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Abstract

We show that for infinitely many primes p there exist dual functions of order k over F=? that cannot be approximated

in !∞-distance by polynomial phase functions of degree : − 1. This answers in the negative a natural finite-field

analogue of a problem of Frantzikinakis on !∞-approximations of dual functions overN (a.k.a. multiple correlation

sequences) by nilsequences.

1. Introduction

For : ≥ 2, integer vector i = (81, . . . , 8: ) ∈ Z:≥0
and finite abelian group �, the associated set of order-:

dual functions is given by

Δ i =
{
q : H ↦→ EG∈� 51 (G + 81H) · · · 5: (G + 8: H) | 58 : � → D

}
,

where D denotes the complex unit disc. For example, if � ⊆ � is a subset, i = (0, 1, 2) and 58 = 1�

for each 8 ∈ [3], then q(H) is the fraction of three-term arithmetic progressions in � with common

difference H.

For applications in additive combinatorics and higher-order Fourier analysis, it is desirable to under-

stand to what extent dual functions can be approximated by simpler functions. If : = 2, it follows from

the Fourier inversion formula that one has the simple decomposition in terms of the characters:

q(H) =
∑

j∈�̂

Ujj
(
(82 − 81)H

)
, (1)

where ‖U‖ℓ1
≤ 1. Similar decompositions exist for higher-order dual functions thanks to deep ‘inverse

theorems’ for the Gowers uniformity norms. Inverse theorems roughly show that if 5 has large*: -norm,

then 5 correlates with a function k : � → D akin to a polynomial of degree at most : − 1. Here the

‘linear’ k are precisely the characters. What exactly the ‘higher-order characters’ are depends on the

group �. For finite vector spaces F=? with ? ≥ : , they are the polynomial phase functions

k(G) = 42c8% (G)/?,
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where % ∈ F? [G1, . . . , G=] is a polynomial of degree at most :−1 [27]. When ? < : , one has to consider

the larger class of nonclassical polynomials [28]. For the cyclic group Z# , they are the (: − 1)-step

nilsequences (of bounded complexity) [20]. Combined with the Hahn-Banach theorem, these inverse

theorems imply that the decomposition (1) generalises for larger : in terms of higher-order characters

of degree at most : − 1 up to small !1-error [19]. More precisely, in the finite-field setting, this amounts

to the following.

Proposition 1.1. Let ? ≥ : + 1 be a prime and let � = F=? . Then, for any Y > 0 and i ∈ Z:≥0
, there is

an " = " (Y, :, ?) > 0 such that any dual function q ∈ Δ i can be decomposed as

q =

A∑

8=1

U8k8 + g, (2)

where U1, . . . , UA ∈ C satisfy |U1 | + · · · + |UA | ≤ " , k1, . . . , kA are polynomial phases of degree at

most : − 1 and ‖g‖!1
≤ Y.

Though facts like this (in particular over Z# ) can be useful in higher-order Fourier analysis [19], for

other applications in additive combinatorics it is preferable to have more precise control over the error

function g in (2). A natural finite-field analogue of a question raised by Frantzikinakis in [12, Problem 1]

(see also [1]) asks whether this error function can be bounded everywhere; that is, whether Proposition 1.1

still holds with ‖g‖!∞ ≤ Y. The apparent expectation of a positive answer to Frantzikinakis’s question

motivated conjectures on a poorly understood probabilistic variant of Szemerédi’s theorem on arithmetic

progressions (cf. Section 1.1). Our main result, however, shows that in the finite-field setting, the answer

is negative.

Theorem 1.2. For infinitely many primes ?, there is a : = : (?) ∈ N and an integer vector i ∈ Z:≥0
such

that (2) cannot hold with ‖g‖!∞ ≤ Y.
Special cases of Theorem 1.2 show that for : = 3 and ? = 2C − 1 a Mersenne prime, the decom-

position (2) requires polynomial phases of degree at least C for fixed Y, " and ‖g‖!∞ ≤ Y. The largest

known Mersenne prime as of January 2018 has C = 77, 232, 917 [16].

1.1. Locally decodable codes and random Szemerédi

The examples behind Theorem 1.2 originate from constructions of special types of error-correcting

codes called locally decodable codes (LDCs). These codes have the property that any single encoded

message symbol can be retrieved from a code word with good probability by reading only a tiny number

of code word symbols, even if the code word is partially corrupted. LDCs originated in complexity

theory [2–4] and cryptography [10] and were defined in the context of channel coding in [21]. They have

since found many other applications in computer science and mathematics; for instance, in fault-tolerant

distributed storage systems [17] and Banach space geometry [9]. We refer to [18, 31] for extensive

surveys.

Despite their ubiquity, LDCs are poorly understood. Of particular interest is the trade-off between

the code word length # as a function of message length : when the query complexity – the number of

probed code word symbols – and alphabet size are constant. The Hadamard code is a 2-query LDC of

length # = 2$ (:) and this length is optimal in the 2-query regime [22]. For @ ≥ 3, the best-known lower

bounds show that any @-query LDC has at least polynomial length :1+1/( ⌈@/2⌉−1)−> (1) [22, 29]. The

family of Reed-Muller codes, which generalise the Hadamard code, were for a long time the best-known

examples, giving @-query LDCs of length exp($ (:1/(@−1) )).
In a breakthrough result, Yekhanin [30] constructed an entirely new family of vastly shorter LDCs.

For each Mersenne prime ? = 2C − 1, he gave a 3-query LDC of length # ≤ exp($ (:1/C )). The

construction uses a family of : homomorphisms from F=? to the multiplicative subgroup of F2C . The

homomorphisms are constructed using a family of matching vectors (D8 , E8)8∈[: ] , which are pairs of
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orthogonal vectors in F=? such that the inner products 〈D8 , E 9〉 with 8 ≠ 9 belong to a special subset

of F∗? . It is this construction that forms the basis for Theorem 1.2.

Subsequently, Efremenko [11] constructed much larger matching vector families over Z=< for com-

posite moduli < and used Yekhanin’s framework to give the first 3-query LDCs of subexponential

length # ≤ exp(exp($
√

log :/log log :)). But huge gaps persist between the best-known upper and

lower bounds for constant-query LDCs.

In contrast with other combinatorial objects such as expander graphs, the probabilistic method has

so far not been successfully used to beat the best explicit LDC constructions. In [6], a probabilistic

framework was given that could in principle yield best possible LDCs, albeit nonconstructively. A

special instance of this framework connects LDCs with a probabilistic version of Szemerédi’s theorem

alluded to above. The setup for this is as follows.

For a finite abelian group � of size # = |� |, let � ⊆ � be a random subset where each element is

present with probability d independent of all others. For : ≥ 3 and Y ∈ (0, 1), let � be the event that

every subset � ⊆ � of size |�| ≥ Y |� | contains a proper :-term arithmetic progression with common

difference in �. If d = 1, then it follows from the Density Hales-Jewett Theorem [15] that � holds with

probability 1 provided # is large enough in terms of : and Y. It is an open problem to determine the

smallest value of d – which we will denote by d: – such that Pr[�] ≥ 1
2
. This value will depend on Y

too, but we will suppress this in the notation and assume that Y is a fixed constant. It is also assumed

that # is large enough so that d: exists.

In [6] it is shown that there exist :-query LDCs of message length Ω(d:#) and code word

length$ (#). As such, Szemerédi’s theorem with random differences, in particular lower bounds on d: ,

can be used to show the existence of LDCs. Conversely, this connection indirectly implies the best-

known upper bounds on d: for all : ≥ 3, given by #−(1−> (1))/ ⌈:/2⌉ [7, 13]. However, a conjecture of

Frantzikinakis et al. [14] states that over Z# we have d: ≪: #
−1 log # for all : , which would be best

possible. Truth of this conjecture would imply that over this group, Szemerédi’s theorem with random

differences cannot give LDCs better than the Hadamard code. For finite fields, Altman [1] showed

that this conjecture is false. In particular, over F=? for ? odd, he proved that d3 ≫ ?−= =2; generally,

d: ≫ ?−= =:−1 holds when ? ≥ : + 1 [5]. In turn, these bounds are conjectured to be optimal for

the finite-field setting, which would imply that over finite fields, Szemerédi’s theorem with random

differences cannot give LDCs better than Reed-Muller codes.

These conjectures appear to be motivated mainly by the possibility of an !∞-version of Proposition 1.1

(and analogous variants over Z# ) with dual functions based on 3-term progressions. Theorem 1.2 falls

short of obstructing this route to obtaining optimal bounds in the finite-field setting for two reasons. First,

our examples do not include ‘arithmetic-progression dual functions,’ those with i = (0, 1, . . . , (: − 1));
in fact, in the Appendix we show that our current framework cannot give such examples. Second,

even if we had such examples, they do not appear to imply any new lower bounds on d: . Neverthe-

less, we do not expect arithmetic progressions to be exceptional patterns for which there are no such

examples.

Remark 1.3. Ideas behind Theorem 1.2 recently inspired similar examples in the integer setting for

3-term progressions in joint work of the first author and Green [8].

2. Preliminaries

We will identify the set of maps� → Cwith C� . For a polynomial %(G) = ∑C
]=0 2 ]G

], define its support

i(%) to be the sequence of degrees ] ∈ Z≥0 such that 2 ] ≠ 0, arranged in increasing order. The support

size is the length of i(%). We will use some basic facts from the theory of finite fields, for which we

refer to [23]. The Minkowski sum of two sets �, � ⊆ C= is the set given by

� + � = {0 + 1 | 0 ∈ �, 1 ∈ �}.
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We will use the following slight generalisation of the notion of the convex hull, where we allow for

complex coefficients. For a compact set � ⊆ C=, define

ConvC(�) =
{ ∑

0∈�
U00 | U0 ∈ C ∀0 ∈ �,

∑

0∈�
|U0 | ≤ 1

}
.

For a finite set � ⊆ D= and Y, " ∈ (0,∞), define N(�, Y, ") to be the smallest size of a finite set

� ⊆ "D= such that

� ⊆ ConvC(�) + YD=.

Then, for any 0 ∈ �, there is a 1 ∈ ConvC (�) such that ‖0 − 1‖ℓ∞ ≤ Y and so N(�, Y, ") is a restricted

form of the covering number of � relative to the ℓ∞ distance. Note that for � ⊆ [=], the projection of �

to the set of coordinates �, given by �� = {(08)8∈� | 0 ∈ �}, is contained in ConvC (�� ) +YD� . Because

|� | ≥ |�� |, it follows that

N(�, Y, ") ≥ N(�� , Y, "). (3)

3. Covering numbers from hypercubes

We will use the following lemma, which shows that containment of a high-dimensional hypercube

implies a large restricted covering number.

Lemma 3.1. Let 2 > 0, I ∈ C be a complex number such that ℜ(I) ≤ 0 and let ( ⊆ C: be a finite set

such that {2, I}: ⊆ (. Then, for any Y ∈ (0, 2
2
) and " > 0, we have that

log2

(
N((, Y, ")

)
≫2,Y," :.

Proof. Let \ be a uniformly distributed {−1, 1}: -valued random vector. For a compact set � ⊆ C: ,

define

F(�) = Emax
0∈�

|〈0, \〉|.

We use the following basic properties:

1. If � ⊆ �, then F(�) ≤ F(�).
2. For a finite set � ⊆ C: , it holds that F(ConvC(�)) = F(�).
3. For �, � ⊆ C: finite, it holds that F(� + �) ≤ F(�) + F(�).

It follows from the first property that

F(() ≥ F({2, I}: ) ≥ 2:

2
. (4)

For the second inequality, observe that for fixed \ ∈ {−1, 1}: , we have

max
0∈{2,I }:

|〈0, \〉| ≥
���
∑

8:\8=1

2 −
∑

8:\8=−1

I

���

≥
���ℜ

( ∑

8:\8=1

2 −
∑

8:\8=−1

I
)���

≥ 2 |{8 ∈ [:] | \8 = 1}|.

Averaging over \ then gives the result.
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Let � ⊆ "D: be a finite set such that ( ⊆ ConvC (�) + YD: . Let ; = |� | and ? = log2 ;. By the

second property of F, Jensen’s inequality and the Khintchine inequality [24, Chapter 5],

F
(
ConvC(�)

)
= Emax

1∈�
|〈1, \〉|

≤ E
( ∑

1∈�
|〈1, \〉|?

) 1
?

≤
( ∑

1∈�
E|〈1, \〉|?

) 1
?

≪ √
?
(
|� | max{‖1‖ ?

ℓ2
| 1 ∈ �}

) 1
?

≪ "
√
: log ;.

We also have F(YD: ) = Y: . Because ( ⊆ ConvC(�) + YD: , the second and third properties of F

and (4) then give

2:

2
≤ F(() ≤ F(ConvC (�)) + YD: ) ≪ "

√
: log2 ; + Y:.

Rearranging the left- and right-hand sides now gives the claim. �

4. Locating high-dimensional hypercubes

Here we show that for certain primes ? and some integer vectors i, the dual functions in Δ i over F=?
contain high-dimensional hypercubes.

Proposition 4.1. Let ?, A be distinct primes, let C = ord? (A) and let � = F=? . Suppose there exists a

polynomial %(G) ∈ FA [G] that has a root in F∗
A C

of order ? and such that %(1) ≠ 0. Then, there exists a

I ∈ C with ℜ(I) ≤ 0 and a set � ⊆ � of size |� | ≫? =
C such that

{I, 1}� ⊆ Δ
�
i(%) .

The proof of this proposition relies on the following result due to Yekhanin, which is implicit in [30]

(and shown explicitly in [25]). We include a proof for completeness.

Theorem 4.2 (Yekhanin). Let ?, A be distinct primes and C := ord? (A). For integer < > ? − 1, let

: =

(
<

? − 1

)
and = =

(
< + ?−1

C
− 1

?−1

C

)
.

Let

%(G) =
B∑

]=0

2 ]G
] ∈ FA [G]

be a polynomial with a root W ∈ F∗
A C

of order ?. Then, for each 8 ∈ [:] there exists a function

58 : F
=
? → FA C and vectors 38 , F8 ∈ F=? such that for every G ∈ F=? , we have

B∑

]=0

2 ] 58 (G + ]3 9 ) =
{
W 〈G,F8 〉%(1) if 8 = 9

0 otherwise.
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Proof. For a (?−1)-element subset ( ⊆ [<], define the vectors D( = 1( and E( = 1[<]−D( in F<? . Then,

〈D( , E) 〉 = 0 if and only if ( = ) . Let ; =
?−1

C
. Then, for 0 ∈ F∗? , we have 0; ∈ {A@ | @ = 0, 1, . . . , ?−1}.

Consider the expansion of the polynomial &(G) ∈ F? [G1, . . . , G<] given by

&(G) = (G1 + · · · + G<); =
∑

V∈M;

2VG
V ,

where M; := {V ∈ Z<≥0
| ∑<

8=1 V8 = ;} and GV :=
∏<

8=1 G
V8
8

. For each subset ( ⊆ [<] of size ? − 1,

define the vectors F( = (DV
(
)V∈M;

and 3( = (2VEV()V∈M;
. Because GVHV = (G ◦ H)V , where ◦ denotes

the coordinate-wise product, we have that

〈F( , 3) 〉 = &(D( ◦ E) ) = 〈D( , E) 〉; .

By the above, this equals zero if ( = ) and a power of A otherwise. Moreover, the vectors F( and 3(
have dimension |M; | =

(<+;−1
;

)
.

Define 5( : F=? → F∗
A C

by

5( (G) = W 〈G,F( 〉 .

Note that this a homomorphism, because W has order ?. Then,

B∑

]=0

2 ] 5( (G + ]3() = W 〈G,F( 〉
B∑

]=0

2 ]W
] 〈3( ,F( 〉

= W 〈G,F( 〉
B∑

]=0

2 ]

= W 〈G,F( 〉%(1).

If ( ≠ ) , then 〈3) , F(〉 = A@ mod ? for some integer @ and, therefore,

B∑

]=0

2 ] 5( (G + ]3) ) = W 〈G,F( 〉
B∑

]=0

2 ]W
] 〈3) ,F( 〉

= W 〈G,F( 〉
B∑

]=0

2 ]W
]A@

= W 〈G,F( 〉%(W)A@

= 0.

This completes the proof. �

Proof of Proposition 4.1. Let %(G) ∈ FA [G] be as in Proposition 4.1 and let W ∈ F∗
A C

be a ?th root of

unity such that %(W) = 0. Let 58 : F=? → F∗
A C

and 38 , F8 ∈ F=? be as in Theorem 4.2. Let j : FA C → C be

a nontrivial additive character such that the complex number

I := E2∈F? j
(
W2%(1)

)

satisfies ℜ(I) ≤ 0. To see that such a character exists, observe that by orthogonality of the characters,

E
j∈F̂AC

E2∈F? j
(
W2%(1)

)
= E2∈F?

(
E
j∈F̂AC

j
(
W2%(1)

) )
= 0.
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The existence of the desired character then follows by averaging. For each 0 ∈ {0, 1}: and ] ∈ i(%),
define � ]

0 : F=? → C by

� ]
0 (G) = j

(
2 ]

:∑

9=1

0 9 5 9 (G)
)
. (5)

Based on these functions, we define the dual function q0 : F=? → D by

q0 (H) = EG∈F=?
∏

]∈i(%)
� ]
0 (G + ]H). (6)

Then,

q0 (38) = EG∈F=? j
( :∑

9=1

0 9

∑

]∈i(%)
2 ] 5 9 (G + ]38)

)

= EG∈F=? j(08W 〈G,F8 〉%(1))
= E2∈F? j(08W2%(1)).

The last expectation equals 1 if 08 = 0 and I if 08 = 1 and, therefore,

{1, I}: ⊆ {(q(3))3∈� | q ∈ Δ i(%) }.

Because : ≥ (<
?
) ?−1, = ≤ ( 24C<

?
) ?−1

C and C ≤ ? − 1, we have : ≫? =
C . �

5. Sparse polynomials over F2

The following lemma supplies infinitely many primes and polynomials that can be used in Proposi-

tion 4.1.

Lemma 5.1. For infinitely many primes ?, there is an irreducible polynomial %(G) ∈ F2 [G] with support

size at most C = ord? (2) and a root in F∗
2C

of order ?.

To prove Lemma 5.1, we use some basic theory of cyclotomic polynomials (see, for example, [23,

Chapter 2]). Let A be a prime and = ∈ N not divisible by A . Recall that a primitive =th root of unity

over FA is a generator of the nonzero elements of the splitting field of the polynomial G= − 1 over FA .

Then, for any such root of unity Z , the =th cyclotomic polynomial is given by

Φ= (G) =
∏

gcd(B,=)=1

(G − Z B),

where the product is over B ∈ {1, . . . , =} such that gcd(B, =) = 1. The following lemma gives the

properties of cyclotomic polynomials we need.

Lemma 5.2. Let A be a prime, = ∈ N not divisible by A . Then, the coefficients ofΦ= (G) lie inFA . Moreover,

if = is a prime, then Φ= (G) factors into (= − 1)/ord= (A) distinct monic irreducible polynomials, all of

which have degree exactly ord= (A).
For an integer : ≥ 2, denote by ?(:) the largest prime number that divides : . We will use the

following result of Stewart [26].

Lemma 5.3 (Stewart). For all = large enough, we have

?(2= − 1) > = exp

(
log =

104 log log =

)
.
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Proof of Lemma 5.1. By Lemma 5.3, for ? = ?(2= −1) and = sufficiently large, we have ord? (2) ≤ = <
(? − 1)/2. Hence, there are infinitely many primes ? such that C := ord? (2) ≤ (? − 1)/2. For such a ?,

consider the ?th cyclotomic polynomial Φ? (G) over F2. By Lemma 5.2, Φ? (G) factors into (? − 1)/C
distinct monic irreducible polynomials over F2 of degree exactly C. Because over F2 there is only one

polynomial of degree C with support size C + 1, there must be an irreducible factor with support of size

at most C. Let %(G) be such a factor. Then, because %(G) |Φ? (G), its roots lie in the set of ?th roots of

unity in F2C . �

Remark 5.4. For Mersenne primes ? = 2C − 1, there are polynomials over F2 with support size 3 that

meet the conditions of Proposition 4.1. Indeed, because in this case any ?th root of unity Z in F2C is a

generator of F∗
2C

and because 1 + Z ≠ 0, there exists an B such that %(G) = 1 + G + GB satisfies %(1) = 1

and %(Z) = 0.

6. Proof of Theorem 1.2

Let ?, C, %(G) be as in Lemma 5.1, so that % has support size : ≤ C. Let i = i(%). Because % is

irreducible, %(1) ≠ 0 and so it satisfies the conditions of Proposition 4.1. Fix Y ∈ (0, 1
2
) and " ∈ (0,∞).

Suppose that Proposition 1.1 held with ‖g‖!∞ ≤ Y, which is to say that

Δ i ⊆ ConvC
(
" · {polynomial phases of degree ≤ : − 1}

)
+ YDF=? .

Then, because there are at most ?$ (=:−1) polynomial phase functions of degree at most : − 1 (one for

each =-variate polynomial of degree at most : − 1), this implies that

log2 N(Δ i, Y, ") ≪? =
:−1 ≪? =

C−1. (7)

At the same time, Proposition 4.1, Lemma 3.1 and Property (3) give

log2 N(Δ i, Y, ") ≫?,Y," =C .

This contradicts (7) for large = and finishes the proof of Theorem 1.2.

Appendix A. On the possible arithmetic patterns

Here we show that our construction cannot give examples for dual functions corresponding to arithmetic

progressions. Let ?, A be primes and C = ord? (A). Suppose that for some :, B ∈ N, there is a polynomial

%(G) ∈ FA [G] of the form

%(G) =
:−1∑

]=0

2 ]G
]B

such that %(1) ≠ 0 and %(G) has a root in F∗
A C

of order ?. Then, the functions defined as in (5) and (6)

belong to the set of dual functions corresponding to the progression i = (0, B, 2B, . . . , (: − 1)B) and

generate in a hypercube of dimension at least =C . We show that : ≥ C + 1, which means that this does

not contradict an !∞-version of Proposition 1.1.

First note that B cannot be a multiple of ?,because for any W ∈ F∗
A C

of order ? we would have WB = 1,

which implies that %(W) = %(1) ≠ 0. It follows that for any such W, the element WB also has order ? and

does not equal 1. Define the polynomial

&(G) =
:−1∑

]=0

2 ]G
] ∈ FA [G] .
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Then, this polynomial has a root U in F∗
A C

of order ? (where U = WB), satisfies &(1) = %(1) ≠ 0 and has

degree : − 1. We claim that : − 1 ≥ ord? (A). If& is reducible, then it has a factor of degree strictly less

than : − 1 that has the same properties. So assume that & is irreducible. Let  = FA (U) be the simple

algebraic extension of FA obtained by adjoining U. Then  is isomorphic to FA :−1 . Because U lies in

FA :−1 and has order ?, it follows that ? | A:−1 − 1. But this implies that : − 1 ≥ ord? (A) = C.
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