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Abstract

Kribi is a seaside town that welcomes thousands of tourists each year. However, the poor
sanitation condition of its beaches along the Atlantic coast is not without risk for visitors. In this
study, we used the formol-ether concentration technique to identify and quantify larvae or eggs
of intestinal helminths in waters of three regularly visited Kribi beaches (Mpalla, Ngoyè, and
Mboamanga). Results revealed that all identified larvae and eggs were cestodes (Hymenolepis
nana) and nematodes (Strongyloides sp., Ascaris sp., Ancylostoma duodenale and Trichuris
trichiura). All the helminth eggs and larvae showed high abundance at low tide during rainy
seasons.Ancylostoma duodenale eggs, totally absent atMpalla, were densely present at low tide at
Ngoyè (301 ± 15 eggs/L). Trichuris trichiura eggs showed the lowest abundance (0 to 62 eggs/L)
at all sites. Abiotic variables indicated that waters at the various beaches were basic (pH: 8.75–
9.77), generally warmer (32.44°C at Mpalla in the Short Rainy Season), more oxygenated at low
tide, andmoderatelymineralized at high tide. Positive and significant correlations were observed
at Ngoyè at low tide between Strongyloides sp. larvae and dissolved oxygen (P < 0.05); and
between Ancylostoma duodenale eggs and temperature (P < 0.05). The overall results indicated
that the beaches studied are subjected to fecal pollution. This pollution is more accentuated
during low tides than during high tides. Depending on tidal movements, swimmers risk
exposure to helminth eggs and larvae known to be responsible for gastroenteritis.

Introduction

Microbiological pollution represents one of the major problems to which coastal and marine
environments are subjected (Dang & Lovell 2016; Basili et al. 2021; Oduro et al. 2023). It refers to
the presence of microbial organisms in these ecosystems, such as bacteria, viruses, or parasites,
some of which may be pathogenic to humans or animals (Nimnoi & Pongsilp 2020). Although
marine and coastal ecosystems are the natural environment for some microorganisms, those
involved in microbiological contamination of coastal waters are of human or animal origin
(Rodríguez et al. 2021; Manini et al. 2022). These are enteric microorganisms, i.e., from the
intestines of humans or warm-blooded animals and brought into the environment via their
excreta. Sources of this excreta include discharges of treated and untreated sewage on land and
from ships’ ballast water, livestock effluents (animal faeces), stormwater discharges, rainfall-
runoff, and other diffuse sources (Assako Assako et al. 2010; Manini et al. 2022).

The concentration and dissemination rate of these organisms depends on tidal range, rainfall,
turbidity, and hydrodynamics, among other factors (Di Biase & Hanssen 2021). Tides, approxi-
mately two highs and two lows per day, generate and influence ocean currents (Madani et al.
2020). In turn, these currents directly and indirectly affect the movement of aquatic fauna
(seedlings, fish) and the dispersion ofmicrobes. Like the tide, winds, underwater topography, and
weather conditions influence the dispersal of microorganisms (Ferrarin et al. 2021; Kraus et al.
2022).

Bacteria and viruses introduced into the marine environment can affect bathing water quality
and cause health impacts, which can lead to the closure of the affected areas if the contamination
is significant and persistent (Bonadonna et al. 2019; Manezeu Tonleu et al. 2021). Helminthiasis
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is one of the most common infections in the world, disproportion-
ately impacting the poorest and most disadvantaged communities
(WHO 2006). They are transmitted by eggs in human excreta,
which then contaminate soil where sanitation conditions are inad-
equate (Collender et al. 2015; Truscott et al. 2016; Walusimbi et al.
2023). Bathing in water of poor microbiological quality thus pre-
sents health risks and can lead to infections, mainly gastroenteritis
caused by helminth eggs or larvae (WHO 2006; Bonadonna et al.
2019; Manezeu Tonleu et al. 2021). In rare cases, contaminated
water can also lead to more serious infectious diseases such as
typhoid fever, cholera, etc. (WHO 2019).

In sub-Saharan Africa in general and in Cameroon in particular,
microbiological data and standards on beach water are rare and
almost non-existent, yet these environments constitute high con-
tamination sites due to their high frequency of use year-round. This
poses an ecological and public health problem on Cameroonian
beaches in general and those of Kribi in particular. This study
investigates the influence of tidal cycles on the diversity and abun-
dance of intestinal helminth larvae and eggs in the waters of Kribi
beaches. We hypothesized that dispersion of intestinal helminths

would be influenced by the tidal cycle. To evaluate the impact of the
tidal cycle on the dissemination of intestinal helminths in thewaters
of the city of Kribi, Southern Cameroon Region, we qualitatively
and quantitatively compared pathogen concentrations at high and
low tide on three Kribi beaches (Mpalla, Ngoyè, and Mboamanga).

Materials and methods

Study area

The studywas conducted fromApril toDecember 2021 on the three
most frequented beaches of the city of Kribi, in the Ocean Division,
southern Atlantic coast, Cameroon (Figure 1). This area is subject
to aGuinean-type equatorial climate, characterized by four seasons:
Long Dry Season (LDS) from December to February, Short Rainy
Season (SRS) from March to May, Short Dry Season (SDS) from
June to July, and Long Rainy Season (LRS) from August to
November (Olivry 1986). Four sampling campaigns were con-
ducted: April (SRS), July (SDS), September (LRS), and December
(LDS), respectively. At the level of each beach, one sampling station

Figure 1. Location map showing sampling points.
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was surveyed based on its accessibility and frequentation. Station
1 is located at Mpalla beach (3◦00’29”N–0009◦56’54.5”E) and
characterized by a gray sandy substrate. Station 2 is situated at
Ngoyè (2◦57’26.6”N–0009◦54’36.9”E), 4 km from Mpalla, and
characterized by a black sandy substrate. Located 9 km fromNgoyè,
station 3 on Mboamanga beach (02◦56’22.4”N–0009◦54’12.3”) is
characterized by a sandy clay gray substrate.

Measurement of hydrodynamic and abiotic parameters

At each tidal cycle, water depth was recorded using a Plastimo
ECHOTEST II (Lorient Cedex - France) handheld depth sounder.
Current velocity was assessed by float gauging using a limnimetric
scale, float, chronometer, and decameter (Ngoma & Wang 2018).

Physicochemical parameters were analyzed according to Rodier
et al. (2009) and APHA (2017) standard methods. At each cam-
paign and each sampling station, eight physico-chemical param-
eters were measured in situ, in triplicate during each tide period
(low and high tide), using a hand-held multiparameter (HANNA/
HI98494Tanneries Cedex - France). These variables included pH,
temperature (°C), salinity (PSU), dissolved oxygen content (mg/L),
total dissolved solids (g/L), electrical conductivity (mS/cm), resist-
ivity (Ω/cm), and pressure (mbar).

Collection and treatment of biological samples

At each station, for each season, water samples were collected at
high and low tide in 1000 mL sterile polyethylene bottles. In the
laboratory, for the identification and enumeration of helminths, the
samples were first left for 24 h at room temperature in the sedi-
mentation flasks. After sedimentation, the supernatant was
decanted and the muddy deposit obtained was then measured,
homogenized, and distributed in test tubes. The formol-ether con-
centration technique enabled us to concentrate the helminth eggs
or larvae to guarantee better enumeration (Suwansaksri et al. 2002;
Collender et al. 2015). Therefore, in each test tube, 1 mL of 10%
formalin, 5 mL of distilled water, and 2–3 drops of Lugol were
added. The tubes were then centrifuged at 500 rpm for 5min using a
centrifuge (Medifriger, Barcelona - Spain). Each time, the entire
pellet was recovered and placed on slides for direct observation and
enumeration of eggs or larvae under an optical microscope
(Olympus Model CK2, Hamburg - Germany) (Ajeagah & Fotzeu
Kouam 2019). The helminth eggs or larvae were identified using the
WHO manual (2019) and the Thivierge workbook (2014). The
number of eggs or larvae contained in 1 L of sample was obtained
by the following formula, proposed by Ajeagah et al. (2014):

X =
y:Vx
Vy

X = number of parasites, Vx = volume of the pellet of 1 L of
sample, Vy= volume of the pellet used for observation, y= number
of parasites observed in Vy

Data analysis

As the sample concentrations had a normal distribution, the linear
correlation coefficient r (Pearson) was used to calculate the depend-
ency between the quantitative variables (biotic and abiotic). SPSS
software version 16.0 allowed us to perform correlation tests. P
values were used to assess the significance of the correlation

between abiotic and biotic parameters. The safety threshold was
5% (P < 0.05).

Results

Hydrodynamic and abiotic variables

At the different sites surveyed, the average water depth varied
between 0.42–0.83 m at low tide and 1.81–2.10 m at high tide
(Table 1). Concerning current velocity values were globally higher
at low tide than at high tide. The lowest average current velocity
(0.89 m/s) was recorded at high tide, at Ngoyè.

Abiotic parameters varied according to two aspects: time and
tidal cycles (Figure 2). At both high and low tide, waters were
strongly basic at all beaches across the study period. The highest
pH value (9.77) was recorded at Mboamanga in SRS, whereas the
lowest (8.75) was recorded in LDS at Mpalla, during high tide
(Figure 2A). At high tide, the water temperature varied from
28.16°C in LDS at Ngoyè to 31.75°C in SRS at Mboamanga. At
low tide, temperature ranged from 29.34°C in LDS at Mboa-
manga to 32.44°C in SRS at Mpalla (Figure 2B). At all stations,
the warmest waters were recorded at low tide. Spatial and tem-
poral variation of salinity did not differ significantly for any tidal
cycle. The minimum salinity (30.87 PSU) was recorded in SRS, at
low tide at Ngoyè, and the maximum value (36.19 PSU) in SDS, at
high tide at Mboamanga (Figure 2C). The waters of Mpalla and
Ngoyè beaches were poorly oxygenated at high tide compared to
low tide throughout the study. Maximum values (0.70 mg/L) of
dissolved oxygen were recorded in SRS, at high and low tides
(Figure 2D). Total dissolved solids changed from 26.39 to
27.45 g/L at high tide and from 24.24 to 27.25 g/L at low tide
(Figure 2E).

With values of electrical conductivity ranging from 48.28 μS/cm
in LDS to 47.88 μS/cm in LRS at low tide, Ngoyè appeared to be the
less mineralized beach (Figure 2F). Concerning resistivity, values
were higher at Ngoyè than at other stations, and the maximum
value (21Ω/cm) was recorded at low tide in SRS (Figure 2G). Thus,
the more mineralized the waters of the studied beaches were, the
more concentrated the ions were, and, consequently, the higher

Table 1. Some hydrodynamic characteristics of the surveyed sites

Mpalla Ngoyè Mboamanga

Depth of water at
low tide (m)

Min. 0.32 0.42 0.25

Max. 0.65 0.94 0.54

x̄ ± σ 0.61 ± 0.01 0.83 ± 0.01 0.42 ± 0.01

Depth of water at
high tide (m)

Min. 1.11 1.33 1.41

Max. 1.95 2.84 2.64

x̄ ± σ 1.81 ± 0.06 2.03 ± 0.05 2.10 ± 0.04

Current velocity at
low tide (m/s)

Min. 1.88 1.42 1.73

Max. 2.23 2.59 2.80

x̄ ± σ 2.02 ± 0.03 1.99 ± 0.02 2.01 ± 0.05

Current velocity at
high tide (m/s)

Min. 0.98 0.68 0.97

Max. 1.34 1.23 1.69

x̄ ± σ 1.21 ± 0.01 0.89 ± 0.01 1.30 ± 0.02

Min.: minimum; Max.: maximum; x̄: average; σ: standard deviation; N=8 (for each sampling
site)
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electrical conductivity was. At the same time, the resistivity of these
waters was low. Overall, the pressure was slightly lower at high tide
than at low tide. Nevertheless, the lowest value (1015.73 mbar) was
recorded at high tide in Mpalla in SDS (Figure 2H).

Diversity, distribution, and abundance of helminths

In this study, five species of intestinal helminths were identified in
the waters of Kribi beaches. They belong to the Cestode class
(Hymenolepis nana) and Nematode phylum (Strongyloides sp.,
Ascaris sp., Ancylostoma duodenale and Trichuris trichiura). Their
abundances varied from one station to another and especially with
tidal cycles (Table 2).

The eggs of H. nana were identified at all sites during low tide,
while at high tide they were scarce. Maximum concentrations
were recorded in LDS at low tide (18 eggs/L) and in SDS at high
tide (35 eggs/L) at Ngoyè (Figure 3A). Mboamanga beach was the
least contaminated withH. nana. Larvae of Strongyloides sp. were
identified at all the sites sampled. On the beaches of Mpalla,
Ngoyè, and Mboamanga, we counted, on average, 15, 34, and
13 Strongyloides sp. larvae per liter of water at high tide versus
21, 44, and 26 larvae/L at low tide, respectively. Regardless of the
tidal cycle, the waters of Ngoyè had a high concentration of
Strongyloides sp. larvae in contrast to the other beaches
(Figure 3B). Across the study period, the abundance of Ascaris
sp. eggs was three times higher at low tide than at high tide
(Figure 3C). Across all sites, an average of 17 eggs/L was noted
at high tide, against 50 eggs/L counted at low tide. During the
study period and regardless of the tidal cycle, noA. duodenale eggs
were identified in Mpalla (Figure 3D). Ngoyè beaches were the
most contaminated, with an average of 18 eggs/L counted at low

tide and 75 eggs/L at high tide. Unlike the other intestinal hel-
minths, T. trichiura showed very low abundance at all the sites
surveyed (Figure 3E). At Mpalla beach, a mean value of 3 eggs/L
was recorded at high tide against 16 eggs/L at low tide. At Mboa-
manga, T. trichiura eggs were only identified in LDS at low tide
(3 eggs/L).

Correlation between physicochemical and biological
variables

At all the beaches surveyed, significant correlations were
revealed between certain physicochemical and microbiological
parameters. At Mpalla, a positive and significant correlation was
observed, at low tide, between concentration of T. trichiura eggs
and total dissolved solids (r = 0.821, P = 0.047). At Ngoyè,
positive and significant correlations were observed, at low tide,
between concentrations of Strongyloides sp. larvae and dissolved
oxygen (r = 0.781, P = 0.039, and r = 0.728, P = 0.042); and
between concentrations of A. duodenale eggs and temperature
(r = 0.836, P = 0.041, and r = 0.735, P = 0.036). At Mboamanga, at
low tide, concentrations of Strongyloides sp. and Ascaris sp. were
positively correlated with temperature (r = 0.738, p = 0.040, and
r = 0.733, P = 0.039). In contrast, at high tide, concentration of
T. trichiura eggs was negatively correlated with pH (r = -0.738,
P = 0.041).

Discussion

In Kribi, rivers and beaches are used extensively by the populations
(Batanga, Ngoumba, Mabéa, etc.) for bathing, washing dishes,
laundry, fishing, and even for traditional ceremonies (Assako

Figure 2. Physicochemical variables according to seasons and tidal cycles. SRS: Short Rainy Season; SDS: Short Dry Season; LRS: Long Rainy Season; LDS: Long Dry Season.
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Assako et al. 2010). However, poor management of these aquatic
ecosystems can make the water resource dangerous, exposing
populations to health risks (Nana et al. 2023a).

Globally, helminthiasis is one of the most common infections in
the world, disproportionately impacting the poorest and most
disadvantaged communities (WHO 2019). These infrections are
transmitted by eggs in human excreta, which contaminate soil and
water where sanitation conditions are inadequate (Schiefke et al.
2006; Walusimbi et al. 2023). All the helminth species identified in
this study are potentially responsible for human disease.H. nana is
a cestode responsible for hymenolepiasis. It manifests itself through
abdominal pain, nausea, slight emaciation, and anemia in case of
massive infestation (Ikumapayi et al. 2019; Coello Peralta et al.
2023). Strongyloides sp. is a nematode responsible for Strongyloi-
dosis or anguillulosis or “cutaneous larva migrans”. It causes skin
lesions at the point of larval entry, possible inflammatory pulmon-
ary reaction with dry cough during larval migration, enteritis with
abdominal pain, and diarrhoea (Schär et al. 2013; Lupia et al. 2023).
Ascaris sp. is a nematode, responsible for ascariasis. At the begin-
ning, the disease is manifested by respiratory disorders with fever at
38°C, dry cough, sometimes productive coughing, and breathing
difficulties. Later on, digestive disorders, nausea, vomiting, abdom-
inal pain, loss of appetite, and diarrhoea can emerge (Silver et al.
2018; Holland et al. 2022). A. duodenale is a nematode, responsible
for hookworm disease or Ankylostomiasis. It manifests itself
through itchy skin, followed by a skin rash on the feet and hands,
and then bronchitis with coughing fits. It later evolves towards the
chronic form with notable digestive and nervous disorders and
anemia (Kucik et al. 2004; Walusimbi et al. 2023). T. trichiura is
a nematode responsible for trichuriasis. It is more often benign or
asymptomatic. If the parasite is abundant, colic (abdominal pain,
diarrhoea) can be complicated by rectal hemorrhaging (Badri et al.
2022; Guilavogui et al. 2023). These species have been identified on
Kribi beaches where tidal conditions had an impact on the quality

and abundance of the helminth larvae or eggs. Contamination is
favored at low tides by low flows, due to less dilution of water
(Madani et al. 2020). At the shoreline level, periods of spring tides,
due to high tidal coefficients, would be the most favorable for the
dilution of pollution (Kraus et al. 2022; Nana et al. 2023b). These
conditions would favor high concentrations of parasites in the
water at low tide. Whether in Mpalla, Ngoyè, or Mboamanga, the
highest concentrations of Strongyloides sp. larvae and Ascaris
sp. eggs are linked to the great capacity of these parasites to adapt
to variations in environmental conditions (Fotseu Kouam & Ajea-
gah 2019; Manezeu Tonleu et al. 2021). In contrast, the low abun-
dance of T. trichiura eggs in all the sampled sites could be related to
the high salinity of the waters.

It is possible to identify several causes of contamination that can
explain the arrival of these faecal microorganisms on the Kribi
beaches in lower vs. higher quantities. The contamination from
human beings is mainly related to a total absence of wastewater
treatment systems in this seaside town. Indeed, the city of Kribi,
which has experienced a demographic boom in recent years, has no
real wastewater and sewage sludge treatment system (Assako
Assako et al. 2010). Wastewater treatment plants are non-existent.
Naturally, any absence or defect in the collective sanitation system
can lead to the discharge of untreated water into the aquatic
environment, resulting in the introduction of potentially patho-
genic micro-organisms into the natural environment (Basili et al.
2021; Rodríguez et al. 2021; Oduro et al. 2023). Non-sewage facil-
ities can also generate contamination if they do not comply and
discharge untreated effluent into the natural environment
(Mohammed et al. 2012; Soto-Varela et al. 2021). Other activities
practiced on the Kribian coast could lead to the input of helminths
from humans into the environment, particularly recreational activ-
ities, especially when boats are inhabited and do not have a sewage
recovery system. Faecal pollution due to these activities is mainly
located in marinas and fishermen’s camps. Contamination linked

Table 2. Helminth eggs or larvae abundance recorded in the different sites

Mpalla Ngoyè Mboamanga

High Tide Low Tide High Tide Low Tide High Tide Low Tide

Hymenolepis nana (eggs/L) Min. 0 15 0 10 0 10

Max. 5 24 18 35 1 24

x̄ ± σ 2 ± 1 18 ± 4 11 ± 2 22 ± 2 1 ± 0 14 ± 4

Strongyloides sp. (Larvae/L) Min. 5 10 20 22 3 11

Max. 22 48 60 63 32 47

x̄ ± σ 15 ± 3 31 ± 4 34 ± 3 44 ± 4 13 ± 2 26 ± 2

Ascaris sp. (eggs/L) Min. 5 28 0 28 0 23

Max. 37 72 35 75 32 58

x̄ ± σ 21 ± 5 59 ± 7 21 ± 3 59 ± 8 10 ± 2 34 ± 4

Ancylostoma duodenale (eggs/L) Min. 0 0 11 42 2 12

Max. 0 0 28 108 11 32

x̄ ± σ 0 ± 0 0 ± 0 18 ± 4 76 ± 11 5 ± 1 18 ± 3

Trichuris trichiura (eggs/L) Min. 0 4 0 4 0 0

Max. 7 24 1 5 0 3

x̄ ± σ 3 ± 1 16 ± 2 1 ± 0 5 ± 2 0 ± 0 1 ± 0

Min.: minimum; Max.: maximum; x̄: average; σ: standard deviation; N=8 (for each sampling site)
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to recreational activities (swimming, restaurants) remains second-
ary (Weiskerger et al. 2019; WHO 2021).

Rainfall would thus constitute one of the main vectors for the
dissemination of helminth eggs or larvae (Manz et al. 2017; Di
Biase &Hanssen 2021). These contaminations could also be due to
industries, especially agri-food industries, if their effluents are not
properly treated, or to wildlife, especially poultry (Yahya et al.
2017; Edge et al. 2021). Indeed, the lack of a solid and liquid waste
collection and treatment system in the city of Kribi is conducive to
the deposition of sediment, which would promote the develop-
ment of microorganisms that would be evacuated to the beaches
during rainy episodes.

In the city of Kribi, wastewater disposal is generally done
individually. That which is produced by households is discharged

into the environment. Apart from a few homes that have modern
cesspits (about 15%), most people pour their wastewater into the
yard or into poorly equipped traditional latrines in the open. The
flatness of the land and the presence of multiple geomorphologic
depressions result in that domestic wastewater being discharged
into nature, obviously without any treatment, creating numerous
stagnation points where a string of pathogenic microorganisms,
parasites, and infectious disease vectors develop (Assako Assako
et al. 2010). As for hotels, generally located on the coast, their septic
tanks are emptied by private emptying companies from Douala.
This waste is taken to the Bois des Singes wastewater dump in
Douala, although it is not impossible that some of these trucks are
emptied into the rivers (Nyong, Kienké) that cross the Kribi-Douala
road (Assako Assako 2005).

Figure 3. Helminth eggs or larvae abundanceaccording to seasons and tidal cycles. (A) Hymenolepis nana; (B) Strongyloides sp.; (C) Ascaris sp.; (D) Ancylostoma duodenale;
(E) Trichuris trichiura. SRS: Short Rainy Season; SDS: Short Dry Season; LRS: Long Rainy Season; LDS: Long Dry Season.
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Bathing in water of poor microbiological quality, such as that of
the Kribi beaches, thus presents health risks and can lead to
infections, mainly gastroenteritis, with varying severity depending
on the helminths involved and the concentration of helminth eggs
or larvae in the medium (WHO 2006; Saingam et al. 2020). In rare
cases, contaminated water can also lead to more serious infectious
diseases such as typhoid, cholera, etc. (WHO 2006; 2021). In
addition to the health issue, water contamination by helminth eggs
or larvae is also an economic issue, since it can lead to the down-
grading, or even the closure, of bathing or recreational fishing areas
and thus impact tourism to a greater or lesser extent (Martínez et al.
2007).

Conclusion

The main objective of this study was to evaluate the influence of
tides on the dissemination of intestinal helminths in the waters of
the seaside town beaches of Kribi. It was found that the waters of the
beaches surveyed are subject to microbiological pollution because
they concentrate large quantities of helminth larvae or eggs. This
high concentration, which is more pronounced at low tide than at
high tide, has potential public health significance. If the developed
countries have been able to set up sanitation systems that are still to
be perfected, it should be noted that in African cities, in particular
Kribi (Cameroon), the issue of efficient waste management in
general and wastewater in particular should represent a major
concern for the authorities and the populations. To limit micro-
biological and parasitic pollution of the Kribi beaches, it is urgent
that municipal authorities define and implement an efficient plan
for the collection and treatment of solid and liquid waste.
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