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Abstract
This article presents a review of the platform configuration and dynamic of obstacle-surmounting unmanned ground
vehicles (UGVs). For now, unmanned systems have emerged as a result of the rapid advancement of artificial intel-
ligence and modern manufacturing techniques both domestically and internationally. The research on unmanned
systems has been improved a lot. The UGV platform can execute transportation, recurring, and military tasks
independently. For the high-level self-control, adaption, and maneuverability abilities, the UGV platform has been
applied in the military, industry, and other special fields widely. The UGV platform usually performs tasks in an
unstructured environment, so the all-terrain performance becomes a key factor restricting their operating efficiency
and reliability. A brief literature review of the UGV platform is carried out in this article.

1. Introduction
Over the last few decades, interest in the unmanned ground vehicle (UGV) platform has grown steadily,
not only among universities but also among some vehicle manufacturers. The UGV platform usually
performs tasks in an unstructured environment, except for the driverless technology. The all-terrain per-
formance is a key factor restricting their operating efficiency and reliability. In the structured scenario,
the environment perception technique has a good performance but still has some enhanced space in the
unstructured environment. The new obstacle-surmounting design and structure determine the terrain
mobility and adaptive limitations of the UGV platform. As a result, researching adaptive obstacle-
surmounting mechanisms is critical to improving the mobility of unmanned platforms by compensating
for lack of perception ability in a complex environment.

The UGV platform commonly takes the remote control or autonomous mobile vehicle as the base,
equipped with operation devices to meet the needs of different application fields. Through the integra-
tion of a multi-mode walking mechanism and electromechanical hydraulic complex drive mode and
control technology, the UGV platform has excellent maneuvering performance, autonomous control
performance, and good adaptive ability in the aspects of driving on the regular road surface, obstacle
climbing, ditch crossing, steering, and path planning. According to the land locomotion system of plat-
forms, the UGV platform can be divided into wheeled, tracked, legged, and complex UGV platform
(shown in Fig. 1). For clarity of presentation, we review each configuration separately in Section 2.

The earliest research on the UGV platform could date back to the 1930s, the Soviet Union and
Germany developed radio-controlled tanks [1, 2] (shown in Fig. 2) during the world war II period,
they could carry out operations like handling explosives, delivering weapons, and remote track steering
over field terrain. These UGV platforms were not reliable in practical application due to limitations in
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Figure 1. Classification of obstacle-surmounting unmanned ground vehicle platform.

Figure 2. Early unmanned ground platforms: (a) the Soviet Union light tank T-26 [1]; (b) the Germany
explosive ordnance disposal vehicle Goliath [2].

information techniques, design, manufacture, their versatility, and autonomy were insufficient to meet
practical application requirements. However, it has improved the conceptual design idea for the research
on the UGV platform.

The first true autonomous driving unmanned ground platform was created in the late 1960s. The
Defense Advanced Projects Agency (DARPA) teamed up with Stanford University to develop the indoor
wheeled mobile vehicle SHAKEY [3] (shown in Fig. 3), which could make decisions about how to travel
depending on information about the surroundings, making it the first generation mobile vehicle. It was
equipped with ultrasonic sensors, cameras, and tactile sensors and could perform some simple tasks
such as navigation, obstacle avoidance, and path planning indoors. The research realized autonomous
driving from the angle of sensor and control, which laid the foundation for the development of unmanned
ground platforms. Due to the limitations of computer science technology and the simple design of the
driving mechanism, the vehicle was only limited to the ideal indoor environment.

To improve the unmanned ground platform’s off-road performance and enable it to adapt to the field’s
unstructured operating environment, from the early 1980s to the late 1990s, when DARPA started some
projects for instance, the Autonomous Land Vehicle (ALV) [4] (shown in Fig. 4) was a 12-foot-tall,
eight-wheeled robot with multiple sensors, tasked with going from point A to point B without human
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Figure 3. Wheeled mobile vehicle Shakey [3].

Figure 4. Autonomous land vehicle (ALV) [4].

intervention in the hills outside of Denver. The ALV off-road speed reached 5 km/h in 1985 and increased
to 10 km/h in 1989.

Then, the UGV platform developed by the United States includes Prowler (an uncrewed patrol
vehicle), TOV (Teleoperated vehicle)-series remote ground vehicles, etc. These research projects
were geared to outdoor road environments, using multiple sensor fusion technology, intelligent con-
trol algorithm, and other technologies. The research on the UGV platform has changed in recent
years from the perceptual decision-making approach to the research of high mobility to boost the
adaptability of the UGV platform in difficult terrain. Its main goal was to increase high mobility
through a high-performance adaptive mechanism and its dynamic performance to compensate for
UGVs’ limited capacity for autonomous perception and obstacle-crossing performance in complicated
environments.
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Figure 5. Wheeled type UGV platform: (a) the squad mission support system(SMSS) [5]; (b) Israeli
off-road platform Guardium [6]; (c) the Laska 2.0 URP [7]; (d) Rheinmentall Mission Master [8].

2. Research status of UGV platform
The obstacle-surmounting mechanism of an unmanned ground platform may be classified into wheeled,
tracked, legged, and complex mobile types according to the design of the high-mobility system. The
typical UGV platform with these configurations is introduced in this section.

2.1. Wheeled type UGV platform
Wheeled UGV platform is well suited for completing transportation and supply activities in a field
setting because of their quick acceleration and straightforward control scheme. One classic example
is the rigid suspension unmanned platform, which has a specific design but has poor high-frequency
ground vibration absorption due to the absence of a suspension system.

The Squad Mission Support System (SMSS) vehicle [5] (shown in Fig. 5(a)), developed by Lockheed
Martin in 2005, was a 6×6 amphibious UGV platform, within 1.7 ton weight, 3.6 m long, 1.8 m wide,
and 2.1 m height. It could go past barriers that are 0.55 m deep or 1.7 m wide. Besides, it had ade-
quate dynamic performance even if it could not alter ground clearance. The Guardium vehicle [6]
(shown in Fig. 5(b)), developed by Israel G-UNIUS company in 2005, was 1.4 ton weight, 2.95 m long,
1.8 m wide, and 2.2 m height. Its speed could reach 80 km/h in the off-road environment. Zaporizhzhia
company Infocom had developed a robotic structure Laska 2.0 [7] (shown in Fig. 5(c)), designed for
patrolling, surveillance, demining, delivery of ammunition, and evacuation of the wounded. The Laska
2.0 URP was based on a 4×4 wheeled chassis with fixed and mobile platform configurations. Laska
2.0’s base platform was 2.27 m long, 1.3 m wide, and 0.95 m high. The amount of ground clearance of
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this UGV was 220 mm. In 2018, during the EUROSATORY arms exhibition, the German company
Rheinmetall AG presented a relatively mature modular UGV platform demonstrator called Mission
Master [8] (shown in Fig. 5(d)), which could be used as a platform for multiple applications. It could be
used for tactical surveillance, chemical, biological, radiological, and nuclear detection, medical evacua-
tion operations, and communications relay missions. This all-terrain UGV was built on an 8×8 platform
that is 2.95 m long and weighs around 750 kg. In amphibious operations, it could carry up to 400 kg and
had a maximum load capacity of 600 kg.

Furthermore, there are other studies on the UGV platforms with wheels. Lee [9] proposed an angled
spoke-based wheel design to enhance the driving speed of a mobile robot. Chen [10] researched an
all-terrain mobile robot with a linkage suspension, and its complex kinematics and dynamic model are
studied. Aaron [11] demonstrated the design and development of a novel custom-built, autonomous
scaled multi-wheeled vehicle that features an eight-wheel drive and eight-wheel steer system. Daniel
[12] presented a Four-Wheeled Independent Drive and Steering (4WIDS) robot named AGRO (Agile
Ground Robot) and a method of controlling its orientation while airborne using wheel reaction torques.
Nikitenko [13] proposed an eight-wheel platform. The platform’s wheels are coupled in pairs using
movable joints. Each of the joints is independent of others thus allowing to maintain excellent contact
with ground or obstacles. Son [14] demonstrated a mobile robotic platform that uses a normal wheel and
a curved-spoke tri-wheel (CSTW). The normal wheel is used for driving on flat terrain, and the CSTW
is used for stair climbing. Edgar [15] developed a general kinematic control law for automatic multi-
configuration of four-wheel active drive robots. Jia [16] presented an amphibious soft-rigid wheeled
crawling robot consisting of a soft-rigid body actuated by two soft pneumatic actuators (SPAs), four
wheels, and four annular soft bladders (ASBs) as brakes. Kim [17] researched a new mobile platform
with two degree of freedom (2-DOF) transformable wheels for service robots, which can overcome steps
and stairs of various sizes encountered in indoor environments.

2.2. Tracked type UGV platform
The wheeled platform’s high grounding-specific pressure makes it vulnerable to sinking on soft surfaces.
Instead, the tracked construction has a low grounding-specific pressure, making it ideal for usage in soft
soil and typical in the wild [18]. A typical tracked type UGV platform usually includes double-track
forms and multi-track ones. The double-track form is the traditional double-track walking configuration.
Additionally, the multi-track one builds on the double-track design and adds a deformable mechanism
that helps the platform perform better while navigating obstacles.

Foster-Miller’s TALON [19] (shown in Fig. 6(a)) was a remote-controlled reconnaissance platform
that could be outfitted with a rifle, grenade launcher, or incendiary weapon. The system was made of
several sensor components and is modular in design. It could be utilized in all terrain and environmental
circumstances and had an excellent payload-to-weight ratio. A more straightforward method than the
SMSS, the Titan [20] (shown in Fig. 6(b)), consisted of a platform supported by two diesel-electric
hybrid tracks, with mission-specific controls and automation being contained in modular payload frames.
The multi-mission UGV Titan could be rearranged to increase mission effectiveness. It had a cargo bay
area that was 72 in by 48 in, 79 in long, 83 in broad, and 40 in high. A maximum payload of 1500 pounds
was possible. The new generation of the Russian unmanned ground vehicle Uranus-9 [21] (shown in
Fig. 6(c)) had been tested on the Syrian battlefield. It could march and hunt for targets on its own. The
body of the Uranus-9 was a small, track-shaped armored vehicle that was 4.5 m long, 2 m wide, and 1.4 m
high. With a total weight of 10 tons, it had a top speed of 40 km/h. Additionally, it could climb barriers
up to 1.2 m high. The American iRobot company developed a four-track unmanned platform Packbot
[22] (shown in Fig. 6(d)) with double swing arms. Packbot could traverse ditches and ascend stairs with
its swing arm while still keeping its feet firmly planted on uneven roadways. Mourikis and Yunwang
researched active obstacle-surmounting control and obstacle-surmounting kinematics mechanism of this
type of platform, respectively. Their findings showed that tracked platforms with swing arms performed
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Figure 6. Tracked type UGV platform: (a) the Foster-Miller’s TALON [19]; (b) the Qinetiq Titan [20];
(c) Russia UGV of Uranus-9 [21]; (d) American iRobot of Packbot [22].

better while navigating obstacles [23, 24]. Besides, there are other researches on tracked type UGV
platform [25–27].

2.3. Legged type UGV platform
It is common knowledge that walking on bumpy roads is best done on wheeled or tracked platforms.
However, the effectiveness of these two platforms will be much diminished in rugged hilly terrain with
numerous barriers like weeds and plants. Based on the bionic mechanism of the footed animal, the
legged type UGV platform can realize autonomous identification and overcome obstacles by controlling
the discrete gait of the legs [28].

To study the development of intelligent autonomous legged mobility in challenging and unstruc-
tured terrain, the LLAMA [29] (shown in Fig. 7(a)) quadrupedal robotic platform was developed.
The LLAMA could move at 1.2 m/s in all directions. Moreover, LLAMA could move swiftly and
carry weights thanks to its revolutionary designs and specially made, customizable movement systems.
ANYmal [30] (shown in Fig. 7(b)) was a quadrupedal platform designed to be highly mobile and durable
for autonomous operation under challenging conditions. ANYmal was created with exceptional mobility
and dynamic motion capabilities, allowing it to sprint and easily climb enormous barriers. “ANYmal”
denoted that the platform could move steadily and any place to assist people in hazardous industrial set-
tings. Atlas [31] (shown in Fig. 7(c)), a bipedal humanoid robotic platform created by Boston Dynamics,
had a stable control strategy and environmental awareness technologies that enabled it to carry objects
and execute movements like climbing stairs and leaping. Additionally, in certain unique situations,
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Figure 7. Legged type UGV platform: (a) the quadrupedal robotic platform LLAMA [29]; (b) the
quadrupedal robotic platform ANYmal [30]; (c) the bipedal humanoid robotic platform Atlas [31]; (d)
the quadrupedal robotic platform Cheetah [32].

it could do tasks that people would typically perform. MIT researched the quadrupedal robotic plat-
form named Cheetah [32] (shown in Fig. 7(d)), which had real-time planning of gait through model
predictive control based on force feedback. It had excellent real-time control capabilities and can react
swiftly to ongoing impediments like stairs and walking patterns.

There are other research on UGV platforms with legs as well. Dennis [33] developed a neural con-
trol mechanism for hexapod robots which generates basic walking behavior and especially enables them
to effectively perform reactive climbing behavior. Xiong [34] presented the design and validation of
controlling hopping on the 3D bipedal robot Cassie. A spring-mass model is identified from the kine-
matics and compliance of the robot. In ref. [35], a comprehensive review of the technologies crucial
for bipedal humanoid robots was performed. Different mechanical concepts have been discussed, along
with the advancements in actuation, sensing, and manufacturing. Liu [36] researched a miniature bipedal
robot named Bipedal Robot Unit with Compliance Enhanced (BRUCE). Each leg of BRUCE has five
degrees of freedom (DoFs), which includes a spherical hip joint, a knee joint, and an ankle joint. In
ref. [37], an eight-legged spider type mobile robot was designed. Klann type walking mechanism with
one degree of freedom has been designed for the robot to overcome the obstacles and move in a bal-
anced way. In ref. [38], the ideal coupler curve was drawn using the “Cinderalla” program for the mobile
robot with “Strandbeest” walking mechanism to move on a smooth surface and the link distances that
provided this curve were determined. Huang [39] demonstrated a reactive planning system for bipedal
robots on unexplored, challenging terrains. Daniel [40] explored improvements to both physical and
control methods to a quadrupedal system in order to achieve fast, stable walking, and trotting gaits.
Kiss [41] developed a 0.49 m tall, 2.2 kg anthropomorphic bipedal robot. Roennau [42] presented the
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design and development of the new six-legged walking robot with its improved kinematics and robust
mechanical structure. Katz [43] proposed a small and inexpensive, yet powerful and mechanically robust
quadruped robot, intended to enable rapid development of control systems for legged robots. Ding
[44] researched a novel representation-free model predictive control (RF-MPC) framework for con-
trolling various dynamic motions of a quadrupedal robot in three-dimensional (3D) space. Dettmann
[45] demonstrated a navigation and locomotion control system that enables legged robots to be able to
perceive the terrain, to plan a path to a desired goal, and to control the path execution while traversing
unconsolidated, inclined, and rugged terrain. Hendrik [46] explored a 22 kg quadruped robot exploits
lunar gravity conditions to perform energy-efficient jumps. The robot achieves repetitive, vertical jumps
of more than 0.9 m and powerful single leaps of up to 1.3 m. Kolvenbach [47] presented experimental
work on traversing steep, granular slopes with the dynamically walking quadrupedal robot.

2.4. Complex mobile type UGV platform
Legged type UGV platforms have a better capacity to adapt to rough terrain. Still, their motion
mechanism must be built on a complicated control algorithm, which raises more complex computer con-
figuration requirements. A novel configuration known as the wheel-leg complex mobile type platform
[48] was created by fusing the fast speed of the wheeled type platform with the potent obstacle-
surmounting abilities of the legged type platform. It has become a hub for UGV platform research
because of its excellent mobility and adaptability. Deformable and non-deformable platforms are both
included in the wheel-leg complex mobile type UGV platform, generally speaking. The deformable one
alludes to the platform’s changing configuration being realized in the shape of a transmission mecha-
nism. Next, the structural adjustment between the leg and the wheel is made following the characteristics
of the terrain. In contrast, the non-deformable one relates to the selection of the structural form. Passive
adaptive or attitude control will also change postures. It is often a non-deformable platform in the field
of UGV platform to reduce the complex mechanism and increase dependability.

The Federal Institute of Technology in Lausanne (EPFL) researched the wheel-leg complex mobile
type platform Shrimp [49] (shown in Fig. 8(a)) based on a parallel four-bar suspension. The redundant
link mechanism’s purpose was to maintain all-terrain contact with the ground. While doing so, it could
navigate obstacles by modifying the front wheel fork’s spatial location. Its dead weight was merely
3.1 kg, but the obstacle’s maximum height was almost double that of the wheel. Tencent Robotics X
laboratory proposed a novel wheel-leg complex mobile type platform Ollie [50] (shown in Fig. 8(b)),
which was composed of one floating-based body, two legs ending with active wheels, and one balanc-
ing tail ending with a passive revolution. Ollie was capable of using both his legs and wheeled vehicles.
The wheeled frame traveled quickly and efficiently, and the portion helped it to adjust to rough terrain.
The latest incarnation of ANYmal was named Swiss-Mile [51] (shown in Fig. 8(c)). Like the original
ANYmal, Swiss-Mile had four legs. Additionally, these legs had wheels affixed to them for rolling and
walking. It could still walk like a quadruped by locking the wheels on the ends of those legs when
necessary. These three-wheeled, three-leg complex mobile platforms were highly mobile and terrain-
adaptable. It could thus be used in a variety of domains, including space robotics. TALBOT [52] (shown
in Fig. 8(d)) was a tracked-leg transformable robot. To adapt to any terrain, the robot can convert between
the tracked and legged modes thanks to its original tracked-leg transformable structure. Talbot is con-
trolled in tracked mode via the technique of differential speed between the two tracked feet. In order to
generate and convert gait, TALBOT is controlled in the legged mode using a bionic control technique
of the central pattern generator. A revolutionary wheel-legged UGV known as “Dragon Horse” [53]
(shown in Fig. 8(e)) was presented. The obstacle-surmounting strategy was inspired by a horse crossing
the fence. The platform included four swinging, horse-like arms that enabled the UGV to quickly climb
a vertical barrier by carefully organizing the position of its components. Equipped with a hydraulic
drive system, the Horse Dragon had outstanding cargo capacity and enough power to handle a climb-
ing scenario. Ascento [54] (shown in Fig. 8(f)) was a two-wheeled balancing robot with the ability to
move swiftly over flat terrain and jump over obstacles. The mechanical design of the system, which was
3D-printed and topology-optimized, had proven to be both light and impact-resistant.
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Figure 8. Complex mobile type UGV platform: (a) EPFL wheel-leg type platform Shrimp [49]; (b)
Tencent Robotics X laboratory Ollie [50]; (c) the latest incarnation of ANYmal: Swiss-Mile [51]; (d)
tracked-leg transformable robot platform TALBOT [52]; (e) a horse inspired eight-wheel ugv Dragon
Horse [53, 55]; (f) wheel-leg jumping robot platform Ascento [54].

Furthermore, there are other researches on complex-type UGV platforms as follows. In ref. [56], a
modified rocker-bogie mechanism that improves mobility using only two actuators and a damper is pro-
posed. Choi [57] suggested a new performance metric for a mobile platform called as a posture variation
index to evaluate the smoothness of its movement, which is an important factor in predicting undesired
oscillations or shocks on a mobile platform while traveling on rugged terrain. Avinash [58] discussed the
development of an optimal wheel-torque controller for a compliant modular robot. The wheel actuators
are the only actively controllable elements in this robot. For this type of robot, wheel-slip could offer a lot
of hindrances while traversing on uneven terrains. Tobias [59] proposed a navigation planning method
that generates hybrid locomotion paths. The planner chooses the driving mode whenever possible and
takes into account the detailed robot footprint. Fahad [60] presented a control framework to improve the
stability and robustness of an underactuated self-balancing wheel-legged robot using its upper limb arm.
Edo [61] demonstrated a combined sampling and optimization-based planning approach that can cope
with challenging terrain. The sampling-based stage computes whole-body configurations and contact
schedule, which speeds up the optimization convergence. Munzir [62] addressed a whole-body control
framework for Wheeled Inverted Pendulum (WIP) Humanoids. WIP Humanoids are redundant manip-
ulators dynamically balancing themselves on wheels. Victor [63] presented a hierarchical whole-body
controller leveraging the full rigid body dynamics of the wheeled bipedal robot Ascento. In ref. [64],
a novel articulated wheel-legged forestry chassis is presented. To balance the terrain mobility and sta-
bility, a serial suspension system which is a combination with the active four-bar linkage articulated
suspension and passive V shape rocker-bogie is proposed. In ref. [65], a reactive control scheme that
exploits wheels steering and robot articulated legs is proposed to continuously adjust the robot support
polygon in response to unknown disturbances. Marko [66] researched an online trajectory optimization
framework for wheeled quadrupedal robots capable of executing hybrid walking-driving locomotion
strategies. In ref. [67], a whole-body dynamic model is built. It consisted of the torso dynamic model,
the wheel-leg dynamic model, and the contact force constraint between the wheels and the ground.
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Table I. Summary of worldwide research status of UGV platforms.

Model Name Institution/Co Country Year Locomotion
SMSS [5] Lockheed Martin USA 2005 Wheeled
Guardium [6] G-UNIUS Israeli 2005 Wheeled
Laska 2.0 URP [7] Infocom Ukraine 2018 Wheeled
Mission Maste [8] Rheinmetall AG Germany 2018 Wheeled
TALON [19] Foster-Miller USA 2000 Tracted
Titan [20] QinetiQ England 2016 Tracted
Uranus-9 [21] Kalashnikov Russia 2016 Tracted
Packbot [22] iRobot USA 2003 Tracted
LLAMA [29] ARL JPL USA 2019 Legged
ANYmal [30] ETH Zurich Switzerland 2016 Legged
Atlas [31] Boston Dynamics USA 2016 Legged
Cheetah [32] MIT USA 2017 Legged
Shrimp [49] EPFL Switzerland 2002 complex
Ollie [50] Tencent China 2021 complex
Swiss-Mile [51] ETH Zurich Switzerland 2021 complex
TALBOT [52] HKU China 2022 complex
Dragon Horse [53] CSU China 2020 complex
Ascento [54] ETH Zurich Switzerland 2019 complex

Pico [68] presented a mobile robot for delivery services that use laser scanning sensors to recognize
the local geometry of the terrain, using the contact angle parameter that gives information regarding the
surface that the wheel touches the ground. Sun [69] proposed a control framework to tackle the hybrid
locomotion problem of wheeled-legged robots. Medeiros [70] demonstrated a trajectory optimization
formulation for wheeled-legged robots that optimizes over the base and wheels’ positions and forces and
takes into account the terrain information while computing the plans. Viragh [71] addressed a trajectory
optimizer for quadrupedal robots with actuated wheels. Du [72] developed a more general dynamics
controller to generate whole-body behaviors for a quadruped-on-wheel robot.

Table I is summarized to present the worldwide research status of UGV platforms.

3. Research status of obstacle-surmounting mechanism and its performance
The UGV platform’s working environment is typically unstructured and full of obstacles, includ-
ing vertical walls, ditches, slopes, smooth pavements, and wading regions. The obstacle-surmounting
mechanism is the fundamental factor that restricts the terrain mobility of the UGV platform. As a
result, the obstacle-surmounting process has been the subject of pertinent study from several research
organizations.

3.1. Overview of a typical obstacle-surmounting mechanism
According to the type of interaction with the ground, typical obstacle-surmounting techniques are often
categorized into continuous and discrete mechanisms. Continuous mechanism, which is often based on
wheeled and tracked designs, refers to a walking mechanism that keeps continuous contact with the
ground. Meanwhile, discrete mechanisms, which are often based on leg shape, are in discrete contact
with the ground.

The articulated mechanism moves like an inchworm and has degrees of freedom for pitch and roll. On
sloping roads, it performs superbly in terms of contact retention. Nowadays, all-terrain mobile platforms
with articulated mechanisms are frequently utilized in tandem. The University of Paris VI (UPMC)
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Figure 9. Articulated mechanism type UGV platform: (a) UPMC three-body tandem wheeled robot
RobuROC6 [73]; (b) two-body articulated serial unmanned platform Longma No.1 [74]; (c) a trans-
formable tracked robot Amoeba2 [75]; (d) a mobile multi-robot system JL2 [76].

developed a three-body couple-wheeled robot RobuROC6 [73] (shown in Fig. 9(a)) with a hydraulic
cylinder and roll joint. The hydraulic cylinder’s telescopic drive propelled the robot’s pitching motion,
enabling obstacle crossing. The roll joint was a weakly actuated joint that could automatically adjust
to challenges like ground depressions or bumps. Sunward Intelligent Equipment Company and Central
South University applied the hydraulic articulation mechanism to the heavy-duty UGV platform, which
developed a two-body articulated serial unmanned platform named “Longma No.1” [74] (shown in
Fig. 9(b)). The obstacle-surmounting height of this platform could reach 1.5 times the tire’s diameter.
The Shenyang Institute of Automation, Chinese Academy of Sciences, and Beihang University applied
the articulated mechanism to the tracked robot [75, 76] (shown in Fig. 9(c,d)). They created a recon-
figurable robot with the ability to adapt to the ground environment and modify its overall design in
response to the terrain.

In addition, the Japan Defense University proposed a wheeled platform based on a complex wheel
sets mechanism [77] (shown in Fig. 10(a)). Using planetary gears or hydraulic actuators, the independent
wheels were joined together to create wheel sets, increasing the wheel diameter in a theoretical envelop-
ing and enhancing obstacle-surmounting performance. The rocker arm suspension system [78, 79]
(shown in Fig. 10(b)) could keep complete contact with the ground on bumpy roads and adjust to terrain
characteristics since it was an underactuated mechanism. As a result, planetary exploration spacecraft
frequently deployed it. This design had been investigated and used by several research organizations
worldwide. Mechanism and transmission mechanics concepts were used to achieve changeable struc-
tural behavior in the deformable obstacle-surmounting mechanism. To increase versatility, multiple
setup strategies were used for various terrains. Deformable wheel [80, 81] (shown in Fig. 10(c)) based
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Figure 10. Other typical obstacle-surmounting mechanism: (a) a complex wheel sets mechanism [77];
(b) a rocker arm suspension mechanism [78, 79]; (c) a deformable Mechanism [80, 81]; (d) an inchworm
mechanism [82].

on the crank-slider principle researched by Ohio State University and Tianjin University, which could
convert from a wheeled configuration to a legged design when obstacle-surmounting. The ability to
obstacle-surmounting significantly improved. Additionally, research organizations have put forward var-
ious bionic obstacle-surmounting processes based on researching animals’ motion mechanisms and their
capacity to adapt to multiple terrains in the field. The classic example was a crawling robot powered by
electromagnetic forces that mimics the movements of inchworms [82] (shown in Fig. 10(d)).

The direction of research in obstacle-surmounting mechanisms progresses from the general-purpose,
mobile obstacle-surmounting tool with large load capacity to the micro-miniature agent at the practical
level.

3.2. Research status of obstacle-surmounting performance
Analysis of the mathematical and physical model of the UGV platform’s kinematics and dynamic per-
formance across obstacles is referred to as obstacle-surmounting performance. The UGV platform’s
ability to overcome obstacles is then objectively examined. The essential elements that determine the
performance of obstacle-surmounting are kinematics and dynamic performance; hence, research on the
obstacle-surmounting version of the UGV platform primarily focuses on the following aspects:

3.2.1. Mechanism of centroid movement in obstacle-surmounting
The UGV platform’s method of overcoming obstacles involves moving across space. The centroid must
reach the location of the obstacle height to realize the obstacle surmounting [83, 84]. The centroid
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Figure 11. Centroid kinematic model of the UGV “Dragon Horse” [55].

Figure 12. Obstacle-surmounting dynamics model of the UGV “Dragon Horse” [53, 55]: (a) adapta-
tion process; (b) crossing process.

position has an impact on the obstacle-surmounting performance. When the centroid position reaches
the height of obstacle, the surmounting process is finished. Since the centroid position of the “Dragon
Horse” would change with the motion of swing arms, He [55] studied the centroid kinematic model of the
UGV “Dragon Horse” (shown in Fig. 11). Based on the walking control stability of bipedal robots, Yao
[85] proposed a speed-tracking control strategy based on the motion state of the centroid. Controlling
the centroid’s displacement output would enable steady walking to occur. This study demonstrated the
effect of centroid control on the stability of platform motion.

3.2.2. Dynamics performance of obstacle-surmounting
The ideal condition of the ground is typically used as the foundation for the kinematics study of an UGV
platform. But in practice, the state of slippage, instability, flameout, etc., will occur inevitably. It depends
on many factors, such as ground adhesion coefficient and platform power. Therefore, the dynamic per-
formance determines whether an obstacle may be efficiently overcome. Based on kinematics, Zhu [86]
took into account the slip factor. The dynamic constraint relation for obstacle-surmounting was derived
by utilizing the quasi-static dynamic model of the obstacle-surmounting process. Additionally, more
precisely measure the crawler robot’s capability of overcoming obstacles. In ref. [53], to guarantee the
“Dragon Horse” had the maximum ability of obstacle surmounting, the authors performed a dynamic
analysis of surmounting an obstacle. There was an assumption that the surmounting process was slow,
and the process could be divided into two main stages (shown in Fig. 12). In the study of the obstacle-
surmounting capability of a light-weight six-wheeled UGV platform, Dabrowska [87] abstracted the tire
as a discrete spring-loaded damping element, connected by a limited quantity of spheres. These discrete
spheres would pulsate in contact with the ground, which was described as simulating the elastic defor-
mation effect of the tire. Consequently, it could affect the dynamic performance of obstacle-surmounting
more accurately.

3.2.3. Research on stability of obstacle-surmounting
Instability or even overturning will inevitably occur during obstacle-surmounting, given several ele-
ments, including the speed, adhesion coefficient, centroid position, and configuration characteristics of
the unmanned ground platform. Numerous research organizations have investigated the stability and
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Figure 13. Autonomous obstacle-surmounting algorithm [92].

control of obstacle surmounting. Aiming at the stability of crawler robots when climbing stairs, Rao
[88] of the Beijing Institute of Technology proposed a dynamic stability criterion based on multi-point
contact. Then, using numerical simulation to study the impact of acceleration on traction force and sup-
port force, the logic of this stability criterion was confirmed. Aiming at the stability of off-road vehicles
on rough roads, Mann [89] proposed maximum speed and acceleration stability measures. Additionally,
the stability margin was estimated using the acceptable range of speed and acceleration based on the
quasi-3D model.

3.2.4. Autonomous motion planning and control of obstacle-surmounting
Many UGV platforms presently overcome obstacles via line-of-sight remote control due to the com-
plexity of the obstacle-surmounting process. However, autonomous obstacle-surmounting is crucial for
enhancing its effectiveness of obstacle-surmounting. Numerous academic organizations have investi-
gated autonomous obstacle-surmounting as intelligent technology has advanced. Motion planning and
obstacle detection are fundamental technologies [90, 91]. Lim [92] of the Korea Academy of Science and
Technology proposed an obstacle classification and scene management algorithm for a 6×6 unmanned
ground platform in an unstructured environment, which could automatically obtain the critical point
information of obstacles to construct terrain parameters. The platform could then carry out autonomous
obstacle-surmounting by the obstacle information (shown in Fig. 13). Obstacle movement for wall-
climbing robots, Li [93] from the Chinese Academy of Sciences analyzed the geometric constraints
of the obstacle-surmounting robot. Then, a motion planning system based on genetic algorithms was
developed to overcome obstacles.

4. Qualitative comparison of obstacle-surmounting mechanism
Through a comprehensive analysis of typical UGV platform with different configurations, such as
wheeled, legged, tracked, and complex. We established a qualitative analysis diagram of the layout of the
action system based on literature [94] (shown in Fig. 14). The area colored in Fig. 14 is more uniform,
and the better performance of the corresponding configuration. Thus, we can draw the points from the
Fig. 14 as follow:

1. Fig. 14(a) presents that wheeled type UGV platform tend to be faster and more energy-efficient
since they often have ball bearings and fewer spinning pairs. The wheeled form, nevertheless,
lacks auxiliary mechanisms when in contact with relatively high barriers, making its movement
on rough terrain poor.

2. Large ground contact areas provided by the tracked type UGV platform filter out terrain rough-
ness and reduce contact pressure. Still, the energy efficiency is decreased owing to the numerous
rotary joint connections and complex mechanical transmission system.

3. The legged UGV platform exhibits superior adaptability while traversing challenging terrain due
to its unique gait and increased range of motion. However, the energy efficiency is decreased
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Figure 14. Mobility assessment of various action system configurations: (a) wheeled type UGV platform
assessment of mobility; (b) tracked type UGV platform assessment of mobility; (c) legged type UGV
platform assessment of mobility; (d) complex mobile type UGV platform assessment of mobility.

because the leg design often contacts the ground, and the excitation joint requires torque
distribution.

4. It is evident that the complex mobile type UGV platform has an overall superiority over other
configurations. In other words, the hybrid mobile structure is more favorable for maneuvering
operations in the wild environment.

5. Challenges
As science and technology have advanced, a previously unheard-of intelligence wave has hit every aspect
of human civilization thanks to the extensive development of innovative applications of artificial intelli-
gence. UGV platform has the characteristics of automatic control and high brightness. They frequently
can access places that are difficult for or highly hazardous to human-crewed vehicles to enter. For this
reason, the world’s leading nations are vying for control of the intelligent field’s commanding heights
thanks to UGV platforms’ superior technological performance.

As mentioned in the literature review, the challenges of the current UGV platforms are summarized
as follows:

1. Large UGV platform has strong power but a complicated transmission mechanism with a colossal
platform, which results in little movement. Meanwhile, small UGV platforms have a tiny size but
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Figure 15. Soft and bionic UGV platform: (a) 3D soft robotic snake [117]; (b) soft 3D-printed pneu-
matic actuator with bellows [110]; (c) OSCAR [114]; (d) deformation driven closed chain soft mobile
robot [112].

an insufficient load capacity and slow movement, which cannot perform fast maneuvers over long
distances.

2. To some extent, there are many advantages to the wheeled type of UGV, such as high speed,
ease of control, perfect energy efficiency, etc. But it cannot adapt to all-terrain unstructured
environments.

3. Most of the existing UGV platforms have relatively single functions and weak versatility, leading
to high costs.

4. Considering the power of the UGV platform, although driven by an engine with solid manage-
ment and reliability outdoors, the transmission mechanism is complicated and takes up space,
leading to inflexible movements. Meanwhile, driven by a motor has a quick response speed with
a little volume. However, it is not suitable for long-distance operations.

5. Referring to the wheel configuration, the existing wheels are mostly rubber circular construction.
Similar wheels cannot adapt outdoors to rugged, soft, and other complex terrains.
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Figure 16. Reconfigurable UGV platform: (a) reconfigurable wave robot [124]; (b) reconfigurable
robotic base [128].

For all of these scenarios, based on our research experiences on different kinds of robot
[53, 55, 95–103], it is foreseeable that the future trends of UGV platform can be discussed in several
aspects:

1. Reducing the cost of robots, complex mobile type UGV platform will be the most suitable solu-
tion [55, 104–108]. In addition, UGVs with high maneuverability will become a significant trend.
On the one hand, these UGVs both have the characteristics of high speed and perfect stability.
Moreover, it has a strong load capacity and flexible motion control.

2. Soft and bionic will be another trend of the UGV platform in the future [109–121] (shown in
Fig. 15). The UGVs usually perform tasks in an unstructured environment. Hence, the all-terrain
performance becomes a key factor restricting their operating efficiency and reliability.

3. Modular design will also become the development trend of future UGV platform [122, 123]. In
other words, reconfigurable will be a trend of UGV platform in the future [124–129] (shown in
Fig. 16). It can improve the maintainability of UGV platform significantly. All in all that is one
platform for many purposes.

4. Hybrid power will also become a trend of future UGV platform. Hybrid power combines the
engine’s outdoor reliability with the motor’s fast response. Estonia’s MILREM’s THEMIS
tracked modular platform has the integrated design of a hybrid diesel engine, battery, motor,
and related electronic control part [130].

5. Adaptive wheels will become a trend of future UGV platform, which can adapt to all-terrain
unstructured environments outdoors. DARPA had announced a “Reconfigurable Wheel/ Rail”
that can be switched freely between triangular tracked wheels and wheels [131].

6. A cooperative multiple UGV platforms will be among the most comprehensive research topics
in the future [132, 133]. Multiple UGV platforms often collaborate and accomplish challenging
tasks, so the collaborative obstacle-surmounting capability becomes a major obstacle to their
operational effectiveness and dependability.

7. With the development of artificial intelligence technology, multi-sensor fusion perception tech-
nology will help robot to be capable of perceiving the obstacle in different dimensions, which
will also be a potential research trend in the future.
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6. Conclusions
This article has argued the research status of the UGV platform, considering both obstacle-surmounting
mechanism and obstacle-surmounting performance, to provide valuable instructions for the early design
stage when the type of motion mechanism needs to be selected according to the operation requirements.

Consequently, the four main configurations (wheeled, tracked, legged, and complex) have been dis-
cussed in this article. With a discrete gait and the mechanism having more freedom of movement, the
legged configuration has perfect adaptability when running on rough terrain. However, moment distri-
bution is required to excite joints, and the frequent impact from the ground, the energy efficiency of
legged configuration will be reduced. On the one hand, the tracked structure has a large ground con-
tact area, which can filter the terrain roughness and reduce the contact pressure. On the other hand, the
tracked parts are connected by a large number of rotating pairs which will reduce the energy efficiency.
Wheeled configuration is usually equipped with ball bearings of fewer rotating pairs, so it has the char-
acteristics of fast speed and high energy efficiency. However, due to the lack of an auxiliary mechanism
of wheeled configuration, its maneuverability in rugged terrain is weak when in contact with relatively
high obstacles. Combining the three formats can realize the composition of the action system with super
all-around performance.

Ultimately, future trends in obstacle-surmounting UGV platform are also briefly discussed. The UGV
platform will adopt a modular design and be capable of adapting to all-terrain unstructured environments
with high maneuverability in the future.
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