however, come with

numerous caveats [15], and unlike many other stat-

istical estimation methods the results of model fitting

are not generally testable against the observed data, as

the variables being estimated are latent. It is, however,

very difficult to argue that an NGS approach should

not at least be considered whenever study results are

based on a diagnostic which is not known to be a

gold-standard test against the specific study popu-

lation. This is particularly relevant in analyses focused

on estimation of the effect of covariates, particularly

continuous covariates, as the true functional re-

lationship between the response variable and covari-

ates is generally unknown and hence needs to be

estimated from the observed data. Any additional

variance in the response variable due to mis-

classification error may considerably affect the accu-

racy with which any functional form can be estimated,

with the danger of attributing erroneous covariates to

a particular disease status.

Model identifiability, i.e. are there sufficient degrees

of freedom available given a particular study design to

estimate latent variables, is a particular challenge in

analyses concerned with imperfect diagnostic testing

[18]. In theory, it is highly desirable that a model is

identifiable as otherwise some parameters may be en-

tirely redundant, in which case they should arguably

be removed from any model. For example, in a bi-

nomial distribution it is possible to formulate the

parameter p, the probability of observing a subject

with disease as p=Sep+(1xSp)(1xp), where Se and

Sp are the sensitivity and specificity of the diagnostic

test used, respectively, and p the true disease preva-

lence within the population. The terms p and p here

are the apparent prevalence and true prevalence, re-

spectively. The goodness of fit to observed data will

only depend on the value of p, and no matter what

combination of values are chosen for Se, Sp, p they

cannot improve the goodness of fit to the data, and

hence cannot be uniquely estimated.

Much of the existing methodological NGS litera-

ture focuses on the problem of prevalence estimation

using multiple imperfect tests applied to single or

multiple study populations to ensure model identifia-

bility [13]. In practice, however, it may be that for a

model to be identifiable biologically untenable as-

sumptions may be required, which is, at least in part, a

practical reason for choosing a Bayesian estimation

approach where identifiability is much less of a con-

cern as prior information can be used to avoid this

issue. For epidemiological studies which utilize only a

single diagnostic test, which is common particularly in

larger scale studies, estimation of the latent preva-

lence of disease is still possible but requires alternative

approaches [5, 19].

In terms of previous methodological approaches

to misclassification in regression models, log-linear

analyses where information on error rates is provided

through the availability of supplementary infor-

mation, and logistic regression approaches with ex-

amples using discrete covariates have been available

for many years [6, 7, 20]. However, the uptake of

such approaches in practice has been very limited with

a paucity of studies, particularly temporal and/or

spatial studies which are a key aspect of zoonotic

epidemiological research [21].

This article describes how to estimate the effects of

covariates in relation to the unobserved ‘true ’ preva-

lence in a population when an imperfect diagnostic

test is used, and explores the resulting impact on the

precision of the parameters of interest. In the analyses

presented, the simplest case of a single continuous

covariate is considered which is both sufficient for
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illustrative purposes, and also epidemiologically rel-

evant in a zoonotic context as demonstrated in the

later section Salmonella case study. Models with both

continuous and discrete covariates and using multiple

imperfect tests are deferred to the Discussion. Of

related interest is using frequentist and Bayesian

estimations as complementary approaches, with the

former assisting with issues of parameter stability and

robustness, while the latter allows for the incorpor-

ation of valuable prior information which can be used

to decrease variance/increase power.

METHODS

While Bayesian approaches to imperfect diagnostic

test estimation are widespread [22], and increasingly

accessible through software which implements ef-

ficient Markov chain Monte Carlo (MCMC) esti-

mation such as WinBUGS and JAGS [23], a

maximum-likelihood (ML) approach is considered

alongside Bayesian estimation. An advantage of using

ML estimation is that issues and difficulties around

model identifiability are, generally speaking, more

immediately recognizable compared to a Bayesian

approach where the influence of the prior information

used can be sufficient to mask a model which would be

unidentifiable given the observed data alone. This is

practically relevant because if a model is unidentifi-

able in a ML context, then in a Bayesian analyses –

while WinBUGS/JAGS will probably have no

problem in producing parameter estimates – any

results may be very highly sensitive to the prior in-

formation used (e.g. from expert opinion) which may

be undesirable.

Latent variable logistic regression

A binomial regression model with a logit link function

between the latent true prevalence and covariates as-

sociated with disease occurrence can be defined as

follows; for covariate pattern i,

Pr (Yi=yijni)=
ni
yi

� �
q
yi
i (1xqi)

nixyi , for 0fyifni

where qi=Sepi+(1xSp)(1xpi)

and log pi

1xpi

� �
=xTi b,

0
BBB@

1
CCCA
(1)

with qi the probability that a subject with the ith

covariate pattern tests positive (apparent prevalence)

and pi the probability that a subject with the ith co-

variate pattern is disease positive (true prevalence),

where the latter is parameterized as a function of

covariates b. The transposed vector xi
T represents the

ith row of the design matrix X, i.e. the combination of

model parameters which will be used to estimate the

ith covariate pattern. The parameters Se and Sp are,

respectively, the sensitivity and specificity of the di-

agnostic used. When Se=1 and Sp=1 then the model

reverts to the classical logistic regression model where

qi=pi (note that when Se<1 or Sp<1 then qi does not

have a logit link function).

The key aspect in fitting the model in equation (1) to

data is the complication that the pis are latent para-

meters. The expectation maximization (EM) algor-

ithm is a standard approach for ML estimation in the

presence of unobserved variables [15, 24]. Technical

implementation details of an EM algorithm for a la-

tent variable logistic regression model can be found in

the Supplementary material (available online) along

with suitable R code. Model fits were assessed both

visually against the data and also more formally using

the ML ratio test and Akaike’s Information Criterion

(AIC) metric.

Later, Bayesian estimation is applied to the same

form of model using MCMC via JAGS and all com-

puter code is again provided as Supplementary ma-

terial to allow easy replication of the results presented.

As is good practice in Bayesian analyses a large

number of different chains were run from many dif-

ferent initial starting points and of different lengths,

including some very long runs of many millions of

iterations. Trace plots for individual parameters and

deviances were compared and examined to identify

signs of poor behaviour such as very slow mixing, and

also to assess convergence along with the use of the

usual Gelman & Rubin convergence diagnostic [25].

Simulated data

Analysing simulated data where the true parameters

are known with certainty provides a means of in-

vestigating the behaviour and utility of latent variable

approaches. We consider the case of a single covariate

where the logit of the (mean) true prevalence is mod-

elled by a straight line where xi
T comprises of (1, x1,i),

and bT=(b0, b1), hence logit(pi)=b0+x1,ib1. In the

simulated data b0=x2, b1=10 with x1,i taking 24

equally spaced values from 0.2 to 0.4 and Se=0.7 and

Sp=0.9. The simulated data were created in a

straightforward fashion by first generating the (linear

and deterministic) mean on a logit scale, inverting

to the probability scale (i.e. true prevalence pi), then
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creating an apparent probability (qi) for each covari-

ate pattern. Finally, Bernoulli observations were

generated, e.g. coin tosses where ‘heads’ and ‘tails ’

are replaced with diagnosis positive or diagnostic

negative, where qi is the probability of observing a

diagnosis positive observation at covariate pattern i.

Of primary interest is exploring the impact of

allowing additional variance into the regression re-

lationship as a result of diagnostic test error. To this

end two different sample sizes were considered, first

with n=100 independent Bernoulli observations for

each covariate pattern, e.g. for each value of x1,i, and

then a larger dataset with n=2000 Bernoulli ob-

servations per covariate pattern. This gives a total

of 2400 and 48000 individual diagnostic test results,

respectively. These are deliberately large sample

sizes – if the impact of misclassification error is ap-

preciable in such relatively large sample sizes then it is

reasonable to expect this to be larger in smaller data-

sets. Moreover, while 2400 test results might be large

relative to certain types of human epidemiological

studies, this is small relative to data collection in cer-

tain zoonotic contexts, e.g. the later Salmonella case

study in farmed pigs has over 8000 observations, and

in general food safety and meat inspection data can

comprise very large numbers of observations. Each

simulated dataset provides a potential maximum of

24 degrees of freedom (D.F.) and fitting a standard

logistic regression model (where Se=Sp=1) requires

2 D.F. For the latent variable model to be identifiable

it requires that the data contain sufficient additional

information to also allow for Se and Sp to be esti-

mated.

Two different sets of prior distributions are con-

sidered when modelling this data, first, where Se and

Sp have independent Beta distributions, specifically

b(1, 1) (equivalent to uniform on 0, 1), and with b0

and b1 having diffuse independent normal priors with

mean zero and variance 1000. Next, the priors for Se

and Sp are made more informative using b(70, 30) and

b(90, 10), respectively, where these have means of 0.7

and 0.9 and roughly equate to a total prior weighting

of 100 Bernoulli observations (in a simple conjugate

model with a binomial density – and equal to about

1.2% of the weight of the observed data).

Model identifiability and parameter estimation

Two aspects are of particular interest, first is the latent

variable model identifiable. Assessing the identifia-

bility of any given model in a formal mathematical

setting is challenging [18] and still largely an open

question. However, this can be assessed relatively

easily empirically. If the algorithm used to estimate

the model parameters produces different estimates,

e.g. starting the algorithm from different starting

points gives different estimates but which have ident-

ical maximum log-likelihood values, then that is

strong evidence that the likelihood is at least in parts

completely flat, and hence the model is not identifi-

able. Note that in practice some allowance may need

to be made for numerical approximation errors in

whatever algorithms are used. Even if the maximal

log-likelihood values are not identical but only very

similar (for different parameter estimates), then a

similar issue exists since this suggests that the stan-

dard errors for at least some of the model parameters

are likely be very large, and therefore give results

which will not be statistically significant.

Assuming a model is identifiable, the second aspect

of particular interest is estimating the uncertainty in

the parameter(s) of interest, in the case of the simu-

lated data given above this is, b1, the covariate as-

sociated with the presence of disease. To estimate

confidence intervals profile likelihood is used [26]

in all (non-Bayesian) analyses presented. Profile

likelihood is a method for estimating confidence

intervals in the presence of ‘nuisance parameters ’,

for example, to estimate a confidence interval for b1

we need to also take into account the uncertainty in

the other unknown parameters in the model, e.g. b0,

Sp, Se.

In the context of estimating a confidence interval

for b1 then b0, Sp, Se can be considered as nuisance

variables, similarly when estimating b0 then b1, Sp, Se

become nuisance variables. We consider confidence

interval estimation for b1. First, we plot the log-

likelihood function for the latent variable logistic re-

gression model over a range of values for b1, where for

each value of b1 the maximum possible value of the

log-likelihood function is used (allowing the nuisance

parameters to take any values in their range) – this

is called the profile likelihood for b1. Figure 1(c, d)

shows profile likelihood functions for b1 constructed

in this way. A (1xa) confidence interval for b1, where

for example a=0.05 gives a 95% confidence interval

(95% CI), is found by drawing a horizontal line at a

value of 0�5x2d;1xa below the maximum value of the

profile likelihood function where x2d;1xa is the (1xa)

quantile of the x2 probability distribution with d

degrees of freedom. For a confidence interval for a

single parameter then d=1, for a joint confidence
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interval of two parameters then d=2 and so on.

Therefore, a 95% CI for b1 is given by where a hori-

zontal line crosses the profile likelihood function for

b1 at a distance 0�5x21;0�95 � 1�92 below the maximum

value of this function (Fig. 1c, d). It is also possible to

estimate joint 95% CIs in an analogous fashion, in

the two-parameter case this interval (or region) is now

defined by a horizontal cross-section across a profile

likelihood surface (see Fig. 2).

Salmonella case study data

Data comprising ELISA serological test results for

exposure to Salmonella from 8028 individual finishing

pigs destined for human consumption in the UK were

analysed. Visual inspection of the data suggests con-

siderable seasonal fluctuations in Salmonella preva-

lence, with a strong peak in late summer and rapid

decline during the winter months for the two years

(2008 and 2009) for which data were available.

Salmonella seasonal variation has been observed

before, and is potentially associated with an in-

crease of the proliferation of bacteria in the farm

environment during the warmer months and an in-

crease in Salmonella shedding by infected pigs result-

ing from heat stress [9, 27]. This is directly relevant to

human health as it implies that the risk of Salmonella

in pork products may be greater during the warmer

months, which may have implications for risk assess-

ment strategies designed to minimize Salmonella en-

tering the food chain. A particular question of interest

is whether analyses using standard binomial logistic

regression (assuming the ELISA is a gold-standard

test) support seasonal variation in prevalence, and

what is the impact of removing this unsupported as-

sumption through fitting a latent variable logistic

regression model. Robust estimates of sensitivity and

specificity of the ELISA used when applied to the

relevant UK pig population are unavailable.

RESULTS

Simulated data

Figure 1(a, b) shows the simulated data along

with corresponding fitted trend lines assuming the
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Fig. 1.Analysis of simulated data. (a, b) Raw data with corresponding fitted trend lines assuming the diagnostic test used was

a gold-standard test [apparent prevalence (dashed line), true prevalence (solid line)] as a function of the covariate. As expected
there is considerable difference between apparent and true prevalence. (a) n=100 per covariate pattern, test positive (T+)
and true prevalence (D+) ; (b) n=2000 per covariate pattern. (c, d) Estimates for the slope parameters in panels (a) and (b).
95% confidence intervals (defined as where the horizontal lines cross the profile likelihood) show there is great uncertainty in

the slope when the test is not a gold standard and this is still considerable even for the much larger sample size. (c) n=100 per
covariate pattern; (d) n=2000 per covariate pattern.
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diagnostic test used was a gold-standard test, and the

true prevalence in the population as a function of the

covariate. Figure 1(c, d) contains the profile likeli-

hood for b1 and corresponding confidence intervals

for the effect of this covariate. The latent variable

model is identifiable with a unique solution

of (b0, b1, Se, Sp)=(x1.38, 7.48, 0.76, 0.999 997) with

maximum log-likelihood of x1635.02 for n=100,

and (b0, b1, Se, Sp)=(x2.12, 11.54, 0.68, 0.953) with

maximum log-likelihood of x32657.91 for n=2000.

For the standard regression model the maximum log-

likelihood values are x1635.11 and x32670.38, re-

spectively, for n=100 and n=2000; note that these

are not the same as those in the latent variable model

as Se and Sp are not implicitly contained within

the parametrization of the standard model. While

the ML solutions are unique, the likelihood surface

is relatively flat resulting in comparatively low par-

ameter precision, as can be seen in the wide confidence

intervals for b1 (Fig. 1c, d, Table 1) ; in contrast, 95%

CIs for b1 in the gold-standard model are relatively

very precise. It is instructive to compare results using

Bayesian estimation with the ML results. Table 1

shows 95% CIs for b1 using 2.5% and 97.5% quan-

tiles.

Salmonella case study

Figure 3a shows the observed data – the apparent

prevalence of finishing pigs for Salmonella split by

calendar month, along with the best-fit regression line

using a standard binomial regression model.

Polynomials in month (as a dummy variable 1–12) of

increasing order were considered and both the ML

ratio test and AIC strongly support a cubic relation-

ship as the best-fitting model (AIC for orders 0–4:

5831.861, 5815.318, 5814.606, 5811.872, 5813.813).

Treating the test as a gold standard, and considering

the relatively narrow range of (cubic) trajectories

which fit within the 95% prediction limits for the

conditional mean (Fig. 3a), suggests that the magni-

tude of this change in prevalence is potentially worthy

of further epidemiological investigation.

We now consider instead that the ELISA has not

been shown to be a gold standard against this specific

study population, and moreover, suppose than no

reliable information is available in respect of likely

true and false positive rates against the study popu-

lation. Using ML estimation to fit a cubic polynomial

latent variable model gives the maximum-likelihood

point estimate (MLE) (b0, b1, b2, b3, Se,
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Fig. 2. Profile likelihood surface for Se and Sp estimated from Salmonella data. There is great uncertainty in the estimate of
Se but relatively less in Sp. The MLE is (Se, Sp)=(0.99, 0.907) with the critical value defining a 95% confidence set within this

surface at x2904.61 (outside the limits shown).
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Sp)=(x5.98, 0.0033, 0.12,x0.0091, 0.99, 0.907), the

true prevalence estimate (Fig. 3a) is clearly well

outside the 95% range of trajectories for the gold-

standard equivalent (maximum log-likelihood is

x2901.61, with x2901.94 in the gold-standard

model).

The existing range of gold-standard prevalence

trajectories need to be adjusted to take into account

the implicitly estimated sensitivity and specificity of

the Salmonella ELISA. Figure 3b shows cubic poly-

nomial trajectories where each of these corresponds

uniquely to a point in the joint 95% confidence set

for the sensitivity and specificity (Se, Sp). Once this

additional uncertainty has been included, not only

does the MLE in the standard binomial model appear

strongly biased relative to the ‘true ’ prevalence MLE,

but the additional uncertainty introduced due to

ignorance of likely prior distributions for (Se, Sp) is

so large that in practical terms it is impossible to

draw any substantive conclusions as to the relation-

ship between calendar month and Salmonella preva-

lence.

Table 1. Analysis of simulated data [95% confidence intervals for slope

parameter (b1) by sample size and model type]

Model

n=100 per

covariate pattern

n=2000 per

covariate pattern

ML (Se=Sp=1) (3.64, 6.18) (4.61, 5.21)
ML (SelSpl1) (3.84, 80.10) (8.64, 21.46)
Bayesian prior1 (SelSpl1) (3.95, 54.66) (9.73, 20.19)

Bayesian prior2 (SelSpl1) (3.55, 22.44) (9.52, 14.73)

ML, Maximum-likelihood model.
Prior 1 is b(1, 1) on both Se and Sp ; prior 2 is b(70, 30) and b(90, 10) for Se and Sp,
respectively.
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Fig. 3. (a) Analysis of Salmonella data. There are great differences between true and apparent prevalence. Total sample size of
8028 pigs, apparent prevalence (T+), latent true prevalence (D+). (b) After accounting for the impact of the imperfect test it
is not possible to draw any conclusions as to seasonal changes in true prevalence. Range of trajectories corresponds to the

joint 95% confidence set for Se and Sp.
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Figure 2 shows an estimate of the joint (profile)

likelihood surface for (Se, Sp). The critical value – the

value of the profile likelihood surface at the cross-

section required to produce a joint 95% confidence

set for (Se, Sp) – is x2904.61, and as is clear from the

contour plot that while it is not completely flat, and

hence strictly speaking the model is identifiable, it

is so flat that this results in the very wide range

of trajectories for the monthly prevalence estimates

shown in Figure 3b (the Supplementary online

material contains an additional contour plot with

wider ranges).

Given the very wide range of uncertainty in the ML

estimation it is instructive to investigate how much

this could be reduced by the introduction of prior in-

formation, for example sourced from a smaller scale

study on the same target population whose aim was

estimation of diagnostic accuracy. Figure 4 shows re-

sults from using Bayesian estimation with prior dis-

tributions for Se and Sp of b(99, 1) and b(99, 1),

respectively, with bi for i=0, 1, 2, 3 having diffuse

independent normal priors with mean zero and vari-

ance 1000. These are highly informative priors with

low variance and very high accuracy for both sensi-

tivity and specificity. Not surprisingly, the variance in

trajectories for the true prevalence in the Bayesian

model is extremely smaller than in the ML model

(with unknown Se and Sp), but still rather larger than

the gold-standard ML model (Fig. 4c).

As a practically important footnote, estimating the

Bayesian model required some care. In a Bayesian

analyses the usual objective is to estimate probability

distributions for each parameter of interest (which

can then provide, for example confidence intervals),

which are a combination of the data available and

prior knowledge. The key part of this estimation

process when using WinBUGS/JAGS is that they at-

tempt to describe (e.g. map) a possibly very complex

surface which defines the joint probability distri-

bution for all parameters in the model. They do this

by effectively ‘walking’ around this landscape taking

different sized steps, depending on the specific algor-

ithm used. During this process it is possible to get

‘ trapped’ in a particular area of the surface and

therefore the map of the landscape it produces will be

at best incomplete, if not entirely unreliable. In the

Salmonella analyses many different ‘walks’ (Markov

chains) were performed from different initial starting

points in the landscape, and for varying numbers of

steps which is generally considered good practice in
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Fig. 4. Bayesian estimation of Salmonella data using extremely strong priors of b(99, 1), close to perfect accuracy, for Se and
Sp. There still exists a very large amount of uncertainty in estimates of true prevalence over time and much more than

assuming a gold-standard test. (a) Prior and posterior densities for Se. (b) Prior and posterior densities for Sp. (c) Range of
trajectories corresponding to the top 95% of log-likelihood values sampled during Markov chain estimation of the Bayesian
latent variable model. The trajectory estimate with highest posterior log-likelihood is also shown.
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MCMC analyses. About half of the chains appeared

to get trapped indefinitely sampling around a mode

with log-likelihood of about x2915, whereas other

chains sampled around a mode with log-likelihood of

about x2902, the latter corresponding to the ML

analyses. Some chains eventually reached the ML

mode but some did not even after many millions of

iterations (steps). The ML analyses was valuable in

assessing whether the results from the Bayesian esti-

mation procedure were robust (technical note: chains

sampling from the node atx2915 had values of about

1.0 for the usual Gelman & Rubin convergence diag-

nostic [25] indicating convergence, and similarly for

the chains sampling around the ML node). Summary

outputs and diagnostics can be found in the Sup-

plementary material (online).

DISCUSSION

There are two key results from the analyses presented.

First, that even a relatively small margin of mis-

classification error in the response variable in re-

gression models can considerably increase the

variance of the estimated functional relationship.

Second, the methods presented for adjusting for mis-

classification error in regression models are relatively

straightforward, especially in a Bayesian context via

MCMC, e.g using either WinBUGS or JAGS (JAGS

code is provided with the Supplementary material).

As illustrated with the case study analyses, however,

performing appropriate diagnostics and examining

issues such as sensitivity to priors are then of crucial

importance. The key practical implication of the work

presented is that some form of adjustment for mis-

classification error should be considered in any study

unless there is overwhelming biological evidence that

the diagnostic used is error free.

The methods presented here have particular appli-

cation to the study of rare diseases in populations.

Although highly specific diagnostic tests may be de-

veloped, the specificity is often <1.0. This results in

poor positive predictive values of the tests as the fre-

quency of false positives in the population may exceed

that of true positives. Consequently, there is a sub-

stantial risk of making inappropriate conclusions on

covariates associated with disease presence as they

may be substantially influenced by covariates as-

sociated with individuals who test false positive. For

example a population study of human cystic echino-

coccosis, a highly pathogenic parasitic disease caused

by Echinococus granulosus, in Kazakhstan reported

an estimated prevalence of 0.011 [28]. As part of the

study the population was tested with an ELISA using

cyst fluid antigens isolated from E. granulosus. This

test had a specificity of 0.990 but the positive predic-

tive value was just 0.382. Hence using standard logis-

tic regression to evaluate covariates in the population

associated with infection status, using positive test

results from this ELISA is likely to produce substan-

tial errors.

Only polynomial models in a single continuous

covariate have been considered; however, the methods

demonstrated are equally applicable to richer forms

of regression models, e.g. with more complex variance

structure, and also potentially comprising both con-

tinuous and discrete covariates. Models to identify

temporal or spatial correlations with disease are par-

ticularly obvious candidates. Model identifiability is

again a consideration as this is likely to become more

difficult and challenging the more complex the model

considered for a given dataset (see Supplementary

material for a brief discussion). Also of relevance is

available sample size ; in the simulated data example

the sample sizes used were relatively large, yet the

variance in the regression coefficients was still con-

siderable. This again, suggests that some form of in-

formative prior may be of significant benefit even in

larger studies.

NOTE

Supplementary material accompanies this paper on

the Journal’s website (http://journals.cambridge.org/

hyg).
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