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Abstract

Given the data (p,-, f,,/,), i = 1 , . . . ,m, we consider the existence problem for the best least
squares approximation of parameters for the 3-parametric exponential regression model.
This problem does not always have a solution. In this paper it is shown that this problem
has a solution provided that the data are strongly increasing at the ends.

1. Introduction

The mathematical model described by an exponential function or a linear combination
of such functions is often used in applied research (see [5,7-10,14,17,19]). For
example, in [14] it is used in the analysis of long-term selection experiments in
biology. These models are also frequently used as a test function for testing numerical
algorithms for function minimization (see [1,3,15,17,21]).

In this paper we consider the existence problem for the best least squares approxi-
mation of parameters in the 3-parametric exponential regression model

f(t;a,b,c) = a + becl. (1.1)

Suppose we are given the experimental or empirical data (p,, ?, , / ,) , i = 1 , . . . , m,
m > 3, where t{ < t2 < • • • < tm denote the values of the independent variable, / , are
the respective measured function values and /?, > 0 are the data weights. The least
squares problem for the 3-parametric exponential function (1.1) then becomes

Whether there exists a point (a*, b", c') e R3, such that

F(a',b\c')= inf F(a,b,c), (1.2)
( * ) R 3
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[2] A 3-parametric exponential regression model 255

where

The same problem can also be considered in lp -norms, but usually one uses only
l\, Z2 and /«,. Some remarks about this approximation problem in / r and Zoo-norms
can be found in [1,11] and [12], and some special cases for the /2-norm are dealt
with in [2]. The analysis of the solution existence problem in lt- and Zoo-norms differs
significantly from the Z2 case.

The problem (1.2)—(1.3) is a special case of the so-called nonlinear least squares
problem, for which some special numerical methods and algorithms have been devel-
oped (see [1,3,13,15]).

The problem (1.2)—(1.3) does not always have a solution (see Lemma 1). In this
paper, we give sufficient conditions which guarantee the existence of a solution. The
existence problem of the best approximation for some other model functions in the
sense of ordinary least squares is taken up in [4] and [16] and in the sense of total least
squares in [17] and [18].

2. The existence theorem

Suppose that we are given the data (p;, f,-,/,-), i = 1 , . . . , m, m > 3, such that
Pi > 0, i = 1 , . . . , m, and r, < t2 < • • • < tm.

The following lemma, which we are going to use in the proof of Theorem 1, shows
that there exist data such that the problem (1.2)—(1.3) has no solution.

LEMMA 1. If the points (tt, /,•), / = 1, . . . , m, m > 3, all lie on some slanted line
y = kt + I, k ^ 0, then the problem (1.2)—(1.3) has no solution.

PROOF. Let (t0, y0) be an arbitrary point on the line y = kt + 1. Then

yo + k(ti -to)-fi=O, i = 1,... , m.
Since

- - . ,ck\ =lim>Jp, (yo-\ / , 1
C C ) c-"°~^ \ C )

Pi(yo + Hti - t0) - fd2 = 0,
1=1

this means that inf(a6]C)eE3 F(a, b, c) = 0. Furthermore, since the graph of any
function of the type (1.1) intersects the line y = kt + I, k ^ 0, in at most two points,
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and m > 3, it follows that F(a, b,c) > 0 for all (a, b, c) 6 I 3 , and hence the problem
(1.2)—(1.3) has no solution.

Therefore, in order to guarantee the existence of a solution of the problem (1.2)-
(1.3), it is necessary to require that the data (p,, f,,/,), i = 1, . . . , m, m > 3, satisfy
some additional conditions.

DEFINITION 1. We say that the data (p,, f,,/,), / = 1, . . . , m, m > 3, are strongly
monotonic at the ends, provided

(/m-/m)(/m-i-/m)>0 and (fl-fi)(f2-/l)>0, (2.1)

where fm = {YZJ? Pifi)/H?~* Phfi = {H?=2Pifi)/T,7=2Pi-

In this paper we show that the existence problem (1.2)—(1.3) always has a solution
whenever the data are strongly monotonic at the ends.

REMARK 1. Before formulating and proving the existence theorem, let us notice
the following simple but important facts:

• From the existence problem point of view, the origin of the coordinate system
can be moved along the /-axis. Namely, after the transformation

r, = r + u, i = 1,... , m,

the functional F takes the form:

m

F(a, b, c) = <D(a, 0, c) = J^Pi (* + Pe"' - f , ) 2 ,
/=i

where /J = be~cT. The functional 3> is of the same type as F, and the map (a, b, c) i-»
(a, ft, c) is a bijection of K3 onto K3.

• For every a e K we have

where/ = (E7=, P./O/XX, Pi-

THEOREM 1. Let the data (p,, / , , / ,) , / = 1, . . . , m, m > 3, be strongly monotonic
at the ends. Then the problem (1.2)—(1.3) has a solution if and only if the points
(h, fi), i = 1 , . . . ,m, are not collinear lying on a slanted line.
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PROOF. If the problem (1.2)—(1.3) has a solution, then by Lemma 1 the points
Oi,fi), i = I,... , m, do not lie on a slanted line.

Let us show the converse. Suppose that the points (/,,/,), i — 1 , . . . , m, do not lie
on a slanted line. We show that the problem (1.2)—(1.3) has a solution.

According to Remark 1 we can suppose that

tx < t2 = 0< h < •• < tm. (2.2)

Since F > 0, there exists F* := inf(a,(,,c)eR3 F(a, b, c). Let (an,bn,cn) be a
sequence in K3, such that

m

F' = lim F(an, bn, cn) = lim Vp,r ,2(n) < +oo, (2.3)
n-KX> n-*oo ^ - ^

where r,(w) = an + bn e
c-'' - / , .

We show that the sequence (an, bn,cn) is bounded by showing that the sequences
(an) and (bn,cn) are bounded. Without loss of generality, whenever we have a
bounded sequence, we are going to assume it is convergent—otherwise by the Bolzano-
Weierstrass theorem, we take a convergent subsequence.

I. We first show that the sequence (an) is bounded. Suppose it is not. Then, without
loss of generality, by taking appropriate subsequences if necessary, only one of the
following cases can occur: (a) an -*• +oo or (b) an -> —oo.

Since r2(n) = an + bn —fi, in case (a) we have bn —> — oo, and in case (b) we have
bn -» oo. Otherwise we would have lim,,^,*, r|(«) = oo, which by (2.3) would imply
F* = co. Therefore we have to show that the functional F cannot attain its infimum
in either of the following two ways:

1. an -+ +oo, bn -+ -oo; 2. an -+ -oo, bn -> +oo.

I.I. Consider the case (an -> oo, bn —*• —oo). Since F' is a real number, and
r2(n) = an + bn — f2, the sequence (an + bn) has to be bounded. Let

If the sequence (cn) is unbounded, by taking an appropriate subsequence, we may
assume that the sequence (<:„) diverges toward +oo or —oo. In both cases, by (2.2)
we can choose tk e {tu ... , tm), such that cnth > 0. Since bn < 0, we have

an + bne
c""° < an + bn(l + cntk)

and taking the limits we obtain

lim (an + bne
c"'^) < lim (an + bn) + lim bncnt^ = / - oo = -oo. (2.4)
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This means that the sequence (cn) cannot diverge, because otherwise, from (2.3) and
(2.4), we would obtain F* = oo.

Suppose cn -> c. If c ^ 0, then by the same argument as in the case of the
unbounded sequence (cn), we would obtain F* = oo. Therefore, we have to show
that the functional F can not attain its infimum F' when an -*• oo, bn -> — oo,
cn —>• 0. Suppose on the contrary that an -*• oo, bn —»• —oo and cn —> 0. Then by the
Lagrange mean value theorem, for every n e N there exist real numbers #,-(w) e (0, 1),
i = 1 , . . . , m, such that

an + bne
c"" =an + bn + bncntie^

n)c"\ i = 1 , . . . , m. (2.5)

I.l.(a) If limn^00(fencn) = 0, then by (2.5) and (2.3) we have

By Remark 1,

fi := X> {f-fif $ f^Pid-fi)2 = F\ (2.6)

Let us show that there is a point in R3 at which the functional F attains a value
which is smaller than Ft. Note that/ ^ fm, because otherwise from

\i=l / \i=l /

we would have fm = fm, which contradicts the inequality (2.1). Therefore

Um F (/ , (fm - / ) e - c ' " , c) = Urn £ p, [(fm - / )̂ "-<«> - </, -

i(f-fi)2 = FX

From this and (2.6) we conclude that there exists a real number d > 0, such that
F(f, (fm - f)e~dtm, c') < Fi < F*. This means that in this way the functional F
can not attain its infimum F*.

I.l.(b). If limn_).oo(fencn) = k ,£ 0, then from (2.5) we obtain

lim (an + bne
c'!i) = ktj + l, i = 1, . . . , m.

Therefore
m

F* = Urn F(an, bn, cn) = Y,P>(kti + l ~ ft)2-
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In order to show that in this way also the functional F cannot attain its infimum, we
define m functions <\>r : (—00, 00) —»• OS, r = 1 , . . . , m, by the formula:

-,2

c^O,
(2.7)

c = 0.

m r *>kcUi ~'r) 1 "I
^—\ C 1

Note that 0r(c) = F(l + for — 1/c, e~kclr/c, kc) for every c 9̂  0. Furthermore, since

(2.8)
ekc(.t,-tr) _ |

lim = k{tt - tr),
c-*0 C

we have

c->0
-f^2 = 4>r(0) = F\

This means that all functions <pr, r = 1, . . . , m, are continuous on K.
The derivative of the function <j)r (Vr = 1, . . . , m) is

e*<*-' '>[£c(f,-O-l] + :

Since

"L r
£ p , I jfcrr

1=1

lim- r, - / r)
2

by (2.8) we obtain

dc

which means that all derivatives d<j>r(c)/dc, r = 1 , . . . , m, are also continuous on OS.
Let us show that there exists a n r e ( l m), such that d(j>r(O)/dc ^ 0. Namely,

ifd(pr(O)/dc = 0 for all r = 1 , . . . , m, then, since & ^ 0, by (2.9) the vector

e := (*r, + I-fukt2 +I - f2,... , ktm + I - fm)T

would be orthogonal to each of the m vectors

0
0

e, : =

(*2 - h)2

(h - h)2

_ ( ' » - 'l)2_

e m : =

- tm)2 "I

/m_l - tm)2

0
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Since the vectors e i , . . . , em are linearly independent in the space Km, this would
imply that e is a null-vector, that is, that the points (fj,/,-), i = 1, . . . , m, lie on the
line y = kt + I, k ^ 0, which contradicts our assumption. Therefore there exists an
r0 e { 1 , . . . , m), such that d<j>ro(O)/dc ^ 0.

Now, since d<pro(Q)/dc ^ 0, the function 0^ is either strictly increasing or strictly
decreasing on some e-neighbourhood of the point c = 0. Therefore, there is a point
d e (—e, e), such that </>,-„(c') < 0ro(O). From (2.7) we now obtain

>ro(c') = F\l + ktro - - , —j-, kc'\4>ro(c') = F\l + ktro - - , —j-, kc'\ < 0r o(O) = F\

Therefore, also in this way, the functional F cannot attain its infimum.
1.2. Consider the case an -*• — oo, bn -» +oo. Reasoning similarly as in Case I.I,

one can show that in this way the functional F cannot attain its infimum.
Therefore we have proved that the sequence (an) is bounded, so we may assume it

is also convergent. Let an —> a*.
II. We will now show that the sequence (&„, cn) is bounded. Suppose it is not.

Without loss of generality, by taking appropriate subsequences if necessary, only one
of the following cases can occur:

1.
3.
4.
6.

bn
bn

K
K

-± ±oo,
-> ±oo,
-> fe* ̂  0,
- • 0 ,

cn - >
cn - >
cn - >

Cn -*•

+oo;
c* € IR;
+oo;
+oo;

2. Z>,

5. b,
7. fe.

, ->• ±oo,

, -»• 6* 7̂  0,
. - • 0 ,

cn -

Cn ~

Cn ~

> —oo;

* - o o ;
> —oo.

Because of the assumption (2.2), in Cases 1-5 it is easy to see that the sequence
F(an, bn, cn) diverges to +00. Namely, in the first and fourth case we haver,2 (n) —> 00
(i > 3), in the second and fifth case r](ji) -> 00, while in the third case rf(n) -> 00
for all i = 1 , . . . , m. This means that the infimum F' cannot be attained in any of
these five cases. Hence, it remains to consider Cases 6 and 7.

Case 6. Suppose that bn —> 0 and cn —> +00. Note that

L :— lim bne
c"'m < 00,

n-»oo

because otherwise r2
m (n) -» 00, which contradicts (2.3). Because of the assumption

t\ < t2 < • • • < tm, we have

lim Ke'"'1 = lim bne
c"'m • lim e

c"(''-'»-> = L • 0 = 0, i = 1 , . . . , m - 1.
n—>oo n—•oo n—*oo

Therefore
m - l

F' = lim F(an,fen, cB) >
o
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[8] A 3-parametric exponential regression model 261

By Remark 1,

m — 1 m — \

1=1

and therefore we obtain
m - l

We are going to find a point (b1, c') € U2, such that F(fm, b', d) < F*. For
that purpose we examine the behaviour of the functional F on the curve Fi C K3

defined by

r , = {(/m, b, c) € K3 : b = (fm - fm)e-cl", c > 0} .

The restriction of the functional F to the curve Fi (see Figure l(a)) can be considered
as a function <p : [0, co) —> R given by

m - l

<p(c) = F (fm, (fm -fm)e-c'\ c) = J^Pi [dr, -fnde*"-^ - (/, - fm)]2 .
i=i

Note that
m - l

lim <p(c) = V p , ( / , -fmf < F\ (2.10)
1=1

The derivative of the function <p equals

V- -/m)^""*"' - V' -fm)] (fm ~ U(U - tm)e«'^

m-l

P' [</m -fm)ec{u""') ~ Hi -U]

* (fm - fm)(ti - tm)eci*-"-'\ (2.11)

Let us show that for c large enough, the sign of the derivative d<p/dc equals the
sign of the (m — l)-st summand in (2.11).

Because f, — tm < 0, V/ = 1, . . . , m — 2, we have
m-l

-fm)(t, ~ tm)e^-^ = 0.

Furthermore, because tm-\-tm < 0 and, by our assumption (fm —fm)(fm-\ —fm) > 0,
we have

lim Pm.x [{fm - fje*'"-'-'^ - </„,_, -fm)] (fm - /m)(rm_, - tm) > 0.
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(fm,0,0)

(a) The curve F| .

<p(c)

H h
cmin d

(b) The function <p.

FIGURE 1.

This means that the derivative of the function <p is strictly positive whenever c is large
enough. Therefore there is a real number cmin such that the function <p is strictly
increasing on the interval (cmin, oo). Hence for every d € (Cmin, oo) we have (see
Figure l(b))

cp(d) = F (fm, (fm -fm)e-"», d) < lim (2.12)

For the chosen d e (cmin, oo), let b' = (fm - /m)e"c''". Then (fm, b', d) € 0&3 and
from (2.12) and (2.10) we get

F(fm,b',c') < l im^(c )<F* .

This means that in this way also one cannot obtain the infimum of the functional
F, because we found a point (fm, b', d) € IR3, where the functional F attains a value
smaller than F*.

Case 7. Suppose that bn ->• 0 and cn -> —oo.
Arguing similarly as in the sixth case, one can show that in this case also the

functional F cannot attain its infimum in this way.
In this case

L := lim bne
c"h < oo,

n-KX>

because otherwise r\{n) -*• oo, which contradicts (2.3). Furthermore, because of the
assumption ty < t2 < • • • < tm, we have

lim bne
c-" = lim bne

c"'< • lim ec"(''-") = L • 0 = 0, i = 1 , . . . , m - 1.
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[10] A 3-parametric exponential regression model 263

Therefore

F* = lim F(an, bn, cn) >

By Remark 1,
n->oo

i'=2

i=2 i=2

and thus we obtain

F* >£>,</,-/,)2.
i = 2

In this case, by using the function <p : (—oo, 0] ->• K given by

<p(c) = F (/„ (/-, - / , )e-c \ c) = £>,- [</, -/,)^"-"> - (f, - / , ) ] 2 ,
i=2

we are going to show that there exists a point (b', c') e K2, such that F(fm, b', cf) < F*.
Note that

m

lim p(c) = y^Piifi-fi)2 < F\ (2.13)
c-»-oo

1=2

The derivative of the function <p is given by

i =2

i=2

Because f, — ?i > 0, Vj = 3 , . . . , m, we have

lim TPi [(ft -Z,)^"-" ' - (ft - / , ) ] (/-, -/,)(f, - n)ec^-'* = 0.
1=3

Furthermore, because h — t\ > 0, and by our assumptions (/i — f\)(fi — / i ) > 0, we
have

lim p2 [(/, - / O ^ ' 2 - " ' - (/2 - / i ) ] (/. - / i ) ( r 2 - *i) < 0.

This means that the derivative of the function <p is strictly negative for sufficiently
large negative real c. Therefore there exists a real number cmax such that the function cp
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is strictly decreasing on the interval (—00, cmax). Hence for every d e (—00, cmax) we
have

cp(c') = F (/„ (f, - f\)e~d\ d) < lim p(c). (2.14)
C->00

For the chosen d e (-00, cmax), let V = (/, -fx)e-&h. Then (/,, fc', c') € K3, and
from (2.14) and (2.13), we get

F (/",, &', c') < lim <p(c) < F*.

This means that in this way also one cannot obtain the infimum of the functional F,
because we found a point (fu b',d) e K3, where the functional F attains a value
smaller than F".

Hence the sequence (an, bn,cn) is bounded. By the Bolzano-Weierstrass theorem,
we may assume that the sequence (an, bn,cn) is convergent (otherwise we take a
convergent subsequence). Let (an, bn, cn) -> (a*, b*, c*). By the continuity of the
functional F, we have inf(a,6,c)eR3 F(a, b, c) = limn̂ .oo F(an, bn, cn) = F(a*, b*, c*).
This completes the proof of Theorem 1.

3. Some remarks on data strongly monotonic at the ends

As proved in Theorem 1, if the data (/?,, f,,/,), i — 1 , . . . , m, m > 3, are strongly
monotonic at the ends, then the problem (1.2)—(1.3) has a solution if and only if the
points (/,,/,), 1 = 1 , . . . , m, do not lie on a slanted line. The class of data which are
strongly monotonic at the ends is a rather wide one. For example, it is not difficult
to show that the data {pi,ti,fi),i = \,... ,m,m > 3, are strongly monotonic at the
ends, provided they are either strictly increasing or strictly decreasing.

We are going to show that the wide class of data which are strongly monotonic in
the mean (see [2,6]) are also strongly monotonic at the ends.

DEFINITION 2. Let (p,, f,,/,), i = 1 , . . . , m, m > 3, be the data. In the case when

, i = l , . . . , m - 2 , (3.1)
V ! n,. T,. ) . . „ n*,Tk

L^k=\ Pk 2-k

we say that the data are strongly increasing in the mean, and in the case when

E L . P * / * ^ / | + [ > 2 X m P*f\ / = ! , . . . , « - 2 , (3.2)
k=lPk Lk

that they are strongly decreasing in the mean.
We say that the data are strongly monotonic in the mean, provided they are either

strongly increasing in the mean, or they are strongly decreasing in the mean.
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[12] A 3-parametric exponential regression model 265

In other words, the data (p,, / , , / , ) , i = 1, . . . , m, are strongly increasing in the
mean [strongly decreasing in the mean] if and only if the ordinate of each datum
(except the first and the last one), is strictly bigger [strictly smaller] than the mean
value of the ordinate of the data preceding it, and also strictly smaller [strictly bigger]
than the mean value of the ordinate of the data following it.

PROPOSITION 1. If the data are strongly monotonic in the mean, then they are also
strongly monotonic at the ends.

PROOF. Suppose the data (/?,, / , , / , ) , i = 1 , . . . , m, are strongly increasing in the
mean. From the inequality (3.1) we obtain

m— 1 m—2 I m— 2
1 I 7 . . 11 I. I I. 1

^ ___ +Pm-l/m-l

^m-2 \ m-l

/ ,Pi I /m-l + Pm-\fm-l = / m - l ' / ,,
V .=1 / -=i

which implies fm < / m _ i . Since by (3.1)/m_i < fm, it follows that fm > / „_ , > fm,
which implies the inequality

(fm-fm)(fm-l ~ fm) > 0.

It remains to prove (ft — f\)(Ji — fi) > 0.
From the inequality (3.1) we have

(
i=2 i=3 \i=3

EH m^f
/ V 2 P k

.•=3

and therefore / ( > f2. Since by (3.1) f2 > / i , it follows that/~! > f2 > / i , which
implies the required inequality

(/. -/l)(/2 -/".)> 0.

Therefore, if the data are strongly increasing in the mean, then they are also strongly
increasing at the ends.

For data which are strongly decreasing in the mean, the proof is similar.
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