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EXTENDING ALGEBRAS TO MODEL CONGRUENCE 
SCHEMES 

J. BERMAN, G. GRATZER AND C. R. PLATT 

1. Introduction. This paper is concerned with the description of 
principal congruence relations. Given elements a and b of a universal 
algebra 21, let 0(a, b) denote the smallest congruence relation on % 
containing the pair (a, b). One of the earliest characterizations of 8(a, b) 
is Mal'cev's well-known result [5, Theorem 1.10.3], which says that 
c = d(0(a, b) ) if and only if there exists a sequence z0, z]9. . . , zn of 
elements of 31 and a sequence/], f2, . . . ,fn of unary algebraic functions 
such that c = z0, d = zn, and for each i = 1, . . . , n, 

{fM),f,(b)} = {*/.*,-1>-

Although this describes 0(a, b) in terms of a set of unary algebraic 
functions, it is not possible to predict the number or complexity of the 
unary functions used independently of the choice of a, b, c and d. Several 
recent papers ( [1], [2], [3], [4], [6] ) investigate classes of algebras in which 
principal congruences are simpler. 

By way of illustration, consider an algebra 3t such that c = d(8(a, b) ) in 
% if and only if 

c = (a + a) + u, (b + b) + u = v + b, v + a = d 

for some w, v e A. This can be described by two polynomials, 

p, = (x + x) + yj and p2 = y2 + x, 

which produce the pairs of elements 

( (a + a) + u, (b + b) + u) and <v + a, v + b) 

together with a "switching sequence" to signify that the second pair is to 
be inverted (and soc = p}(a, w), px(b, u) = p2(b, v), p2(a, v) = d). The 
general definition, taken from [2], involves an arbitrary sequence of 
polynomial symbols and a switching sequence. 

Definition 1.1. A congruence scheme 2 consists of a sequence of pairs 
(pj, / ] > , . . . , (p„, tn) where, for each /, p- is a polynomial symbol and tt is 0 
or 1. Furthermore, any two of the pz are assumed to have exactly one 
variable, x0, in common. 
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If all the polynomials occurring in 2 are defined in some algebra 31 (i.e., 
the type of 31 contains all the operation symbols occurring in 2), then we 
say that 31 admits 2 , with a similar definition for classes of algebras. 

Definition 1.2. If an algebra 31 admits 2 then we define a 4-ary relation 
2^ on A as follows: Let x0, x l 9 . . . , xk be all the variables occurring in all 
the pz of 2 . Then we may write pz(x0,

 xi>--->x&) (even though not 
all variables occur explicitly). For a0, ax, b0, bx e A, we define ^(%, ax, 
b0, bx) to hold if and only if there exist elements cx, c2 , . . . , ck e A such 
that 

(i) *o = P\(%> cX9..., ck\ 
(ii) ^i = Pn(

a\-tn> cl9...,ck), 
(hi) for i = 1, 2 , . . . , n — 1, 

# ( f l i - v c l 9 . . . , c*) = Pi+i(ati+i, cx, . . . , c*). 

We will say in this case that 2%(OQ, ax, b0, bx) holds via cx, . . . , ck. 

Clearly 22((a, ft, c, J ) implies that 

c = d(0(u, ft) ). 

Mal'cev's Lemma states that, conversely, if c == d(6(a, b) ) then 2^(#, ft, c, 
<i) holds for some congruence scheme 2 . If 2 is a congruence scheme and 
31 a non-trivial algebra such that for all a, ft, c, d e A, 

2 a = { (a, b9c9d)\c EE </(0(<i, ft) ) }, 

then we say 31 represents 2 . Let 2* denote the class of all algebras which 
represent 2 . 

In [2] the question of which congruence schemes can be represented was 
addressed. Because of certain technical difficulties, it is necessary to 
restrict our discussion to schemes 2 containing no constant symbols. Then 
the following is proved in [2]. 

REPRESENTATION THEOREM FOR CONGRUENCE SCHEMES. 7/" 2 contains 

no constants, then the following three conditions are equivalent: 

(i) no p- occurring in 2 is unary; 
(ii) 2* is nonempty; 

(hi) K Q 2* for some nontrivial equational class K. 

In this paper we present two more results concerning congruence 
schemes and the algebras which can represent them. The first result 
considers whether an algebra 31 can be "enlarged" so as to represent a 
scheme 2. 

EMBEDDING THEOREM. Let 31 be an algebra of a type r without constants 
and having at least one non-unary operation. Then the following are 
equivalent: 
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(i) Every unary polynomial in 31 is one-to-one. 
(ii) For every representable congruence scheme 2 , of type contained in 

T, there is an extension 93 0^31 which represents 2 . 
(iii) For every representable congruence scheme 2 , of type contained in r, 

there is an equational class K c 2* such that the type ofK contains 
r and 31 is a subalgebra of the r-reduct of some 23 e K. 

To illustrate the motivation for (i), consider the example of an algebra 3( 
having a unary polynomial q and a binary polynomial p. Let 2 be the 
congruence scheme (p(q(x0), Xj), 0). If 31 were to represent 2, then for any 
a, b e A, since a = b(0(a, b)), there would exist u e A with 

a = p{q(a), u) and b = p(q(b), u). 

Therefore, if q(a) = q(b), then a = b. 
The second result of this paper is the construction of a "testing algebra" 

for the quasi-ordering Qa introduced in [2] (see Section 6 for a 
definition). 

EXISTENCE THEOREM FOR TESTING ALGEBRAS. Let 2 be a congruence 
scheme containing no constants. Then there exists an algebra 3t(2) and a, b, 
c, d elements of%(2) with the following properties: 

(i) 31(2) e 2*; 
(ii) c = d(0(a, b) ) in 31(2); 

(iii) For any congruence scheme 12 of type contained in the type of 2, the 
relation 2* Q Œ* holds if and only ifti(a, b, c, d) is in 31(2). 

The reason for the name "testing algebra" should be clear from (iii). By 
definition, to verify 2* Q Œ* we have to establish that for all algebras 31 in 
2* and for all x, y, w, v e A with u = v(0(x, y)), the relation £2(x, y, w, v) 
holds. This theorem reduces the consideration of all 3t e 2* to just 
one algebra, 3t(2), and within 3T(2) the consideration of all quadruples 
x, y9 w, v is reduced to one: a, b, c, d. 

The paper is organized as follows. In Section 2 we clarify the notation 
and prove a number of technical lemmas, mostly about unary polynom­
ials. In Section 3 we introduce the bridge construction which is used as an 
inductive step in the proof of the embedding theorem in Section 4. In 
Section 5 we show how to construct testing algebras, and in Section 6 we 
conclude with some examples and open problems. 

2. Roots. In this section and the next, we work in a fixed similarity type 
T with no constants. Let P(n) denote the set of all «-ary polynomial 
symbols. We let f and g denote fundamental operation symbols, while p, q, 
r, s, t will denote arbitrary members of P(«). If 31 is a (partial) algebra, 
then p e P(«) induces in 31 a polynomial, p , which is a (partial) function 
from An to A. We will usually write/? instead of p3*, and thus/7(xl5 . . . , xn) 
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instead of p \ x l 9 . . . ,xn). Of particular interest will be the algebra of 
polynomial symbols ^(n), defined on the set P(n), where, if f is a /c-ary 
operation symbol and q b q2,. . . , q^ G P(«), then 

/ ( q i . • • - <1*) = f(<li> • • • » 0*) i n *(*)• 

Consequently, if p is an «-ary polynomial symbol, then the polynomial p in 
?$(n) is described inductively by 

p(ql9...9qn) = q, 

if p = xz and 

/>(qi> • • • , q„) = f(/M(qi, • • - q*)> • • • > A(<II> • • • > q J ) 

if P = *(Pl PA:)-
With p G P(«) we associate a partial algebra (£(p) (the component 

partial algebra of p) as follows: If p = xi9 then 

C(p) = {P} 

and if p = f(p,, . . . , p^), then 

C(p) = {p} U C(P l) U . . . U C(pk). 

Thus C(p) G P(rt) and (£(p) has the natural partial algebra structure 
as a relative subalgebra of ^(n). Members of C(p) are called compo­
nents of p. 

LEMMA 2.1. Ifp9tl9...9tn G P(ra), q G P(/?), p = q(t1? . . . , tn), and 
s G C(p), //zerc J/zere ^1/5/5 a j , such that either s G C(t ) or t G C(s) 
/zo/<&. Moreover, p cannot be a proper component of itself, that is, if 
P = / (P i , • • •, P*), ' ^ P £ Cfoiïfor any i = 1 ,2 , . . . , / : . 

Proof We use induction on the rank of p. If p = xz, then q = x , say, 
with t = xz-. The only choice for s is xt and the conclusion follows. If 

p = / ( P ! , . . . , p * ) = q(th...,tn), 

then q = f(qh . . . , qk) for some q]9 . . . , q^ G P(n). If s = p, then 
tj G C(p) for ally. If s ¥= p, then 

s G C(q/(t1, . . . , tn) ) for some /'. 

Thus, the induction hypothesis yields s G C(t ) or t G C(S) for some j . An 
equally straightforward argument proves the final statement of the 
lemma. 

Definition 2.2. For a partial algebra Sï, r G P(l), and w, v G ,4, if 
r(w) = v, then u is an x-th root of v in St. 

Definition 2.3. A partial algebra St is said to satisfy the Unique Root 
Condition (URC) if and only if for every r G P(l), each v G A has at most 
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one r-th root in 2t, that is, all unary polynomials on 21 are one-to-one. 

Definition 2.4. A subset X of a partial algebra 2t is called prime if and 
only if w,,. . . , uk e A and/(w1 ? . . . , uk) e Ximply that u{,. . . , uk e X 
for any partial operation/of 2t. 

The next result easily follows by induction. 

LEMMA 2.5. If X is prime in %, q e P(w), w1? . . . , un e A, q(ux, . . . , w„) 
G X, and ifxj is a variable explicitly occurring in q, (that is, x e C(q) ), 
then U: G X 

It will be necessary at certain stages to deal with an algebra rather than 
with a partial algebra. For a partial algebra 93, let 3(93) denote the algebra 
completely freely generated by 93. It is known ( [5], Theorem 14.4 and 
Corollary 2 to Theorem 28.1) that 3(93) is characterized up to 
isomorphism by the following properties: 

(Fl) B generates $(93); 
(F2) 93 is a relative subalgebra of 5(93); 
(F3) B is prime in g(93); 
(F4) if t / j , . . . , uh v l s . . . , vm e F(93) and f, g are operation symbols 

with 

f(uu...,uk) = g ( v b . . . , v m ) € 5, 

then f = g, h = m and w, = vz for / = 1, 2 , . . . , k. 

LEMMA 2.6. If a partial algebra 93 satisfies (URC), //ze« so does g(93). 

Proo/. Let r <E P(l) and let a, 6 e F(93) with r(a) = r(6). We prove 
a = b by induction on the rank of r. If r is a variable, then the conclusion 
is evident. Suppose that 

r = f ( r 1 , . . . , r i k ) , with r, e P(l). 

If r(a) G 5, then (F3) and Lemma 2.5 give a, b ^ B. Hence (F2) and 
(URC) for 93 imply a = b. If r(a) £ B, then (F4) implies that rt(a) = rt(b) 
for / = 1, 2 , . . . , k, so « = £ by the induction hypothesis. 

Definition 2.7. Let r G P(l); we call r irreducible if and only if 
p, q G P(l) and r = p(q) imply that r = q or r = p. 

Clearly, every unary polynomial can be built up from the irreducible 
ones. For example, if 

r = ((x, + x,) + (x, + X l ) ) + (x, + x,), 

then r = p(q) where 

q = X! H- Xj a n d p = (xj + Xj) + Xj. 

In this case, r is not irreducible, but p and q are. 
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Let r = p(q) and b G A; let b be a p-th root of c in 21 and let a be a q-th 
root of b in 31. Clearly, a is an r-th root of c in 91. This observation 
motivates the hypothesis of irreducibility in the next lemma and justifies 
its corollary. 

LEMMA 2.8. Let 21 be a partial algebra satisfying (URC), let r G P(l) be 
irreducible, and let a G A. Then there is a partial algebra W extending 21 
and satisfying (URC) such that a has an r-th root in 21'. 

Proof Assume that a has no r-th root in 21. Thus r is not a variable, 
so 

r = f ( r l 5 . . . , r ^ where r, G P(l). 

Let 93 be the partial algebra that is the disjoint union of 2Ï and C(r) — {r}. 
Then f^(rl5 . . . , r^) is undefined. Let 2f be the partial algebra obtained 
from 93 by adding the definition 

f*'(r„ ...,rk) = a. 

Clearly, Xj G C(r) is an r-th root of a in 2f ; so it remains to show that 91' 
satisfies (URC). Obviously, 93 satisfies (URC), so if w, v G B, t G P(l), 
t r ( w ) = t r (v ) , and t®(w) and t^(v) are defined, then u = v. Thus the 
verification of (URC) for 91' involves examination of when iP(u) is 
undefined. The following claim narrows this examination. 

Claim. If u G B, t G P(l), tw(u) is defined, and t"(«) is undefined, then 
u = x b t% (u) G A, and t = q(r) for some q G P(l). 

To see this, first note that t cannot be a variable, so let 

t = g ( t „ . . . , t j w i t h t l 5 . . . , t m G P(l). 

There are two possibilities: 
Case 1. t- (w) is defined for all 7 = 1, 2, . . . , m. Since t (u) is un­

defined, we must have a = t2* (w) G A So g = f and t (w) = r . Since r 
is irreducible, it follows that u = xl5 so t = r„ hence t = r. 

9Q . l J J ÇVf' 

Case 2. t (w) is undefined for some j . Then, since t (u) is defined, 
Case 1 and an induction on the rank of t- give u = x l5 tj(u) G ^4, and 
ty = ^y(r) for some qy G P(l). NOW observe that in 93 no operation is 
defined whose arguments include elements of both A and B — A, hence 

tf'(u) G A for al l / = 1, 2 , . . . , m, 

and none of the t, (u) is defined. Thus, the induction hypothesis can be 
applied again to give t- = qt(r) with q, G P(l) for all /*. So t = q(r) 
where 

q = g ( q 1 , . . . , q m ) . 

Clearly, t (u) G A and the proof of the claim is complete. 
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Thus, if t r(w) = ta '(v) and neither t*(u) nor t \ ) is defined, then 
u = v = Xj. Finally, suppose that f^w) is undefined and that t^(v) is 
defined. Then, by the Claim, « = x1 }t = q(r), and t®(u) e ^4. Since t (v) 
is defined, v G A. Thus 

, V ( v ) ) = t»<v) = t* '<v)- t» ' ( , i ) 

- , V ( x , ) ) - q r ( « ) = q"(«)-
But 91 has (URC), soa = r^v) . This contradicts the assumption that a has 
no r-th root in 9t, completing the proof of the lemma. 

By applying Lemmas 2.6 and 2.8 alternately, repeating this transfinitely, 
and using direct limit constructions when necessary, one obtains an 
algebra that proves the next result. 

COROLLARY 2.9. If 91 is a partial algebra satisfying (URC), then 31 can be 
embedded into an algebra 31' satisfying (URC) such that for every r G. P(l), 
each a e A' has an r-th root in 31'. 

For the remainder of this section, 91 is a fixed algebra and B is any set 
containing A. The partial algebra 93 on the set B will have only opera-
tions defined as on 31, (that is, f = f for any operation symbol f). We 
shall prove some technical results for g = S(93). 

Note that properties (F2), (F3), and (F4) hold for 31 relative to g(93): 
(F2') 31 is a relative subalgebra to $(93); 
(F3') A is prime in g(93); 
(F4') If w1?. . . , uk, v l 9 . . . , vm e F(93), f and g are operation symbols, 

and 

f(uh. . . , uk) = g(v l 9 . . . ,vm) £ A, 

then f = g, k = m, and ut = v- for / = 1 , 2 , . . . , k. 

Definition 2.10. For any u G. F = F(93), we define p(u), the ra/i/c of w, 
and the set CF(w), the F-components of w, inductively as follows: 

(i) if w e 5 , then p(u) = 0 and CF(u) = {w}; 
(ii) if w = / ( « ] , . . . , uk) £ B, then 

p(u) = 1 + 2(p( t t | .) |i = 1,2, . . . ,*:) 

and 

CF(«) = {"} U U ( C ^ ) |i = 1, 2, . . . 9k). 

In view of (F4'), it is clear that p and CF are well defined. Observe that 
u e CF(v) implies that p(w) = p(v). Therefore we have immediately: 

Remark 2.11. If w G F — A, then w is not a proper F-component of 
itself, that is, if u = f(vl9. . . ,vk) <£ A, then u & CF(vt). 
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LEMMA 2.12. Ifp G P(«), ul9. . . 9un G B9 u = p(ul9 . . . , un) in S(93), 
and v G CF(u)9 then there exists a q G C(p) SWC/Î //?«/ 

v = q(u]9. . . 9 un). 

Proof. If v = u9 then let q = p. If v =£ w, then u £ B9 so there exist an 
operation symbol f and p l5 . . . , p^ G P(«) for which 

p = f(p l s . . . ,Pfc). 

So 

v G CF{pt(uX9 .. . 9un)) for some /. 

By induction it follows that 

v = g(wb . . . , un) for some q G C(pz) Q C(p), 

completing the proof. 

It is clear that property (F4) is false if f or g are replaced by arbitrary 
polynomial symbols, but we do have the following very special case which 
will be needed in Section 3. 

LEMMA 2.13. Let a09 û 1 E i l , z 1 , . . . , z W I G B - ^ , p , q G P(m + 1) and 
P e C(q). / / 

p(a0, zl9..., zm) = q(aX9 zx, . . . , zm) £ A9 

then p = q. 

Proof. If p is a variable, then we may assume 

p(a0, z]9 . . . , zm) = Zj £ A for some j . 

But then q is also a variable so p = q. 
Thus we may assume that p = f(pl5 . . . , p^) and therefore, by (F4'), 

q = f(ql5 . . . , q^) for some p/5 q/ G P(m + 1), and 

/?zO0, zl9 . . . , zm) = q{(aX9 zl9 . . . , zm) for / = 1, 2, . . . , k. 

Suppose that p ^ q. The hypothesis p G C(q) then gives p G C(qy) for 
somey. So py G C(q7). If qj(a]9 z]9 . . ., zm) G yl, then by Lemma 2.5 and 
(F3'), qy and therefore p cannot explicitly contain any of the variables 
x , , . . . , xw. But this would imply that 

P(OQ9 z l 9 . . . , z m ) G ,4, 

contrary to hypothesis. Thus, 

PjiOQ, Zl9 . . . , Z m ) = ^.(f l , , Z l 9 . . . , Z m ) « ^ , 

so by the induction hypothesis p = q. But then 

p G C(q7) = C(p-), 
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violating Lemma 2.1. This contradiction proves p = q. 

We shall need one more fact about g(33). 

LEMMA 2.14. Let p e P(m), v]9..., vm e B9 V = p(v]9... 9vm) £ A, 
u G. F9 r G P(l), tfflJ r(w) = v. 77ie« there exist n > 0 and polynomial 
symbols q e P(w) tffld t1? . . . , tn e P(m) swc/z that 

( i)p = tf^,...,^); 
(ii) ^-(v!, . . . , vm) = w/or a//7 = 1, 2, . . . , n\ 

(iii) r = q(xl9 xl9 . . . ,Xj). 

Proo/l If r is a variable, then let « = 1, q = xl5 and tj = p. Suppose 

r = f(r1 , . . . , r j k) ,r I . G P(l), , = 1 , 2 , . . . , * . 

Since v £ v4, by (F4'), 

p = f(pb . . . , p^) for some pz e P(ra) 

with 

Since 31 is a subalgebra of g, v £ A implies u £ A, so ^-(w) € A by (F3') 
and Lemma 2.5. Thus, by induction, there exist nt > 0, qz e P(«z), and 
tj G P(m) such that 

p, = qt(t\9 . . . , t^), ^(v l5 . . . , v j = u, and 

r,- = 4/(xi> x b . . . , x , ) 

for all / = 1, 2, . . . , k and j = 1, 2, . . . , «z. Let xj, / = 1, 2 , . . . , k9 

j = 1, 2 , . . . , nt be distinct variable symbols. Let us put n = nx + n2 + 
. . . 4- nk and let t b t2, . . . , t„ denote the sequence tj, 4 , . . . , t[, . . . , 
tn ; define q by 

q = f ( ^ 1 ( x l , . . . , x i i ) , . . . , ^ ( x f , . . . , x ^ ) ) . 

Then properties (i), (ii), (iii) of the lemma are evident. 

3. Bridges. Let p e P(m 4- 1) be a polynomial symbol in which the 
variables x0, x l 5 . . . , xm explicitly occur. A partial algebra 31 with elements 
tfo, a]9 60, &j is said to contain a p-bridge from (a0, ax) to (b0, bx) if and 
only if there exist elements c]9 . . . , cm of A such that 

p(ai9 cl9. . . , cm) = bt for i = 0, 1. 

Let 31 be an algebra and let 2 be the congruence scheme (p1? tx)9 .. ., 
(pw, /„). Then 51 e H* is equivalent to the following condition: 
c = d(0(#, Z>) ) if and only if there exists a sequence 

c = z0, zX9...9zn = d 
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of elements of 31 such that there is a/^-bridge from (a, b) to (zt_x, zt) 
(if tl = 0) or (zi9 zt_x) (if tt = 1) for i = 1, . . . , «. 

Thus to construct our extension 93 of an algebra 31 satisfying S G S* it 
is sufficient to construct an extension in which some specified bridges 
exist. Hence the general problem of representing 2 is reduced to 
constructing bridges. 

The purpose of this section is to prove the next theorem which shows 
that an extension can be built for a single bridge. 

THEOREM 3.1. Let % be a partial algebra satisfying the (URC). Let 
p G P(ra + 1 ) explicitly contain the variables x0, x1? . . . , xm, where m > 0. 
Let a0, ax, b0, bx G A such that if a^ = ax, then b0 = bx. Then there exists 
an extension W of % satisfying the (URC) and containing a p-bridge from 

(ao><*\) t0 (Kb\)-
By Corollary 2.9, we may assume that 31 is a (full) algebra satisfying the 

(URC) and, for any a e A and r e P(l), a has an r-th root in 31. These 
assumptions concerning 31 and the hypotheses of Theorem 3.1 will be in 
effect for the remainder of this section. 

Let { z j , . . . , zm) be an m-element set disjoint from A and let 

B = A U { z l 5 . . . , z m } . 

Let g = g(93) as in Section 2. 

LEMMA 3.2. Let q = q(x0, x1? . . . , xm) e P(m + 1). Ifx0 occurs in q and 

if 

q\a0, z„ . . . , zm) = qs(fl!, zl9 . . . , zm), 

then #0 = ax. 

Proof If q e P(l), then a0 = ax since 3t satisfies the (URC). Thus we 
may assume that q = f(ql5 . . . , q^) for some operation symbol f and some 
q, G P(m + 1), / = 1, 2, . . . , & , m > 0. Moreover, for some j > 0, x-
occurs in q. Then by (F3') and Lemma 2.5, 

q(aQ9 z „ . . . , z j £ ^ . 

Then by (F4'), 

4z(fl0, zl5 . . . , zm) = ^ .(A,, z l 5 . . . , zw) for each /. 

Since x0 occurs in q, it also occurs in some qy, so by induction hypothesis 
a0 = ax. 

LEMMA 3.3. Let r <= P(l), U <E F, and r(u) = p(a0, z , , . . . , zm). If 

u e C F ( / ? ( a „ z „ . . . , z J ) , 

then a0 = ax. 
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Proof. Let Z = [zl9...9zm] be the sub algebra generated by 
{zb . . . , zm) in g. We claim that Z is prime in g. Indeed, let 

uh ... 9uk G JF and /(w^ . . . , uk) G Z. 

There must exist q G P(m) such that 

q(zl9...9zm) = f{uh . . . , uk). 

If q were a variable then say 

f(ul9...9Uk) = Zj. 

By (F3), ul9. . . , uk G 5, but then 

l\uX9...9Uk) = Zj 

contradicting our definition of 93. Thus 

q = i(ql9..9qk) 

for some q, G P(ra) such that 

qi(zl9...9zJ = ii,. 

Hence ut G Z. This proves our claim. 
Next, observe that u G A implies that 

p(a09zh...9zm) G A, 

which by Lemma 2.5 and (F3') implies that p G P(l), contrary to 
the assumption that x0, xl9. . . , xm explicitly occur in p, m > 0. Thus 
u & A. 

By Lemma 2.12, u G CF(p(al9 zl9.. . , zm) ) implies that 

u = q(al9 z l 5 . . . , zm) for some q G C(p). 

Then x0 must occur in q, for otherwise u and therefore p(a0, zl9 . . . , zm) 
would be in Z, which by Lemma 2.5 and the fact that Z is prime in g, 
would contradict our assumption that x0 appears in p. Thus by Lemma 
2.14 there exist n > 0, q' G P(n) and t1?. . . , tn G P(m + 1) such that 

p = q\tX9...9tn) and 

tj(a09 zl9. . . , zm) = u îorj = 1, 2 , . . . , w. 

By Lemma 2.1, for some 7, either t G C(q) or q G C(t). In any case, 
Lemma 2.13 then implies that t- = q. Since x0 occurs in q, Lemma 3.2 
implies that a0 = ax. This completes the proof. 

For / = 0, 1, let wt denote p(ai9 z1?. . . , zm). In view of Lemma 2.14, 
each wt has only finitely many roots in g, so we may choose minimal roots, 
that is, choose ut G F9 r- G P(l) such that r-(w-) = wi9 and if q G P(l), 
v G F9 and g(v) = ui9 then v= ut. If it happens that w0 = w]9 then we 
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choose r0 = rj and u0 = ux. It can be shown that, in fact, wt has a unique 
minimal root, so the choice is unnecessary. However, this stronger result 
will not be needed. 

Let 

B* = A U CF(u0) U CF(ux) 

and let 39* be the corresponding relative sub algebra of g. By hypothesis, 
every a e A has an r-th root for any r e P(l). Let ct be the r--th root of 
bt in 31, i = 0, 1. If u0 = u]9 then a0 = ax by Lemma 3.2, so w0 = wx and 
r0 = rj. Also, if a0 = aX9 then b0 = b]9 and hence c0 = cx. 

Define the equivalence relation 0 on B* whose nontrivial equivalence 
classes are {c0, u0} and {c]9 ux} provided that c0 ¥= c]9 and {c0, w0, ux) 
otherwise. It follows from the next lemma that 0 is a congruence relation 
o f » * . 

LEMMA 3.4. No operation on 99* is defined on u0 or ux, that is, if 
f(vx, . . . 9vk) is defined in 99*, then Vj ¥= ui9forj = 1, 2, . . . , k, i = 0, 1. 

Proof Suppose, for example, that 

Vj = u0 and f(v]9 . . . , vk) = v e 5*. 

Since w, £ ^4, (F3') implies v £ ^4, so 

v G Cp(w0) or v G QrCwj). 

If v G CF(ux), then w0 G CF(WX), SO Lemma 3.3 implies that a0 = ax. Thus 
v G CF(u0) in any case. But this contradicts Remark 2.11. The case v- = ux 

is similar. 

COROLLARY 3.5. The equivalence relation 0 /s a congruence relation 
on 99*. 

Thus, we can form the partial algebra 99*/0. It is immediately clear that 
% is a subalgebra of 99*/0 and that 

p(ai9zl9...9zm) = rf(ct) = bt 

in 99*/0 for i = 0, 1. We next show that 93*/6 satisfies the (URC). 
Note that for an arbitrary congruence relation ^ on some partial 

algebra 35, if U e 35/^ , and if r e P(l), then r(U) may be defined while 
r (u) is not defined in 35 for any u ^ U. Fortunately, this is not the case 
for S * and 0 

LEMMA 3.6. If r <E P(l), t/ G 99*/0 a/iJ ifr(U) is defined in 99*/0, then 
there exists a u e U such that r(u) is defined in 99*. 

Proof If there exists aw e U D A9 then r(w) is defined since 3t is a 
subalgebra of 99*. Suppose then that U n A = &9 and hence U = {u} for 
some u e i?* — A. We argue inductively. If r = x b then the lemma is 
trivial, so let 
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r = f ( r l 5 . . . , r , ) , rz G P(l). 

Then rt(U) exists in 93*/0 for each /' = 1, 2 , . . . , &, and there are elements 
dt G rt(U) such t h a t / ( d l 5 . . . , <4) is defined in 99*. By induction, rt(u) is 
defined in 93*. But 0 is a congruence relation so 

rt(U) = [r,(W)]0, 

so 

dt = ^(wX©), for i = 1, 2 , . . . , k. 

Now if r-(w) = ^ for all /, then 

r(u)=f(dh...,dk) 

and we are finished. If rAu) ¥= dj for some7, then 

[rj(u)]G = K c J 

for some y = 1 , 2 , . . . , / : and some i = 0, 1. Since u £ A, ry(w) £ A, so 
r7(w) = ut. By the minimality of ui9 this gives w = wz, contrary to the 
hypothesis U = {u}. 

COROLLARY 3.7. 93*/0 satisfies (URC). 

Proo/. Let [ / , F G 93*/0 with r(t/) = r(V) for some r G P(l). Thus by 
Lemma 3.6, there exist w G £/ and v G V such that 

r(n) = r(v)(0) in 93*. 

If r(u) = r(v), then u = v since 93* satisfies (URC) and so U = V. If 
r(u) ¥* r(v), then 

{r(w), r(v) } = {ut, ct} for some / = 0, 1. 

Then, for instance, r(u) = w-, which implies that u = ut by the minimality 
of ut. Thus r = Xj, so again U = V. 

We can now give the proof of Theorem 3.1. Clearly, 93*/0 contains a 
p-bridge from (a0, ax) to (bQ, bx). Moreover, 93*/0 satisfies (URC) by 
Corollary 3.7. Let W = g(93*/0). By Lemma 2.6, W satisfies (URC). 
Thus, 91' satisfies the requirements of Theorem 3.1. 

4. The embedding theorem. Let T be a fixed similarity type and let 
(pz|/* G / ) be a listing of P(co), the set of all polynomial symbols in the 
variables x0, x1? x2 , . . . . Let 9Ï0 = % be an algebra of type r satisfying 
(URC). Form 9lY+1 from 21Y by direct limits formed by iterating the 
construction of Theorem 3.1 for each p/9 / G /, and each a0, ax, b0, bx in Ay 

for which a0 = ax implies that b0 = bx. Thus, in 2ty+i there is a p-bridge 
from (a0, ax) to (ft0, bx) for every polynomial symbol p and all such 
fl0, 0l9 Z?0, /?! in ^4y. Letting 
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» = U(3ty|y G co), 

we have the following: 

THEOREM 4.1. Let r be any similarity type containing no constants and let 
3Ï be an algebra of type r satisfying the (URC). Then there is a simple 
algebra 93 of type r containing % as a subalgebra, such that 93 has a p-bridge 
from (aQ, ax) to (b0, bx) for any polynomial symbol p and all a0, ax, b0, bx in 
B for which a0 = ax implies that b0 = bx. 

COROLLARY 4.2. Let r be a similarity type containing no constants and let 
31 be an algebra of type r satisfying (URC). Then there is a simple algebra 93 
of type T containing 31 as a subalgebra, such that 93 G 2* for any congruence 
scheme 2 of type contained in T. 

If 2 is a congruence scheme and if there exists a simple algebra S G 2*, 
then there is a non trivial equational class K Q 2* such that the type of 93 
is a reduct of the type of K and 93 is embeddable in the T-reduct of some 
algebra in K (see [2], Theorem 8). We now apply this to Corollary 4.2 to 
give most of the Embedding Theorem. 

THEOREM 4.3. Let r be a similarity type containing no constants. Let 31 be 
any algebra of type r satisfying (URC) and let 2 be any congruence scheme 
such that the type of 2 is contained in T. Then there exists an equational class 
K such that K c 2* and 3Ï is isomorphic to a subalgebra of some T-reduct of 
an algebra in K. 

As observed in [2], the equational class K enjoys a number of properties: 
K is congruence distributive, semisimple, and has the Congruence 
Extension Property. Moreover, if C is any family of congruence schemes 
whose types are contained in r, then the equational class K can be 
constructed so that K ç 2* for all 2 G C. 

Now we are ready to prove the Embedding Theorem. By Theorem 4.3, 
(i) implies (iii). 

Let 93T be the T-reduct of the algebra 93 whose existence is claimed by 
(iii); then 93 T satisfies (ii), so (iii) implies (ii). 

It remains to show that (ii) implies (i). By our assumption on the type 
T, there is an n-ary operation symbol f(xl5 . . . , xn) with n > 1. Let 
r(x) G P(l) and consider the congruence scheme 2 consisting of (f(r(x), 

y2. • • •. y„)> o>. 
To verify (URC) for an algebra % satisfying (ii), let a, b G A, 

r(a) = r(b). Thus by (ii), 31 has an extension S satisfying S G 2*. 
Since a = b(&(a, b) ) in 23, there exist u2,.. . , un G B such that 

a = f(r(a\ u2,. . . , un) and b = f(r(b), w2, . . . , un\ 

By assumption r(a) = r(b), hence a = b, verifying (URC) in 3t. This 
completes the proof of the Embedding Theorem. 
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5. A testing algebra. We start with a definition. 

Definition 5.1. Let 2 be a congruence scheme of type T. Let 31 be an 
algebra of type T and a, b, c, d e A. The algebra 31 is said to be (a, b, c, d) 
2-free if and only if for any algebra 93 of type r satisfying 33 e 2* and for 
any a~,b,~c,d e B with 2(Â, b, c, d) in 93, there exists a homomorphism 
h'M -> 33 such that 

A (a) = â, / Ï (6 ) = £, A(c) = c, and h(d) = d. 

We note that if 3t is of type r and 31 is (a, b, c, d) 2-free, and if 93 is any 
algebra, not necessarily of type r, with 93 e 2* and for which 2(#, &, c, d) 
for some a, b,~c, d e 1?, then there is a homomorphism h of 31 to the 
(T PI (type of 93) )-reduct of 93 such that 

h(a) = a, h(b) = b, h(c) = c, and h(d) = d 

In this section we shall prove the following. 

THEOREM 5.2. For any congruence scheme 2 of type r containing no 
constants there exists an algebra 3Ï(2) and elements a, b, c, d e 31(2) such 
that the following three conditions hold: 

(i) 31(2) e 2* 
(ii) c = d(Q(a, b) ); 

(iii) 91(2) is (a, b, c, d) 2-free. 

We call 91(2) a testing algebra for 2 . It tests several things. First of all, a 
scheme 2 has a non tri vial representation if and only if 31(2) is nontrivial. 
Secondly, if 93 e 2* then for any c = d(@(â, b) ) in 93, there must be a 
homomorphism h from 31(2) to the (r n (type of 93) )-reduct of 93, for 
which 

h(a) = a, h(b) = b, h(c) = c, and h(d) = d. 

The validity of these two tests involving 31(2) follow immediately from the 
definition. A third use of 31(2) is contained in the next lemma. 

LEMMA 5.3. Let 3t be any algebra satisfying the three conditions of 
Theorem 5.2 for some a, b, c, d e A. Let Q, be any congruence scheme. Then 
2* c £2* if and only ifÇl%(a, b, c, d). 

Proof. One direction is immediate, so assume that Q%(a9 b, c, d) holds. 
We wish to show that if 93 is any algebra, and if 93 e 2* then 93 G 12*. 
Let 

c = J(9(Â, b) ) in 93. 

Then 2«g(â, b, c, d). Let h be the homomorphism of 3Ï into the (r Pi (type 
of 93) )-reduct of 93, where r is the type of 31. Since Q%(a, b, c, d), 
therefore, 
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Q^(h(a)9h(b)9h(c)9h(d)) 

holds. Since 

h(a) = a, h(b) = b, h(c) = c, h(d) = d, 

the proof is complete. 

The proof of Theorem 5.2 will proceed by first constructing an 
(a, b9 c9 d) 2-free algebra and then by extending it so as to represent 2 still 
preserving freeness. 

LEMMA 5.4. Let 2 be any congruence scheme. Then there exists an 
algebra 21 with a, b, c9 d e A, such that 21 is (a9 b, c, d) L-free. Moreover, 
2^(#, b, c9 d) holds. 

Proof. Let 2 be as described in Definitions 1.1 and 1.2. Let T be the type 
of 2 and let K(T) be the class of all algebras of type T. Let g be the free 
algebra in K(T) on free generators 

{a09 al9b0, bx) U {X|.|0 S i S k). 

Define the congruence relation 0 on g by 

0 = 0(bO9 Pl(ah, xl9...9xk))V 0(bl9 pn(atn9 xx, . . . 9 x*) ) 

V V(0(Pl(a^ti9 X j , . . . , x^),/7/ + 1 ( ^ + i , X l , . . . , x*) ) 

|1 ^ / < n). 

Let 21 = g /0 and le t / : g -> 2T have kernel (9. Then clearly 

^(f(a0)J(ax)J(b0)9f(bx)) 

holds. 
Let 33 e 2* and suppose for some a0, al9 b09 bx in B that 2^(â0, â1? Z?0, 

bx) holds via elements Let g:g —> S be the unique 
homomorphism sending JC to x for each free generator x of g. The kernel 
of / i s clearly contained in the kernel of g, so there exists a homomorphism 
hM -> 33 with A/ = g. Thus 2Ï is (f(a0)9f(ax)9f(b0)9f(bx) > 2-free. 

LEMMA 5.5. Let ^ be a congruence scheme which contains no constants. 
Let 21 be (a, b9 c9 d) ^-free. Let 

b0 = bx(Q(a09 ax) ) for some aQ9 aX9 b09 bx e A. 

Then there exists an algebra 2P, of the same type as 2Ï, such that'. 

(i) there is a homomorphism /:2t —> 2T; 
(ii) //33 is any algebra in 2* and if h is any homomorphism oftytto%$9 then 

there is a homomorphism /z':2T —•> 33 such that h'f = h\ 
(in) **>(/(%), f(ai),f(b0),f(bO); 
(iv) 31' is (f(a)J(b),f(c),f(d) > 2-free. 
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Proof. Let 31 and 2 be of type r with 2 as above. Let g be the free K(r) 
algebra on free generators xl5 . . . , xk. Note that free products exist in 
K(T) since r contains no constants. Let 31 * g be the free product of 
3( and g in K(r). We shall consider 31 and g as subalgebras of 31 * g. Let 
0 be the congruence relation defined in the proof of Lemma 5.4. Forming 
W = (31 * g ) / 0 with k\% * g -> 3T having kernel 0 , we let / be the 
restriction of k to 31; thus/:3t —> W. Moreover 

W ( « o ) . / ( « i ) . / ( * o ) . / ( * i ) ) 
holds, so (i) and (ii) are satisfied. Let 8̂ G 2* and let h be an arbitrary 
homomorphism of 3Ï into 33. Since 

b0 = bx(@(a0, «i) ) i n % 

h(b0) = h(bx)(®(h(a0\h(ax))) in 93, 

and thus 

Zm(h(a0\h(ax),h(b0lh(bx)) 

holds. Let 

^(h(a0Xh(axlh(b0lh(bx)) 

hold via 3cl5. . . , xk and let /z*:g —> 33 be the homomorphism sending xz to 
xz, / = 1, 2 , . . . , k. Now h'M —> 33 and /z*:g —» 33, so there exists a 
homomorphism g : 31 * g —» 33 which extends both h and h*. As in the proof 
of Lemma 5.4, 0 is contained in the kernel of g. Hence, there exists a map 
h':W —> 33 with h'f = /z, and this proves (hi). To prove (iv), we observe that 
(ii) together with the fact that 31 is (a, b, c, d) 2-free guarantees that W is 
the desired homomorphism. This completes the proof of the lemma. 

We now prove Theorem 5.2. Let 3t0 be any (a0, b0, c0, d0) 2-free algebra, 
constructed as in Lemma 5.4. Note that 3l0 is countable. For each 
c = d(0(a, b) ) in 3l0, apply Lemma 5.5. The resulting family of algebras 
and homomorphisms gives a countable direct limit system. Let 31x be the 
direct limit. By Lemma 5.4 (iii) and the properties of direct limits, 
the algebra 31̂  is (A1} bx, q , dx) 2-free, where ax, bx, q , dx e Ax are the 
canonical images of a0, b0, c0, d0 e A0. Continuing in this way we obtain 
3Ï2, 3 l 3 , . . . . Finally, let 31 be the direct limit of the 91;, / = 0, 1,. . . . Again 
31 is (a, b, c, d) 2-free where a, b, c, d are the images of a0, b0, c0, d0. Thus 
2%(a9 b, c, d) holds, so c = d(@(a, b) ). It remains to show that 31 e 2*. 
Let 

u = v(0(x, y)) in 31. 

Thus, there exist unary algebraic functions q0, qx,. . . , qm-X such that the 
sets {qt(x), qt(y)} form a chain from M to V. Let Z be the set of all 
elements of A used as arguments in these unary algebraic functions. Let 
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the integer k be chosen so that for each z ^ Z there exists zk e Ak with 
gkoo(zk) = z, where gkoo is the canonical homomorphism from 21̂  to 21. 
Since Z is finite, such a k exists, so 

uk = vk(®(xk>yk)) i n ^ -

Hence 

2*k+l(xk9yk9uk9vk). 

Thus *2%(x9 y, u9 v) holds as desired. This completes the proof of the 
theorem. 

6. Problems and examples. Let S be a congruence scheme and let 21 be 
an algebra in 2*. If a9 ft, and c are arbitrary elements of 21, then 

2^(0, ft, a, ft), 2 a (a , ft, ft, a), and 2 a(û, ft, c, c) 

must hold. These particular instances of 2 ^ are useful for finding schemes 
derivable from 2 and for investigating varieties K c 2*. 

In particular, if 2 is a scheme we call a scheme 2 ' a reduction of 2 if 
2* = 2'*, and the sum of the ranks of the polynomial symbols in 2 ' is 
less than the sum of the ranks of the polynomial symbols in 2 . 

For example, if 

2 = { (x + (yx + y2)9 0) } and 2 ' = { (x + y39 0) }, 

then clearly 2* Q 2 '* and the rank of the polynomial in 2 ' is less than the 
rank of the polynomial in 2 . Also, 2 '* Q 2*, since if 2Ï e 2 '* and 
c = d(Q(a9 ft) ) in 2t, then there exists e e A such that c = a + e 
and J = ft + e. But 

e = e(@(e9 e) ), 

so there is an element ë e A such that e = e + ë\ thus, 

c = a + (é? + é?') and </ = ft + 0 + ë). 

So 2^(0, ft, c, d) holds and 2 ' is a reduction of 2 . 
Similarly, the scheme 

2 = { < ( * + {yx + J>2)) + (* + y3)9 

* + ( (y4 + J5) + M °> ) 
has a reduction 

« = { ( (x + ( ^ + y2) ) + (x + y3)9 x + y5, 0> }. 

A general description of this method of forming reductions is the 
following. 

Example 6.1. Let 2 be a congruence scheme and suppose that p, is a 
polynomial symbol of 2 such that 

https://doi.org/10.4153/CJM-1986-012-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-012-8


MODEL CONGRUENCE SCHEMES 275 

P. = r ( r ! , . . . , r j 

for some polynomial symbols r, r 1 ? . . . , rm, where at least one of the 17 is 
not a variable. Suppose also that there exists some py of 2 such that 

r(yi . . . , y>J e C(py) 

and the variables yJ
h 1 ^ / â w, occur only in r(yy

l5. . . , yj
m). Let £2 be 

the congruence scheme obtained from 2 by replacing the polynomial 
symbol r(y7

l5.. . , yJ
m) in py by a new auxiliary variable y. Then £2 is a 

reduction of 2 . 

Proof. Clearly, 2* c £2* and £2 has rank less than that of 2 . Suppose 
that 21 G fi* and c = d(&(a, Z>) ) in St. Let e be the value of y in 21 used to 
establish Q%(a, ft, c, d). Q%(e9 e, e, e) holds, so by virtue of p, e 2, 

e = r(el9. . . , em) for some el9. . . , em in 31. 

Then 2^(tf, ft, c, J ) holds using e, as the value yl
b 1 ^ / = m, and all 

other auxiliary variables as those used to establish Q%(a, ft, c, d). 

Problem 1. Given an arbitrary scheme 2 find all reductions of 2 . In 
particular, find all 2 which have no reductions. 

We recall here the three order relations on congruence schemes that 
were defined in [2]. If 2 and £2 are congruence schemes, then 

2 ç . £2 means that for all algebras $1, 2^ Q £2 ;̂ 
2 Qa £2 means that 2* Q £2*; 
K e B means that for every equational class K, 

K Q 2* implies K Q £2*. 

It is clear that if 2 and £2 are schemes and 2 Qt £2, then 2 Qa £2, and if 
2 Qa £2, then 2 Qe £2. 

Example 6.2. There exist congruence schemes 2 and £2 such that 
2 Qa £2 but 2 ç . Q. 

Proof. Let 2 have only one polynomial symbol x + y0 with t0 = 0. 
Let £2 have exactly two polynomial symbols, x 4- y0 and x -f y0 with 
t0 = tx = 0. If % is any algebra in 2* with c = d(®(a, b) ), then there 
exists an e e A with c = a -f £ and d = b + e. Moreover, 2^(<z, ft, d, J ) 
holds, so there exists é e A satisfying d = a + e' and d = ft + e'. 
Hence £2^(0, ft, c, d) holds. To show that 2 £ • £2, consider the completely 
free algebra g of type + , having two generators x and y. Note that 

2g(x, y, x + x, y + x) 

holds. If 

£2g(x, y, x + x, y + x) 
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were to hold, then there would exist q b q2 in g with y + qj = x + q2. 
Then (F4) would imply x = y which is not the case. 

Problem 2. Does 2 Qe 2 ' imply 2 Qa 2'? 
In any equational class, the free algebra on a given number of 

generators is unique up to isomorphism. 

Problem 3. Does any (a, b, c, d) 2-free algebra contain as a subalgebra 
an algebra isomorphic to the algebra constructed in Theorem 5.2? 

If an algebra 21 represents the congruence scheme 2, then 21 and its 
subalgebras will satisfy the (URC) with respect to all those unary 
polynomial symbols r for which there is a polynomial symbol p in 2 which 
can be represented in the form #(r(x), y l 9 . . . , yn). 

Problem 4. Is the above condition necessary and sufficient for an 
algebra 21 to have an extension to represent a given congruence scheme? 

Similarly, the requirement that r have no constants was used to avoid 
complications with free completions and free products, and to guarantee 
that the scheme 2 has a nontrivial representation. 

Problem 5. Find a version of the Embedding Theorem in which T and 2 
can have constants. 
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