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Oscillatory behaviour of an equation

arising from an industrial problem

Alexander Tomaras

The oscillatory character of the solutions of a differential
equation with retarded arguments, relevant to an industrial
problem, is investigated. It is also proved that one can main~
tain the oscillatory properties of this equation under proper
conditions, if a forcing term is added to it. The results

obtained extend already known results on the subject.

T. Introduction

The scalar equation
(1.1) y'(t) = ay((t) + by(t)

arises as the mathematical idealisation and simplification of an industrial
problem, involving wave motion in the overhead supply line to an
electrified railway system [2], [7]. This equation has been discussed in
detail in [1], [3], and [4], and its oscillatory behaviour (only for

b =0 ) was mentioned in [6].
The oscillatory behaviour of the functional differential equation
(1.2) y'(t) = p(tly(g(t)) + qlely(e) ,

which is of more general form than (1.1), was examined in [§], and results
obtained for it were also extended there to the functional differential

equation resulting from it by adding a forcing term, namely
(1.3) y'(£) = p(t)y{g(t)) + q(tly(t) + r(2) .

The purpose of the present paper is to extend further results,
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obtained in [8] for (1.2) and (1.3), by investigating the oscillatory

behaviour of the functional differential equations

n
(1.4) y'(8) = ¥ p;()ylg, ()] + qe)y(t)
i=1
and
n
(1.5) y'(¢) = ¥ p;(thylg; () + q(t)y(t) + r(¢) ,
i=1

which are of more general form than (1.2) and (1.3) respectively.

In what follows, a solution y(#) of (1.4) or (1.5) is said to be
ogeillatory, if it has arbitrarily large zeros, and nonoseillatory

otherwise.

2. Unforced oscillation
Sufficient growth conditions on pi(t), gi(t) s, T =21,2, s..,n,

and ¢q(t) are given here, to guarantee that every solution of (1.k)

oscillates.

The following lemma will be needed, which is a modification of a

corollary in [9].

LEMMA 2.1, Consider the functional differential equation

n
(2.1) e'(¢) + ¥ f(e(E(8) =0,
=1
subject to the following conditions:
(c1) f£,(¢), F (¢) € c[lo, =), R] , fi(¢) z 0,

1 =1, 2, ooy N3

(c2) Fi(t) =t , 1lim Fi(t) = o ., and F1’:(7‘;) =0,

oo

1 =1, 2, ceey .

If, in addition,

n t
(2.2) iim sup ), f f.(s)ds > 1,
tao 4=l YK(t) ©
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where X(t) = max E%(t) , 1=1,2, ..., n , then every solution of (2.1)
is oscillatory.

Now make the transformation y(t)exp[— J q(t)dt) = z(¢) , to get (1.4)

in the form

n
(2.3) 2'(t) + L 1.(t)a(g,(8)) =0,
=1
gi(t)
— where Zi(t) = —pi(t) exp f q{T)Ydr , 27=1,2, ..., n - which is
t

of the same form as (2.1), and for which Lemma 2.1 is true under proper
modifications. Then, observing that if z(t) oscillates, so does y(t) ,

we apply Lemma 2.1 to (2.3) to obtain the following result for (1.4).

THEOREM 2.1. Consider the functional differential equation (1.h),

subject to the following conditions:
(¢) py(t)s g,(¢) €cflo, =), R] , p,(t) 20,
1 =1, 2y vvey m 3

(i3) g;(¢) = ¢, limg.(¢) ==, and gé(t) =0,

fraas]
1=1, 2, cves 3
(ii2) q(t) is continuous for any t # 0 .
If, in addition,

gi(s)

n t
(2.4) lim sup ). J -p.(s)lexp [ q(T)dr|ds > 1 ,
tro 4=l g(z) ° s

where G(t) = max gi(t) s ©=1,2, ..., n, then every solution of (1.l)
is oscillatory.

REMARKS. The transformation used in [8] was also used here, and
worked as well. Thus, "qualitatively", the theory in [4, paragraphs k4, 5,
and 6] is completed further and results obtained in [6, p. 222] are also

included in this presentation.

It can be easily verified on the other hand that Theorem 2.1 in [§]

is a special case of Theorem 2.1 here, for »n =1 ; particularly
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interesting is the extension of the relationship (2.h4).

3. Forced oscillation
Sufficient growth conditions on pi(t), gi(t) , T =1,2, .., n,

q(t), and r(t) are given here, to assure that every solution of (1.5)

oscillates. For this purpose, in addition to the transformations made in

Section 2, set r(t)exp[— f q(t)dt] = m(t) , to obtain

n
(3.1) 2'(8) + T 1,(8)3(g,(8)) = m(t)
=1
Now, taking account of a theorem in [5, p. 2T4] and of Lemma 2.1,
given in Section 2, we modify properly Theorem 3.1 in [8, p. 429] by the
same technique used there, to establish the following result for (1.5).

THEOREM 3.1. Consider the functional differential equation (1.5),

subject to the following hypotheses:
(m) p,(¢), r(¢) €cllo, =), K] , . (t) =0,

1 =1, 2, voey N 3

(H2) g.(t) € c*io, =), & , g,(t) st , limg/(t) ==,

tro0
gé(t) >0, 1 =1, 2, voay 73
(83) q(t) 1is continuous for any t # 0 ;
n t gi(s)
(H4) 1im sup ) f -pi(s) exp f q(r)drids > 1 ;
o =1 ‘G(¢) s

(HS) there exists a function Q(t) € cl[[o, ), Eﬂ s such that

Q'(t) = r(t)exp[— J q(t)dt] s t =0, and either

(I) 1im Q(¢) = 0, or
£o0

(II) there exist constants 9,5 9, and sequences

{t:}, {tr','z s such that lim ¢t = lin t = and
nre e
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Qlty) =ay» @ty =ap. q Q) =q,, tz0.

Then, if (1) holds, every solution y(t) of (1.5) oscillates or
lim y(t) = 0 , while ©f (II) holds, every solution y(t) of (1.5)

t>

oscillates.

This result includes Theorem 3.1 in [§, p. 429] as special case for

n =1 , and accomplishes the purpose of this paper.

Finally, the open question in [&, pp. 429-L30] can be posed now for

the higher-order retarded differential equations

7

(3.2) AR Y pi(0)ylg(8) + al®)y(e)
1=1
and
n
(3.3) M) = ¥ p(0)lg (8) + q(ely(e) + 2(8)
=1
respectively, for n > 1
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