ON THE CLASS-NUMBER OF THE MAXIMAL REAL SUBFIELD OF A GYCLOTOMIC FIELD

HIROSHI TAKEUCHI

Let p be an integer and let $H(p)$ be the class-number of the field

$$
K=\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)
$$

where ζ_{p} is a primitive p-th root of unity and \mathbf{Q} is the field of rational numbers. It has been proved in [1] that if $p=(2 q n)^{2}+1$ is a prime, where q is a prime and $n>1$ an integer, then $H(p)>1$. Later, S. D. Lang [2] proved the same result for the prime number $p=((2 n+1) q)^{2}$ +4 , where q is an odd prime and $n \geqq 1$ an integer. Both results have been obtained in the case $p \equiv 1(\bmod 4)$.

In this paper we shall prove the similar results for a certain prime number $p \equiv 3(\bmod 4)$.

We designate by $h(p)$ the class-number of the real quadratic field

$$
k=\mathbf{Q}(\sqrt{p}) .
$$

We prove the following theorem.
Theorem 1. If $12 m+7$ and $p=(3(8 m+5))^{2}-2$ are primes, where $m \geqq 0$ is an integer, then $h(p)>1$.

To prove this theorem we need the next lemma.
Lemma. The conditions on p and m being the same as in Theorem 1, the equation

$$
u^{2}-p v^{2}= \pm 3
$$

has no solution in integers u, v.
Proof. To prove this lemma, it is convenient to divide the discussion into three cases as follows,

Case I. $u^{2}-p v^{2}=3$,
Case II. $u^{2}-p v^{2}=-3$ and $v^{2}=1$,
Case III. $u^{2}-p v^{2}=-3$ and $v^{2}>1$.
First in Case I, if there exists a pair of integers u, v, we obtain

$$
u^{2} \equiv 3(\bmod p)
$$

[^0]Since $p \equiv 3(\bmod 4)$ we have by the Legendre symbol

$$
\left(\frac{3}{p}\right)\left(\frac{p}{3}\right)=(-1)^{(p-1) / 2 \cdot(3-1) / 2}=-1
$$

and from $p \equiv-2(\bmod 3)$

$$
\left(\frac{p}{3}\right)=\left(\frac{-2}{3}\right)=1 .
$$

So we obtain

$$
\left(\frac{3}{p}\right)=-1 .
$$

This is a contradiction.
Next in Case II, if the equation holds for an integer u, then we have

$$
u^{2}=p-3 .
$$

Hence

$$
\begin{aligned}
u^{\prime 2} & =144 m^{2}+180 m+55 \\
& =(12 m+7)^{2}+(12 m+7)-1,
\end{aligned}
$$

for an integer m, where $2 u^{\prime}=u$.
So

$$
u^{\prime 2} \equiv-1(\bmod 12 m+7)
$$

Since

$$
\left(\frac{-1}{12 m+7}\right)=(-1)^{6 m+3}=-1
$$

this is impossible.
In Case III, there is no loss of generality in assuming that $u>0$ and $v>1$. Among all representation of -3 by the form

$$
u^{2}-\left(l^{2}-2\right) v^{2}, \text { where } u>0, v>1 \text { and } l=3(8 m+5),
$$

choose u_{0}, v_{0} with the smallest value v_{0}. Thus

$$
-3=u_{0}{ }^{2}-\left(l^{2}-2\right) v_{0}^{2} .
$$

Writing this equation as norm representation

$$
-3=N\left(u_{0}-v_{0} \sqrt{\left.l^{2}-2\right)}\right.
$$

and multiplying by

$$
1=N\left(\left(l^{2}-1\right)+l \sqrt{\left.l^{2}-2\right)},\right.
$$

we obtain

$$
-3=N\left(u_{0}\left(l^{2}-1\right)-l\left(l^{2}-2\right) v_{0}-\left(\left(l^{2}-1\right) v_{0}-l u_{0}\right) \sqrt{\left.l^{2}-2\right)} .\right.
$$

By the definition of v_{0}, we have

$$
\left|\left(l^{2}-1\right) v_{0}-l u_{0}\right| \geqq v_{0} .
$$

Hence either $l v_{0} \leqq u_{0}$ or $\left(l^{2}-2\right) v_{0} \geqq l u_{0}$. So either

$$
-3=u_{0}{ }^{2}-\left(l^{2}-2\right) v_{0}{ }^{2} \geqq l^{2} v_{0}{ }^{2}-\left(l^{2}-2\right) v_{0}{ }^{2}=2 v_{0}{ }^{2}
$$

or

$$
\begin{aligned}
&-3 l^{2}=l^{2} u_{0}^{2}-l^{2}\left(l^{2}-2\right) v_{0}^{2} \leqq\left(l^{2}-2\right)^{2} v_{0}^{2}-l^{2}\left(l^{2}-2\right) v_{0}^{2} \\
&=-2\left(l^{2}-2\right) v_{0}^{2}
\end{aligned}
$$

Both inequalities contradict $v_{0}>1$ and $l>2$.
This completes the proof of the lemma.
Proof of Theorem 1. A prime p satisfies $p \equiv-2(\bmod 3)$. Hence

$$
\left(\frac{p}{3}\right)=\left(\frac{-2}{3}\right)=1
$$

Therefore, by the law of decomposition in quadratic fields, 3 splits in k into a prime divisor \mathfrak{a} of degree one and its conjugate, and hence is its absolute norm

$$
3=N(\mathfrak{Q}) .
$$

Suppose $h(p)=1$. Then \mathfrak{Q} is a principal divisor, i.e.,

$$
\mathfrak{Q} \cong(\omega)=(u+v \sqrt{p})
$$

with rational integers u, v (\cong denotes the divisor equality). Hence

$$
N(\mathfrak{Q})=|N(\omega)|=\left|u^{2}-p v^{2}\right| .
$$

Thus

$$
u^{2}-p v^{2}= \pm 3 .
$$

This contradicts the lemma. Hence $h(p)>1$.
Similarly we obtain the following:
Theorem 2. If $12 m+11$ and $p=(3(8 m+7))^{2}-2$ are primes, where $m \geqq 0$ is an integer, then $h(p)>1$.

Proof. It is sufficient to prove that $u^{2} \neq p-3$ for all integers u.
Now if $u^{2}=p-3$ for some integer u, then we obtain the equation

$$
u^{\prime 2}=(12 m+11)^{2}-(12 m+11)-1,
$$

where $u=2 u^{\prime}$. So we have

$$
u^{\prime 2} \equiv-1(\bmod 12 m+11)
$$

This contradicts the fact that

$$
\left(\frac{-1}{12 m+11}\right)=-1
$$

I. Yamaguchi [3] has proved the following:

Theorem A. If $\varphi(p)>4$, then $h(p) \mid H(4 p)$, where $\varphi(p)$ stands for the Euler function and $p>0$ is an integer.

By this theorem, we have the following theorems.
Theorem 3. If $12 m+7$ and $p=(3(8 m+5))^{2}-2$ are primes, where $m \geqq 0$ is an integer, then $H(4 p)>1$.

Proof. Since p is a prime number, the value of the Euler function is $\varphi(p)=p-1$. And $p-1=576 m^{2}+720 m+222$. Hence $\varphi(p)>4$. This proves the assertion of theorem.

Theorem 4. If $12 m+11$ and $p=(3(8 m+7))^{2}-2$ are primes, where $m \geqq 0$ is an integer, then $H(4 p)>1$.

Proof. Since $p-1=576 m^{2}+1008 m+438$, it follows that $\varphi(p)>4$. This completes the proof.

Examples.

Type of Theorem 1	Type of Theorem 2
$m=0 ; p=223$, $h(p)=3$ $\mathrm{~m}=2 ; p=3967, h(p)=5$ $m=0 ; p=439, h(p)=5$ l	

References

1. N. C. Ankeny, S. Chowla and H. Hasse, On the class-number of the maximal real subfield of a cyclotomic field, J. reine angew. Math. 217 (1965), 217-220.
2. S. D. Lang, Note on the class-number of the maximal real subfield of a cyclotomic field, J. reine angew. Math. 290 (1977), 70-72.
3. I. Yamaguchi, On the class-number of the maximal real subfield of a cyclotomic field, J . reine angew. Math. 272 (1975), 217-220.
4. I. Yamaguchi and K. Oozeki, On the class-number of the real quadratic field, T R U (Tokyo Rika University) Mathematics 8 (1972), 13-14.

Tokyo Metropolitan Agricultural Senior High School, Tokyo, Japan

[^0]: Received April 24, 1979.

