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Abstract

We introduce a class of Cox cluster processes called generalised shot noise Cox processes
(GSNCPs), which extends the definition of shot noise Cox processes (SNCPs) in two
directions: the point process that drives the shot noise is not necessarily Poisson, and
the kernel of the shot noise can be random. Thereby, a very large class of models for
aggregated or clustered point patterns is obtained. Due to the structure of GSNCPs,
a number of useful results can be established. We focus first on deriving summary
statistics for GSNCPs and, second, on how to simulate such processes. In particular,
results on first- and second-order moment measures, reduced Palm distributions, the
J -function, simulation with or without edge effects, and conditional simulation of the
intensity function driving a GSNCP are given. Our results are exemplified in important
special cases of GSNCPs, and we discuss their relation to the corresponding results for
SNCPs.
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1. Introduction

One of the most important and versatile classes of point process models for clustered point
patterns is the class of Cox process models – see, e.g. [9], [10], [12], [19], and [44]. Recently,
simulation-based inference for certain families of Cox processes has been studied in great detail
[5], [6], [8], [49], [35], [32], [33], [34], [51]. As explained in Section 2, this research has shown
the necessity of extending existing classes of Cox process models, and the present paper is
therefore concerned with a rich new class of such models that, to some extent, is analytically
tractable and, in particular, is open to simulation-based inference.

Recall that a point process X on R
d is a Cox process driven by a random field Z(ξ) ≥ 0,

ξ ∈ R
d , if X | Z is a Poisson process on R

d with intensity function Z. Throughout this paper,
X denotes a Cox process driven by a random field of the form

Z(ξ) =
∑
j

γj kbj (cj , ξ), (1)
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where the (cj , bj , γj ) are the points of a point process� on R
d × (0,∞)× (0,∞); we identify∑

j and
∑
(cj ,bj,γj )∈�; and bj > 0 is a bandwidth for the kernel kbj (cj , ·), i.e.

kbj (cj , ξ) = k1(cj /bj , ξ/bj )

bdj

, (2)

where k1(cj , ·) is a density with respect to the Lebesgue measure on R
d .

We call X a generalised shot noise Cox process (GSNCP), since a shot noise Cox process
(SNCP) is the special case in which {(cj , γj )} is a Poisson process on R

d × (0,∞) with all
the bj equal and fixed; cf. Møller [31] (extending previous work by Brix [4] and Wolpert and
Ickstadt [51]). We can also view a GSNCP as a Cox cluster process, since X | � is distributed
as the superposition

⋃
j Xj of independent Poisson processes Xj with intensity functions

γj kbj (cj , ·). In applications of (2), the kernel k1(cj , ·) is usually concentrated around cj , so
we call �cent = {cj } the centre (or mother) process and Xj the cluster (or daughter) process
with centre (or mother) cj , intensity γj , and dispersion density kbj (cj , ·). Many of the results
in this paper can easily be modified to hold for a general stochastic kernel kbj (cj , ·), where bj
is a random variable with state space given by an arbitrary metric space E but, for specificity
and ease of presentation, we let E = (0,∞) and interpret bj as a bandwidth.

The focus in this paper is on the probabilistic aspects of GSNCPs, with a view to statistical
applications. Although GSNCPs are more complicated than SNCPs, we show that despite this,
due to the structure of GSNCPs, a number of useful and general results can be established. Our
results are exemplified for important special cases of GSNCPs, and we discuss their relation to
the corresponding results for SNCPs.

The paper is organised as follows. In Section 2, we motivate the introduction of GSNCPs
and discuss some other preliminaries, including examples of GSNCPs. In Section 3, we present
results for summary statistics and reduced Palm distributions of GSNCPs. Particularly, results
for first- and second-order properties and the J -function are obtained. In Section 4, we deal with
algorithms for the simulation of a GSNCPX within a bounded windowW , and for conditional
simulation of�, given the restriction ofX toW . We quantify the effect of ignoring edge effects
in a straightforward simulation algorithm for X when, e.g. �cent is restricted to a bounded,
extended window Wext ⊃ W . We also describe a perfect simulation algorithm inspired by
the work of Brix and Kendall [7]. Further, for a certain Metropolis–Hastings algorithm for
conditional simulation of� givenX∩W , we discuss convergence properties; in particular, we
establish geometric ergodicity. Finally, in Section 5, we briefly discuss future research and the
importance of our results for statistical inference.

2. Background

2.1. Motivation

Our extension of SNCPs to GSNCPs is motivated by different statistical applications, as
follows.

(a) For Neyman–Scott processes (see Example 2 in Section 2.3) and many other Cox cluster
processes used for statistical analysis (see, e.g. [12], [34], and [44]), �cent is assumed to be
a Poisson process and the (bj , γj ) are assumed to be equal to an unknown parameter. As
illustrated by van Lieshout and Baddeley [49], a repulsive Markov point process model for
�cent may be more relevant in many situations. Such models may be described by GSNCPs,
but not by SNCPs.
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(b) Wolpert and Ickstadt [51] considered a fully Bayesian analysis for a Poisson–gamma model
(a particular case of an SNCP – see Example 3 in Section 2.3): a prior for the parameter in a
parametric model of the intensity function of the Poisson process � is imposed, whereby X
becomes a GSNCP.

(c) Møller and Waagepetersen [34] considered likelihood inference for parametric models of
SNCPs, where the likelihood is, in general, not available in closed form and the underlying
random field Z is unobserved. For different fixed values of the bandwidths, they combined
Markov chain Monte Carlo (MCMC) methods for calculating maximum partial likelihood
estimates and likelihood ratios, whereby an approximate maximum likelihood estimate was
obtained (see Section 10.3 of [34]). This procedure is rather time consuming, and it would be
easier to use a Bayesian MCMC approach, imposing a prior on the bandwidth. Then a GSNCP
model (with all bj equal but random) is obtained for the likelihood term in the posterior density.

(d) SNCPs are often claimed to allow a certain degree of flexibility [30], [32], [40], [51]. In
an SNCP, for the random intensity function Z in (1), the random cluster intensity γj scales the
kernel kb(cj , ·), where b > 0 is the fixed bandwidth. However, the same degree of flexibility for
modellingZ may be obtained by letting the γj be equal, but using different random bandwidths
bj . Of course, even more flexibility is obtained when both the γj and the bj are random, as in
a GSNCP.

(e) Kingman [22] (also see Section 5.5 of [12]) considered a model for reproducing individuals,
where the (n + 1)th generation Gn+1, given the nth generation Gn (and previous generations
G0, . . . ,Gn−1), is a Poisson process with an intensity measure of the form (1), where the cluster
centres are given by Gn, each γj is a function of (cj ,Gn), and the bandwidths are equal and
fixed. Thus, Gn+1 becomes a GSNCP, but not necessarily an SNCP. Furthermore, assuming
that G0 is a Poisson process, the superposition of GSNCPs G0,G1, . . . can be interpreted as
a spatial Hawkes process (extending the definition of [17] and [18] for d = 1 to d ≥ 1, and
allowing a more general structure for the conditional intensity function).

We consider, in particular, the following models for �. Cox process models for � appear
naturally when we consider a hierarchical model in which � | θ is a Poisson process with
an intensity measure ζθ depending on a random variable θ ; see points (b) and (d) above,
and Example 3 in Section 2.3. The case in which �cent and the (bj , γj ) are independent is
particularly tractable, and, in the authors’ opinion, the most important models for �cent are
then Markov point process models and Poisson models; see point (a) above and Example 4 in
Section 2.3. Markov point process models provide flexible models of inhibition between the
cluster centres, while Poisson models provide a convenient mathematical framework – see [4],
[31], [32], [34], [49], and [51].

2.2. Assumptions and other preliminaries

In this section, we specify certain conditions that are assumed to hold throughout the text,
and introduce some terminology and notation.

We assume that � is a random, locally finite subset of � = R
d × (0,∞)× (0,∞), i.e.

�D ≡ �∩D is finite wheneverD ⊂ � is bounded. Moreover,Z is assumed to be almost surely
locally integrable, i.e. with probability 1,

∫
B
Z(ξ) dξ < ∞ for bounded Borel sets B ⊂ R

d .
Hence, for any bounded B ⊂ R

d , XB ≡ X ∩ B is almost surely finite and, therefore, only
finitely many clusters Xj have points in B. Note that the centre process�cent is countable, but
not necessarily locally finite (see Example 3 in Section 2.3).
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If�cent is stationary (i.e. its distribution is invariant under translations in R
d ) and k1(c, ξ) ≡

k1(ξ − c) is invariant under translations in R
d , then Z and, hence, X are stationary. If,

furthermore, the distribution of �cent is invariant under motions in R
d and k1 is isotropic, i.e.

k1(c, ξ) depends only on the distance ‖c − ξ‖, then the distributions of Z and X are invariant
under motions in R

d . Two frequently used choices of isotropic kernels are the Gaussian kernel

k1(ξ) = (2π)−d/2 exp(− 1
2‖ξ‖2) (3)

and the uniform kernel
k1(ξ) = 1(‖ξ‖ ≤ 1)/ωd, (4)

where 1(·) denotes the indicator function and ωd = πd/2/�(1 + 1
2d).

We shall often refer to the intensity measure and the second-order reduced moment measure
of �, which we denote by ζ and ζ (2), respectively. Recall that, for measurable functions
h1 : � → [0,∞) and h2 : �×� → [0,∞),∫

h1(c, b, γ ) dζ(c, b, γ ) = E
∑
j

h1(cj , bj , γj ), (5)

∫
h2((c, b, γ ), (c

′, b′, γ ′)) dζ (2)((c, b, γ ), (c′, b′, γ ′))

= E
∑
j =j ′

h2((cj , bj , γj ), (cj ′ , bj ′ , γj ′)) (6)

– see, e.g. [44]. In applications, ζ is often of the form

ζ(D) =
∫∫

D

dc dχ(b, γ ) (7)

for Borel sets D ⊆ �, where χ is a measure on (0,∞)2; cf. Examples 2 to 4 in Section 2.3.

2.3. Examples

The following examples describe important model classes of GSNCPs. As the measures ζ
and ζ (2) play an important role in Section 3, we specify them in the examples.

Example 1. A particular tractable model class is obtained when � is a Poisson process with
locally finite intensity measure ζ . This class contains the SNCPs (the special cases in which
all bandwidths are equal and fixed). Note that ζ (2) = ζ × ζ is just a product measure, and (7)
is equivalent to stationarity of �cent.

Example 2. A Neyman–Scott process [37] is obtained when �cent is a stationary Poisson
process on R

d and the cluster intensities γj = γ and the bandwidths bj = b are equal and
fixed. For the Gaussian kernel (3) we have a (modified) Thomas process [46], and for the
uniform kernel (4) we have a Matérn cluster process [25], [26].

Natural extensions of this model include the GSNCPs obtained if�cent is a stationary point
process on R

d with intensity ρcent < ∞, �cent is independent of the (bj , γj ), and

(i) the (bj , γj ) = (b, γ ) are identical, with distribution Q;

(ii) the bj = b are identical, with distribution Q1, the γj are independent and identically
distributed (i.i.d.) with distribution Q2, and b and {γj } are independent; or

(iii) the (bj , γj ) are i.i.d. with distribution Q.
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We call such extensions the generalised Neyman–Scott processes. Then (7) holds, with

χ = ρcentQ (8)

andQ = Q1 ×Q2 in case (ii). This follows by conditioning on�cent on the right-hand side of
(5) and using standard arguments, where we first let h1(c, b, γ ) in (5) be an indicator function
1(c ∈ A, b ∈ B, γ ∈ C) (where A ⊆ R

d , B ⊆ (0,∞), and C ⊆ (0,∞) are Borel sets).
Furthermore, using similar arguments and (6), we obtain∫

h2((c, b, γ ), (c
′, b′, γ ′)) dζ (2)((c, b, γ ), (c′, b′, γ ′)) (9)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫∫
h2((c, b, γ ), (c

′, b, γ )) dQ(b, γ ) dζ (2)cent(c, c
′) in case (i),

∫∫ ∫∫
h2((c, b, γ ), (c

′, b, γ ′)) dQ1(b) dQ2(γ ) dQ2(γ
′) dζ (2)cent(c, c

′) in case (ii),

∫∫ ∫
h2((c, b, γ ), (c

′, b′, γ ′)) dQ(b, γ ) dQ(b′, γ ′) dζ (2)cent(c, c
′) in case (iii),

where ζ (2)cent denotes the second-order reduced moment measure for�cent. In particular, if�cent
is a stationary Poisson process, then dζ (2)cent(c, c

′) = ρ2
cent dc dc′ (see, e.g. [44]).

Example 3. Suppose that {(cj , γj )} is a Poisson process on R
d×(0,∞)with intensity function

λθ (c, γ ) ≡ λθ (γ ) = κγ−α−1 exp(−τγ )/�(1 − α), (10)

where θ = (α, κ, τ ) is a parameter with α < 1, κ > 0, and τ > 0 (these restrictions are
equivalent to local integrability of λθ ; cf. [4] and [31]). When all the bj in (1) are equal and
fixed, X is called a shot noise G Cox process (SNGCP) [4], [31]; a Poisson–gamma process
[51] is the special case of α = 0. In the stationary case, a SNGCP has intensity equal to κτα−1.

We shall later refer to the following properties of the Poisson process {(cj , γj )}. The point
processes {cj } and {γj } are independent, and their distributions depend on α as follows.

(i) α < 0. In this case,�cent is a stationary Poisson process with intensity −κτα/α, and the γj
are independent and gamma distributed with shape parameter −α and inverse scale parameter τ .

(ii) 0 ≤ α < 1. In this case, �cent is not locally finite. However, {(cj , γj ) : cj ∈ A} and
{(cj , γj ) : cj ∈ B} are independent for disjoint Borel setsA,B ⊂ R

d . IfA has finite Lebesgue
measure |A|, then the points in �cent ∩ A are independent and uniformly distributed on A,
and the corresponding γj form an inhomogeneous Poisson process on (0,∞) with intensity
function |A|λθ (γ ).

Generalised shot noise G Cox processes can naturally be obtained in different ways. For
specificity, let π be a distribution imposed on the parameter θ = (α, κ, τ ), and let {(cj , γj )} | θ
be a Poisson process with intensity function λθ ; cf. [51]. Furthermore, assume that {bj } and
(θ, {(cj , γj )}) are independent, and that the bj are either identical or i.i.d. with distribution ν.
Then we obtain a GSNCP for which (7) holds, with

χ(A) =
∫∫

A

E λθ (γ ) dν(b) dγ (11)

for Borel sets A ⊆ (0,∞) × (0,∞), where the expectation is with respect to π (this follows
by arguments similar to those in Example 2).
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Furthermore,∫
h2((c, b, γ ), (c

′, b′, γ ′)) dζ (2)((c, b, γ ), (c′, b′, γ ′))

=
∫∫ ∫∫ ∫

h2((c, b, γ ), (c
′, b, γ ′))E(λθ (γ )λθ (γ

′)) dc dc′ dν(b) dγ dγ ′ (12)

when the bj are identical and, when the bj are i.i.d.,∫
h2((c, b, γ ), (c

′, b′, γ ′)) dζ (2)((c, b, γ ), (c′, b′, γ ′))

=
∫∫ ∫∫ ∫∫

h2((c, b, γ ), (c
′, b′, γ ′))E(λθ (γ )λθ (γ

′)) dc dc′ dν(b) dν(b′) dγ dγ ′. (13)

Example 4. As in van Lieshout and Baddeley [49], suppose that �cent is a finite Markov (or
Gibbs) point process [2], [34], [41], [42], [47] defined on a bounded Borel set B ⊂ R

d . This
means that �cent has a density p with respect to the unit-rate Poisson process on B, so that

p(c) =
∏
y⊆c

ϕ(y) (14)

for finite subsets c ⊂ B, where ϕ(y) ≥ 0 is a so-called interaction function such that ϕ(y) = 1
whenever y contains two points further than R units apart. Here R < ∞ is a parameter
specifying the range of interaction. Note that ifp(c) > 0 and we define the so-called Papangelou
conditional intensity by λ∗(c, ξ) := p(c ∪ {ξ})/p(c), then, for ξ ∈ c,

λ∗(c, ξ) =
∏

y⊆c∩b(ξ ,R)
ϕ(y ∪ {ξ}), (15)

where b(ξ , R) denotes the ball in R
d with centre ξ and radius R.

In [49] it was also assumed thatZ(ξ) = ε + ∑
j h(ξ | cj ), where h(ξ | cj ) is a nonnegative

integrable function and ε > 0 is a parameter. If instead ε = 0, we have a GSNCP with
nonrandom (γj , bj ) but, clearly, (7) does not hold, since�cent is contained in B. If, moreover,
�cent is independent of the (bj , γj ), which are either i.i.d. or identical with distributionQ, then∫

h1(c, b, γ ) dζ(c, b, γ ) =
∫∫

h1(ξ , b, γ )E λ∗(�cent, ξ) dξ dQ(b, γ ). (16)

This follows from the fact that �cent has intensity function ρcent(ξ) = E λ∗(�cent, ξ) (see
Proposition 6.2 of [34]), but a closed form expression for ρcent is in general unknown (except
in the Poisson case, where λ∗(�cent, ξ) does not actually depend on �cent). Furthermore,∫

h2((c, b, γ ), (c
′, b′, γ ′)) dζ (2)((c, b, γ ), (c′, b′, γ ′))

=
∫∫ ∫∫

h2((c, b, γ ), (c
′, b, γ ′))

× E

( ∏
y⊆�cent∩(b(c,R)∪b(c′,R))

ϕ(y ∪ {c})ϕ(y ∪ {c′})ϕ(y ∪ {c, c′})
)

× dc dc′ dQ(b, γ ) dQ(b′, γ ′) (17)

– again see, e.g. Proposition 6.2 of [34]. Also, ζ (2) is not known in closed form.
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Suppose we instead consider a stationary Markov (or Gibbs) point process�cent defined on
R
d , with an interaction function ϕ of finite range of interaction R, where ϕ is invariant under

translations in R
d [13], [34], [38], [39], [43]. Briefly, such a point process can be specified

by a Papangelou conditional intensity λ∗(c, ξ) of the form (15), but now defined for locally
finite subsets c ⊂ R

d and points ξ ∈ R
d \ c (for details, see the references mentioned above).

If �cent is independent of the (bj , γj ), which are either i.i.d. or identical with distribution Q,
then we have a GSNCP. Here (7) holds with χ of the form (8), provided that

ρcent = E λ∗(�cent, 0) = E
∏

y⊆�cent∩b(0,R)
ϕ(y ∪ {0}) (18)

is finite. However, a closed form expression for ρcent is in general not known, and likewise for
ζ (2), which is still given by (17).

3. Summary statistics

This section deals with summary statistics such as the intensity function, the pair correlation
function, and the J -function for GSNCPs.

3.1. First- and second-order characteristics

Expressions for the product moments E(Z(ξ1) · · ·Z(ξn)) in terms of the moment measures
for � can be obtained, as in [31], by using the Slivnyak–Mecke theorem for the Poisson
process X | �. In this paper we concentrate on the two most fundamental summary statistics,
namely the intensity function ρ(ξ) = EZ(ξ) and the pair correlation function g(ξ , η) =
E(Z(ξ)Z(η))/[ρ(ξ)ρ(η)] (provided that the means exist, and taking 0/0 = 0). In the examples
below we discuss to what extent closed form expressions for ρ(ξ) and g(ξ , η) can be derived
for GSNCPs as introduced in Examples 1 to 4 in Section 2.3.

Proposition 1. The intensity function exists and is given by

ρ(ξ) =
∫
γ kb(c, ξ) dζ(c, b, γ ), (19)

provided that the integral is finite for all ξ ∈ R
d .

Proof. The proof follows immediately from (5).

Example 5. By (19), if (7) holds and k1(c, ξ) ≡ k1(ξ − c) is invariant under translations,
ρ ≡ ρ(ξ) is given by

ρ =
∫
γ dχ(b, γ ). (20)

This reduces as follows for the GSNCPs in Examples 1 to 3: if � is a Poisson process and
the bandwidths are equal and fixed, the results for ρ obtained in [31] for SNCPs apply. For a
generalised Neyman–Scott process, ρ = ρcent E γ , where the mean is with respect to (b, γ ) ∼
Q; cf. (8). For a generalised shot noise G Cox process, ρ = E(κτα−1); cf. (11).

However, for the Markov point process considered in Example 4, a closed form expression
for ρ(ξ) is in general unknown, since E λ∗(�cent, ξ) is not known in closed form in either (16)
or (18).
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Proposition 2. The pair correlation function exists and is given by

g(ξ , η) = β1(ξ , η)+ β2(ξ , η)

ρ(ξ)ρ(η)
,

provided that ρ(ξ) < ∞ for all ξ ∈ R
d and the integrals

β1(ξ , η) =
∫
γ γ ′kb(c, ξ)kb′(c′, η) dζ (2)((c, b, γ ), (c′, b′, γ ′))

and

β2(ξ , η) =
∫
γ 2kb(c, ξ)kb(c, η) dζ(c, b, γ )

are finite for all ξ , η ∈ R
d .

Proof. The proof follows along the lines of the proof of Proposition 1 of [31], but using (6).

Example 6. Suppose that k1(c, ξ) ≡ k1(ξ − c) is invariant under translations.
If � is a Poisson process so that �cent is stationary and ρ, given by (20), is finite, then, by

Example 1 and Proposition 2,

g(ξ , η) = 1 + β2(ξ , η)/ρ
2, (21)

where

β2(ξ , η) =
∫
γ 2φb(ξ − η) dχ(b, γ )

and

φb(ξ) =
∫
kb(c)kb(ξ + c) dc.

For the Gaussian kernel (3), this reduces to

φb(ξ) = 1

(4πb2)d/2
exp

(
−‖ξ‖2

4b2

)
.

Consider a generalised Neyman–Scott process in which�cent is a stationary Poisson process
with intensity ρcent < ∞. Then

β2(ξ , η) = ρcent E(γ 2φb(ξ − η)),

where the mean is with respect to (b, γ ) ∼ Q. For each of the cases (i) to (iii) in Example 2,
we obtain the following from (9) and Proposition 2. In case (i), β1(ξ , η) = ρ2

cent E(γ 2), so

g(ξ , η) = E(γ 2)+ E(γ 2φb(ξ − η))/ρcent

(E γ )2
.

In case (ii), β1(ξ , η) = ρ2, so

g(ξ , η) = 1 + E(γ 2φb(ξ − η))

ρcent(E γ )2
. (22)

Case (iii) is just the Poisson case above with dχ(b, γ ) = ρcent dQ(b, γ ), and g is again of the
form (22).
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Next, consider the specific example of a generalised shot noise G Cox process in Example 3.
By (12) and (13), both when the bj are identical and when the bj are i.i.d., it is straightforward
to derive that g is of the form (21), with

β2(ξ , η) = E((1 − α)κτα−2)E φb(ξ − η),

where the means now are with respect to the independent random variables b and θ = (α, κ, τ ).

Note that g ≥ 1 for the GSNCPs in Example 6. This is in accordance with the usual
interpretation that g ≥ 1 indicates aggregation of the points in X [34], [44]. It seems to be an
open problem to what extent g ≥ 1 for the Markov point process considered in Example 4.
Most Markov point process models are repulsive, that is, ϕ(y) ≤ 1 whenever card(y) ≥ 2 (see
[3], [14], [28], and [43] for examples of both repulsive and attractive Markov point processes).
In the special case of no interaction, i.e. ϕ(y) = 1 whenever card(y) ≥ 2, we clearly have
g = 1. So, in the repulsive case, since aggregation in X is expected to be more pronounced
than is the case if there is no interaction, we may conjecture that g(ξ , η) ≥ 1, at least when ξ

and η are sufficiently close. However, the authors’ attempt to verify this, by combining (16)
to (18) and Proposition 2, failed.

3.2. Reduced Palm distributions and J -functions

A simple description of the reduced Palm distribution of an SNCP was established in [31].
This section extends this to GSNCPs and discusses how to use this to derive certain properties
of van Lieshout and Baddeley’s J -function [48].

We first need some additional notation and assumptions. Denote the state space ofX byNlf ,
the set of locally finite subsets of R

d . LetNlf be equipped with the σ -field Nlf generated by the
sets FB,n = {x ∈ Nlf : card(x ∩ B) = n} for n = 0, 1, . . . and bounded Borel sets B ⊂ R

d .
Let the product space Nlf × R

d be equipped with the product σ -field Nlf ⊗ Bd , where Bd is
the Borel σ -field on R

d . Similarly, for the point process � we define σ -fields by replacing R
d

above with � = R
d × (0,∞)× (0,∞).

Assume that the intensity function ρ(ξ) for X exists for Lebesgue almost all ξ ∈ R
d ;

cf. Proposition 1. Recall that the reduced Palm distribution P !
ξ

of X at ξ ∈ R
d and the

reduced Palm distribution P !
(c,b,γ ) of � at (c, b, γ ) ∈ R

d × (0,∞)× (0,∞) are given by the
Campbell–Mecke formula: for Lebesgue almost all ξ ∈ R

d , with ρ(ξ) > 0, and for ζ -almost
all (c, b, γ ) ∈ R

d × (0,∞)× (0,∞), P !
ξ

and P !
(c,b,γ ) are uniquely given by

E
∑
ξ∈X

f (X \ {ξ}, ξ) =
∫∫

f (x, ξ)ρ(ξ) dP !
ξ (x) dξ (23)

for nonnegative, measurable functions f , and

E
∑

(c,b,γ )∈�
h(� \ {(c, b, γ )}, (c, b, γ )) =

∫∫
h(φ, (c, b, γ )) dP !

(c,b,γ )(φ) dζ(c, b, γ ) (24)

for nonnegative, measurable functions h; see [10] and [44].
When ρ(ξ) > 0, we define the following. Let

Zξ (η) = γξkbξ (cξ , η), η ∈ R
d ,

where (cξ , bξ , γξ ) is a random variable with distribution

P((cξ , bξ , γξ ) ∈ D) =
∫
D

[γ kb(c, ξ)/ρ(ξ)] dζ(c, b, γ )
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for Borel sets D ⊆ �. Conditional on (cξ , bξ , γξ ), let Xξ and Xξ denote independent point
processes, whereXξ is a Poisson process on R

d with intensity function Zξ andXξ is a GSNCP
driven by

Zξ (η) =
∑

(c,b,γ )∈�(cξ ,bξ ,γξ )
γ kb(c, η), η ∈ R

d .

Here, �(c,b,γ ) denotes a point process with law P !
(c,b,γ ).

Proposition 3. For Lebesgue almost all ξ ∈ R
d with ρ(ξ) > 0,

P !
ξ (F ) = P(Xξ ∪Xξ ∈ F), F ∈ Nlf .

Proof. By (23), and arguing as in the proof of Proposition 2 of [31], it suffices to show that

E
∑
ξ∈X

1(ξ ∈ A, (X \ {ξ}) ∩ B = ∅) =
∫
A

P((Xξ ∪Xξ ) ∩ B = ∅)ρ(ξ) dξ (25)

for bounded A,B ∈ Bd . It also follows from Proposition 2 of [31] that the left-hand side of
(25) is given by

∫
A

E

( ∑
(c,b,γ )∈�

γ kb(c, ξ) exp

(
−

∫
B

∑
(c′,b′,γ ′)∈�

γ ′kb′(c′, η) dη

))
dξ .

By (24),

E

( ∑
(c,b,γ )∈�

γ kb(c, ξ) exp

(
−

∫
B

∑
(c′,b′,γ ′)∈�

γ ′kb′(c′, η) dη

))

=
∫∫

γ kb(c, ξ) exp

(
−

∫
B

∑
(c′,b′,γ ′)∈φ∪{(c,b,γ )}

γ ′kb′(c′, η) dη

)
dP !

(c,b,γ )(φ) dζ(c, b, γ )

=
∫
γ kb(c, ξ) exp

(
−

∫
B

γ kb(c, η) dη

)

× E exp

(
−

∫
B

∑
(c′,b′,γ ′)∈�(c,b,γ )

γ ′kb′(c′, η) dη

)
dζ(c, b, γ )

= ρ(ξ)P((Xξ ∪Xξ ) ∩ B = ∅),

where we have used the conditional independence of Xξ and Xξ , given (cξ , bξ , γξ ), to obtain
the last equality. Thereby, (25) is obtained.

Remark 1. The complication in using Proposition 3 lies in the necessity of determiningP !
(c,b,γ ).

This reduced Palm distribution is particularly simple for SNCPs – see Proposition 2 of [31].
Suppose first that� is a Cox process such that� | θ is a Poisson process with intensity function
λθ , where θ is a random variable. Then∫

h(φ) dP !
(c,b,γ )(φ) = E(h(�)λθ (c, b, γ ))/λ(c, b, γ ), (26)

where the mean is with respect to (�, θ), h ≥ 0 is any measurable function, and λ(c, b, γ ) ≡
E λθ (c, b, γ ) ∈ (0,∞). This follows from first conditioning on θ on the left-hand side of (24)
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and using the Slivnyak–Mecke theorem and, next, by taking expectation and then conditioning
on �. Now suppose that �cent is a stationary Markov point process (see Example 4) with
intensity ρcent > 0. If we assume, for simplicity, that (bj , γj ) = (b, γ ) i.e. they are all equal
and fixed, then P !

c ≡ P !
(c,b,γ ) is concentrated on Nlf and satisfies∫
h(φ) dP !

c(φ) = E(h(�cent)λ
∗(�cent, c))/ρcent. (27)

This follows from [38] or Equation (28) of [31] (which, incidentally, should be corrected by
replacing λ̃(x, ξ) with λ̃(x, ξ)/ρ̃(ξ) (in the notation of [31])).

We now consider theJ -function for a stationary GSNCP with intensityρ ∈ (0,∞), assuming
that k1(c, ξ) = k1(ξ − c) and that (7) holds.

Corollary 1. Under the assumptions above, for all r ≥ 0,

J (r) = 1

ρI1(r)

∫∫
I2(c, b, γ, r)I3(c, b, γ, r) dc dχ(b, γ ) (28)

where

I1(r) = E exp

(
−

∑
j

∫
b(cj ,r)

γj kbj (ξ) dξ

)
,

I2(c, b, γ, r) = γ kb(−c) exp

(
−

∫
b(c,r)

γ kb(η) dη

)
,

and

I3(c, b, γ, r) = E exp

(
−

∑
(c′,b′,γ ′)∈�(c,b,γ )

∫
b(c′,r)

γ ′kb′(ξ) dξ

)
.

Proof. By definition,

J (r) = P !
0({x ∈ Nlf : x ∩ b(0, r) = ∅})/P(X ∩ b(0, r) = ∅).

Hence, by Proposition 3,

J (r) = P((X0 ∪X0) ∩ b(0, r) = ∅)/P(X ∩ b(0, r) = ∅)

= 1

ρ P(X ∩ b(0, r) = ∅)

∫∫
P(X0 ∩ b(0, r) = ∅ | (c0, b0, γ0) = (c, b, γ ))

× P(X0 ∩ b(0, r) = ∅ | (c0, b0, γ0) = (c, b, γ ))γ kb(−c) dc dχ(b, γ ).

Since the latter three probabilities are equal to I1(r), I2(c, b, γ, r)/γ kb(−c), and I3(c, b, γ, r),
respectively, we obtain (28).

Example 7. It is well known that, for stationary Poisson cluster processes and SNCPs, J (r) ≤ 1
and J is nonincreasing [48], [31]. Below, we show that these properties hold for certain
GSNCPs. We let the situation be as in Corollary 1, and recall that dζ(c, b, γ ) = dc dχ(b, γ ).
Notice that if, for ζ -almost all (c, b, γ ) and r > 0,

I1(r) ≥ I3(c, b, γ, r), (29)

then (20) and (28) imply that J (r) < 1 for r > 0.
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If � is a Poisson process, so that �cent is stationary, then I3(c, b, γ, r) = I1(r) and, so, by
(28),

J (r) = 1

ρ

∫∫
γ kb(−c) exp

(
−

∫
b(c,r)

γ kb(η) dη

)
dc dχ(b, γ ).

This is a slight extension of Corollary 1 of [31] (where, incidentally, there is a minor typo: k(c)
should read k(−c) (in the notation of [31]). It follows that J is nonincreasing and J (r) < 1
for r > 0.

Now consider a generalised Neyman–Scott process. Suppose that �cent is a mixed Poisson
process driven by a positive random variable θ (i.e.�cent | θ is a stationary Poisson process with
intensity θ ), where (θ,�cent) is independent of the (bj , γj ), and these are i.i.d. with distribution
Q (case (iii) of Example 2). In other words,� is a Cox process driven by a random measure�
given by d�(c, b, γ ) = θ dc dQ(b, γ ). Let π denote the distribution of θ and define another
positive random variable θ ′ with distribution

π ′(A) = 1

E θ

∫
A

θ dπ(θ)

for Borel sets A ⊆ (0,∞), and suppose that

π ≤st π
′, (30)

i.e. π((t,∞)) ≤ π ′((t,∞)) for all t > 0 (the usual stochastic order). Equation (30) is satisfied
if π is a gamma distribution, for instance. We claim that (30) implies (29): since � is a Cox
process, a slight modification of the proof of (26) shows that

I3(c, b, γ, r) = E

(
exp

(
−

∑
j

∫
b(cj ,r)

γj kbj (ξ) dξ

)
θ

)
(E θ)−1

= E exp

(
−

∑
j

∫
b(c′

j ,r)

γj kbj (ξ) dξ

)
,

where {(c′
j , bj , γj )} = �′ is a Cox process driven by �′, itself given by

d�′(c, b, γ ) = θ ′ dc dQ(b, γ ).

For locally finite measures µ1 and µ2 on �, define a partial order � by

µ1 � µ2 whenever µ1(B) ≤ µ2(B) for all bounded Borel sets B ⊂ �.

Furthermore, let ⊆st denote the usual stochastic order for locally finite random measures �1
and �2 on �, i.e.

�1 ⊆st �2 ⇔ E f (�1) ≤ E f (�2) whenever f is increasing with respect to �.

By (30), � ⊆st �
′ and, so, by Theorem 7.4.7 of [36], � ⊆st �

′. Now, I3(c, b, γ, r) = I3(r)

depends only on r , and it is of the same form as I1(r) except that �cent is replaced by �′
cent.

Consequently, (29) holds since the function

f (µ) = exp

(
−

∑
(c,b,γ )∈µ

∫
b(c,r)

γ kb(ξ) dξ

)
,
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where µ is a locally finite measure on �, is nonincreasing with respect to �, I1(r) = E f (�)
and I3(r) = E f (�′).

Next, consider a generalised shot noise G Cox process as in Example 3, and assume that
θ = (α, κ, τ ) is a random variable with distribution π , and that the bj are i.i.d. with distribution
ν, and independent of (θ, {(cj , γj )}). Then, the Cox process � is driven by a � such that
d�(c, b, γ ) = λθ (γ ) dc dν(b) dγ , where λθ (γ ) is given by (10), and we have

I3(c, b, γ, r) = E

(
exp

(
−

∑
j

∫
b(cj ,r)

γj kbj (ξ) dξ

)
λθ (γ )

)
(E λθ (γ ))

−1.

Arguing, as above, for a generalised Neyman–Scott process, (29) holds if πγ ≤st π for any
γ > 0, where

πγ (A) =
∫
A
λθ (γ ) dπ(θ)∫
λθ (γ ) dπ(θ)

for Borel sets A ⊆ (0,∞). For instance, if (α, κ) is fixed and τ follows a gamma distribution
with inverse scale parameter ν, then πγ is also a gamma distribution with the same shape
parameter but inverse scale parameter ν + γ and, so, πγ ≤st π for any γ > 0.

Finally, consider a GSNCP in which�cent is a stationary Markov point process on R
d , with

intensity ρcent ∈ (0,∞), and the (bj , γj ) = (b, γ ) are all equal and fixed. Then, (28) becomes

J (r) = 1

I1(r)

∫
I2(c, b, γ, r)I3(c, b, γ, r) dc,

where

I3(c, b, γ, r) = E

(
exp

(
−

∑
j

∫
b(cj ,r)

γj kb(ξ) dξ

)
λ∗(�cent, c)

ρcent

)
;

cf. (27). However, the authors do not know how to get any further with this expression.

4. Simulation of generalised shot noise Cox processes

In this section, we consider various simulation algorithms for the restriction XW = X ∩W
of X to a Borel set W ⊂ R

d with volume |W | ∈ (0,∞), and for conditional simulation of �,
given XW .

4.1. Simulation with edge effects and truncation

Clearly, XW is a Cox process driven by the random field ZW(ξ) = 1(ξ ∈ W)Z(ξ). For
the simulation of XW , a truncation may be required due to the possibly infinite point process
� entering ZW . Assume that Wext ⊆ R

d , B ≤ ∞, and ε ≥ 0 such that ζ(D), where D =
Wext × (0, B) × (ε,∞), is finite. For instance, for the specific example of a generalised shot
noise G process in Example 3, the condition on ε is needed if P(α ≥ 0) > 0.

An approximate simulation of XW is obtained by first simulating the point process � ∩D
and, next, the corresponding independent Poisson processes Xj ∩W with intensity functions
ξ �→ γj kbj (cj , ξ) 1(ξ ∈ W), (cj , bj , γj ) ∈ � ∩ D. As was noticed in [31], edge effects may
enter in applications since Wext is typically a bounded window such that W ⊂ Wext. Below,
we quantify the error of such approximate simulations by extending Proposition 3 of [31].

Let
MW =

∑
j

1({cj /∈ Wext} ∪ {bj ≥ B} ∪ {γj ≤ ε}) card(Xj ∩W)
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denote the number of missing points when we make an approximate simulation of XW by
ignoring clusters Xj with cj /∈ Wext, bj ≥ B, or γj ≤ ε.

Furthermore, let qW be the probability that some cluster Xj with cj /∈ Wext, bj ≥ B, or
γj ≤ ε has a point inW . Finally, assume that there exists a function kdom

W : (0,∞)×R
d×R

d →
[0,∞) satisfying the following conditions.

Condition 1. If ξ ∈ W then kdom
W (b, c, ξ) ≥ kb(c, ξ); otherwise, kdom

W (b, c, ξ) = 0.

Condition 2. The integral

adom
W (c, b) =

∫
W

kdom
W (b, c, ξ) dξ , (c, b) ∈ R

d × (0,∞),

can be easily computed.

Proposition 4. Given these definitions,

EMW ≤
∫

1({c /∈ Wext} ∪ {b ≥ B} ∪ {γ ≤ ε})γ adom
W (c, b) dζ(c, b, γ ) (31)

and

qW ≤ 1 − exp

(
−

∫
1({c /∈ Wext} ∪ {b ≥ B} ∪ {γ ≤ ε})γ adom

W (c, b) dζ(c, b, γ )

)
. (32)

Proof. The proof of (31) is similar to that of Proposition 3 of [31]. Conditional on �, the
clusters Xj are independent Poisson processes with intensity functions γj kbj (cj , ·), so

qW = 1 − E
∏
j

[
exp

(
−γj

∫
W

kbj (cj , ξ) dξ

)]1({cj /∈Wext}∪{bj≥B}∪{γj≤ε})
. (33)

Hence, by Jensen’s inequality and (5),

qW ≤ 1 − exp

(
− E

∑
j

1({cj /∈ Wext} ∪ {bj ≥ B} ∪ {γj ≤ ε})γj
∫
W

kbj (cj , ξ) dξ

)

= 1 − exp

(
−

∫
1({c /∈ Wext} ∪ {b ≥ B} ∪ {γ ≤ ε})γ

∫
W

kb(c, ξ) dξ dζ(c, b, γ )

)
.

Thereby, using Conditions 1 and 2, (32) is obtained.

Remark 2. When � is a Poisson process, (32) can be improved – see [34]. Indeed, using
(33), Conditions 1 and 2, and arguments similar to the derivation of the generating functional
of Poisson processes (see [10] and [34]), we find that

1 − qW = exp

[
−

∫
1({c /∈ Wext} ∪ {b ≥ B} ∪ {γ ≤ ε})

×
(

1 − exp

(
−γ

∫
kb(c, ξ) dξ

))
dζ(c, b, γ )

]

≥ exp

[
−

∫
1({c /∈ Wext} ∪ {b ≥ B} ∪ {γ ≤ ε})

× (1 − exp(−γ adom
W (c, b)) dζ(c, b, γ ))

]
.
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Note also that, by the coupling inequality (see [23]), the upper bound on qW in (32) is also an
upper bound on the total variation distance between the law ofXW and the law of the truncated
process.

Example 8. Suppose that (7) holds. For specific models of χ and k1, the upper bounds in
Proposition 4 can be calculated using methods similar to those in [7] and [31]. For example,
let W = b(0, R) and Wext = b(0, R + r), where R and r are two positive constants, and let
k1 be the Gaussian kernel (3). Define kdom

W (b, ξ − c) = supη∈W kb(η − c) for ξ ∈ W , and set
σd = 2πd/2/�( 1

2d). Proceeding as in Example 5 of [31],

a(‖c‖, b) := adom
W (c, b) =

[
ωdR

d

(2πb2)d/2

]
exp

[
− 1(‖c‖ > R)

(‖c‖ − R)2

2b2

]

and the integral in (31) and (32) is given by

σd

∫ ∞

0

∫ ∞

0
γ dχ(b, γ )

∫ ∞

0
sd−1a(s, b) ds − σd

∫ B

0

∫ ∞

ε

γ dχ(b, γ )
∫ R+r

0
sd−1a(s, b) ds.

This may be determined by numerical methods for specific models of generalised Neyman–
Scott and generalised shot noise G Cox processes; see [7] and [31].

4.2. Simulation without edge effects and truncation

Perfect simulation ofXW can be obtained by independent thinning of the nonempty clusters
in a Cox process Xdom

W driven by

Zdom
W (ξ) =

∑
j

γj k
dom
W (bj , cj , ξ),

where kdom
W satisfies Conditions 1 and 2. The details for SNCPs are carefully discussed in [7],

[31], and [34], so in this section we give only a description of the algorithm and discuss some
applications for GSNCPs.

Let Xdom
j , (cj , bj , γj ) ∈ �, denote the clusters of Xdom

W , and let �dom
W = {(cj , bj , γj ) ∈

� :Xdom
j = ∅}. In addition to Conditions 1 and 2, assume that the following condition holds.

Condition 3. It is feasible to simulate �dom
W (and, hence, �dom

W is almost surely finite).

Example 9, below, demonstrates that having the ability to check Condition 3 will depend
very much on the choice of model for �, the kernel k1, etc.

Perfect simulation algorithm for GSNCPs.

(a) Generate the point process �dom
W = {(c1, b1, γ1), . . . , (cN, bN, γN)}.

(b) For each j = 1, . . . , N , generate

(i) Xdom
j , which is distributed as a conditional Poisson process with intensity function

γj k
dom
W (bj , cj , ·), given that it is nonempty; and

(ii) X′
j , which is an independent thinning of Xdom

j with retention probabilities

kbj (cj , ξ)/k
dom
W (bj , cj , ξ) for ξ ∈ Xdom

j .

(c) Return
⋃
j X

′
j .
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For the loop in step (b), it is implicit that the generation of the processes in parts (i) and (ii)
is independent of previous generations. The output in step (c) follows the same distribution as
XW ; see, e.g. Proposition 4 of [31].

Example 9. For the arguments below, it is useful to notice that if � is a Cox process, we can
obtain �dom

W by independent thinning of � with retention probabilities

pdom
W (c, b, γ ) = 1 − exp(−γ adom

W (c, b)), (c, b, γ ) ∈ �.
Suppose that � is a Poisson process. Then, clearly, �dom

W is a Poisson process on �, with
intensity measure

ζ dom
W (D) =

∫
D

pdom
W (c, b, γ ) dζ(c, b, γ ).

Condition 3 means that ζ dom
W (�) < ∞ and we are able to generate �dom

W . Example 6 of [31]
gives a detailed discussion of this condition for SNCPs, and this discussion easily extends to
the present case.

Now suppose that � is a generalised Neyman–Scott process, where the (bj , γj ) are i.i.d.
with distributionQ, and�cent is a Cox process driven by a random field Y (·), which is bounded
by a constant M and independent of the (bj , γj ). Furthermore, let k1, W , Wext, kdom

W , and a
be defined as in Example 8. Then �dom

W is a Cox process on � driven by the random measure
dm(c, b, γ ) = pdom

W (c, b, γ )Y (c) dc dQ(b, γ ), and

E�dom
W = Em(�) ≤ Mσd

∫ ∞

0

∫
(0,∞)2

sd−1[1 − exp(−γ a(s, b))] ds dQ(b, γ ) =: βdom
W ,

where we assume that βdom
W is finite and can be determined by numerical integration (see, e.g.

page 628 of [31]). At least in principle, simulation of �dom
W is straightforward by thinning.

First, simulate a Poisson variate N with mean βdom
W . Second, generate independent points

(sjuj , bj , γj ) for j = 1, . . . , N , where uj is a uniformly distributed unit vector in R
d ,

(sj , bj , γj ) has distribution

P(A) ∝
∫∫

1((s, b, γ ) ∈ A)sd−1[1 − exp(−γ a(s, b))] ds dQ(b, γ ), A ⊆ (0,∞)3,

and uj is independent of (sj , bj , γj ) (here rejection sampling may be useful). Third, simulate
Y (sjuj ) for j = 1, . . . , N , and assign each (sjuj , bj , γj ) to�dom

W with probability Y (sjuj )/M
(where these assignments are independent).

Similar ideas apply for a generalised shot noise G Cox process. Consider the case of
Example 3, in which the bj are i.i.d. with distribution ν, and again let k1, W , etc. be as in
Example 8. Then �dom

W is a Cox process driven by the random measure

dmθ(c, b, γ ) = pdom
W (c, b, γ )λθ (γ ) dc dν(b) dγ,

where λθ is given by (10), and, so, �dom
W is almost surely finite if

E�dom
W = σd

∫ ∞

0

∫ ∞

0

∫ ∞

0
sd−1[1 − exp(−γ a(s, b))] E λθ (γ ) ds dν(b) dγ

is finite. We can then, at least in principle, simulate �dom
W by generating first θ and then �dom

W

as a Poisson process with intensity measure mθ .
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Finally, consider the Markov point process setting of Example 4, where, for simplicity, we
assume that �cent is a finite Markov point process contained in the bounded window Wext.
We cannot exploit the same ideas as above, since �cent is not easily viewed as a Cox process.
However, dominated coupling from the past can be used for making a perfect simulation of
�cent if this process is locally stable [21]. Then, since �cent is independent of the (bj , γj ),
which are either i.i.d. or identical (as in Example 4), it may be straightforward to simulate
�dom
W using acceptance–rejection sampling for the clusters. That is, we simulateXdom

j without
conditioning and accept (i.e. return) Xdom

j if it is nonempty, repeating the procedure until
acceptance is obtained.

4.3. Conditional simulation

Assume that XW = x = {x1, . . . , xm} = ∅ is observed. Simulation of the conditional
distribution of �, given that XW = x, is needed to predict � and also to perform likelihood
and Bayesian inference based on MCMC methods; see Section 4.3 of [31] and the references
therein. In this section, following [15] (see also [1], [14], [24], [29], [34], and [49]), we
first describe the birth–death–move Metropolis–Hastings algorithm for conditional simulation
of the process � | (XW = x) (this is a particular case of Green’s reversible jump MCMC
algorithm [16]). Second, we give sufficient conditions that guarantee geometric ergodicity of
the algorithm (or, in fact, V -uniform ergodicity; the reader is referred to [27] or Section 7.2
of [34] for background material on Markov chains).

Throughout this section, we assume the following: the process � is almost surely finite
and contained in D = Wext × B × (ε,∞), with W ⊆ Wext ⊆ R

d , B ⊆ (0,∞), and ε ≥ 0.
Depending on the context, it may be natural to consider cases in which B is a bounded or
unbounded interval and, for technical reasons, when establishing geometric ergodicity, we will
first take ε to be positive. Furthermore, ν denotes a Poisson process onDwith a diffuse intensity
measure µ such that 0 < µ(D) < ∞. Finally, � has a density p with respect to ν.

Given these assumptions, XW | � is a Poisson process and it has a density, with respect to
a unit-rate Poisson process on W , given by

f (x | �) = exp

(
|W | −

∫
W

Z(ξ) dξ

) ∏
ξ∈x

Z(ξ).

Hence, an unnormalised density for � | (XW = x) with respect to ν is given by

π(φ | x) = f (x | φ)p(φ).

The corresponding normalizing constant is unknown, but depends only on the data x.
We turn now to the description of the birth–death–move Metropolis–Hastings algorithm. It

generates a Markov chain defined on

�x = {φ ⊂ D : card(φ) < ∞, π(φ | x) > 0}.

Let 0 < q1 < 1 and 0 < q2 ≤ 1 be given numbers and, for φ ∈ �x and (c, b, γ ) ∈ D, define

r[φ, (c, b, γ )] = (1 − q1)π(φ ∪ {(c, b, γ )} | x)µ(D)
q1π(φ | x)(card(φ)+ 1)

. (34)
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If φ = {(c1, b1, γ1), . . . , (cn, bn, γn)} ∈ �x is the current state of the chain, the next state is
generated as follows.

(a) With probability q1q2, make a birth step:

• generate (c, b, γ ) with law µ/µ(D);

• with probability min{1, r[φ, (c, b, γ )]}, return φ ∪ {(c, b, γ )} as the next state.

(b) With probability (1 − q1)q2, make a death step (if n > 0):

• generate i according to the uniform law on {1, . . . , n};
• with probability min{1, r[φ \ {(ci , bi, γi)}, (ci , bi, γi)]−1}, return φ \ {(ci , bi, γi)}

as the next state.

(c) With probability 1 − q2, make a move step (if n > 0):

• generate i according to the uniform law on {1, . . . , n};
• generate (c, b, γ ) with law µ/µ(D);

• with probability min{1, π((φ \ {(ci , bi, γi)}) ∪ {(c, b, γ )} | x)/π(φ | x)}, return
(φ \ {(ci , bi, γi)}) ∪ {(c, b, γ )} as the next state.

(d) Otherwise, return φ as the next state.

Assuming that the initial state is in �x , the chain stays in �x . Note that the empty point
configuration is not contained in �x , since x = ∅. Furthermore, the chain is reversible with
invariant (unnormalised) density π(· | x). This follows along similar lines as in the proofs of
Propositions 7.11, 7.12, and 7.15 of [34].

We consider two situations in which irreducibility of the chain is satisfied. If, for anyφ ∈ �x ,
φ′ ∈ �x , ψ ⊂ φ, andψ ′ ⊂ φ′, we have φ∪ψ ′ ∈ �x and (φ \ψ)∪φ′ ∈ �x , then irreducibility
holds. Briefly, this follows because the chain can then move up from φ to φ∪φ′, and then down
to φ′. Note that f (x | φ) > 0 if f (x | φ′) > 0 and φ′ ⊂ φ, and that π(φ | x) > 0 if and only
if f (x | φ) > 0 and p(φ) > 0. Thus, irreducibility holds if, for all φ ∈ �x and (c, b, γ ) ∈ D,

p(φ) > 0 ⇒ p(φ ∪ {(c, b, γ )}) > 0. (35)

This condition is satisfied for SNCPs (since p = 1 in [31]). However, (35) is not always
satisfied for other models of interest. For example, if a hard-core condition is imposed, so that
p(φ ∪ {(c, b, γ )}) = 0 if a cluster centre from φ is sufficiently close to c, then (35) is violated.
In fact, the opposite will often hold: p is said to be hereditary on �x if, for all φ ∈ �x and
(c, b, γ ) ∈ D,

p(φ ∪ {(c, b, γ )}) > 0 ⇒ p(φ) > 0. (36)

In that case, we need to impose further conditions: if q2 < 1 (i.e. moves are possible),

k1(c, xi ) > 0 for all c ∈ Wext and i = 1, . . . , m, (37)

(i.e. f (x | φ) > 0 for all finite, nonempty φ ⊂ D), and (36) holds, then we have irreducibility.
Briefly, this follows since π(· | x) is now hereditary on�x , so, if φ ∈ �x , φ′ ∈ �x , (c, b, γ ) ∈
φ, and (c′, b′, γ ′) ∈ φ′, the chain can first move down from φ to (c, b, γ ), then move to
(c′, b′, γ ′) and, finally, move up to φ′. Note that (37) is clearly satisfied for a positive kernel
such as the Gaussian kernel (3), but might easily be violated for the uniform kernel (4).
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In the sequel, irreducibility is assumed. Note that the chain is clearly aperiodic, since it can
stay in the same state for one or more transitions. Below, conditions stronger than those above
will be assumed in order to establish V -uniform ergodicity. We consider the cases with and
without moves separately (i.e. the two cases q2 < 1 and q2 = 1).

The following Proposition 5 concerns the case q2 = 1, in which we refer to our Metropolis–
Hastings algorithm as the birth–death algorithm. The proposition subsumes Proposition 5
of [31] (where the bj are equal and fixed, � is a Poisson process, and p = 1). The following
conditions are assumed to hold.

(a) The density p is locally stable, i.e. there is a finite constant � such that

p(φ ∪ {(c, b, γ )}) ≤ �p(φ)

for all finite φ ⊂ D and (c, b, γ ) ∈ D.

(b) For any positive integer K , there exists a positive function hK such that

hK(c, b, γ )p(φ) ≤ p(φ ∪ {(c, b, γ )})
for all (c, b, γ ) ∈ D and φ ∈ �x for which card(φ) ≤ K .

(c) There exists a positive constant δ > 0 such that
∫
W

kb(c, ξ) dξ ≥ δ

for any (c, b) ∈ Wext × B.

(d) For i = 1, . . . , m, ∫
D

1(kb(c, xi ) > 0) dµ(c, b, γ ) > 0.

(e) There exist positive constants δ′1, . . . , δ′m, δ′′1 , . . . , δ′′m such that

δ′i ≤ kb(c, xi ) ≤ δ′′i whenever kb(c, xi ) > 0 and (c, b) ∈ Wext × B.

Conditions (a) and (b) are automatically satisfied for SNCPs (as p = 1). For GSNCPs,
condition (b) implies (35) and, so, irreducibility is ensured. Conditions (a) to (e) are further
discussed in Example 10, below.

Proposition 5. Assume that q2 = 1, ε > 0, and conditions (a) to (e) are satisfied. Then, for
any function V (φ) = βcard(φ), φ ∈ �x , with β > 1, the birth–death algorithm is V -uniformly
ergodic.

Proof. We show first that, for any positive integerN , the set SN = {φ ∈ �x : card(φ) ≤ N}
is a small set. This means that P t(φ, F ) ≥ ε′Q(F) for any φ ∈ SN and any measurable
set F ⊆ �x , where ε′ > 0 is some positive constant, Q is some nonzero measure on �x ,
and P t(φ, ·) denotes the t-step transition probability of the Metropolis–Hastings chain when it
starts in φ.

We shall use the following bounds. Let φ ∈ �x and (c, b, γ ) ∈ D. Arguing as at the
beginning of the proof of Proposition 5 of [31], using conditions (a), (c), and (e), it is seen that

exp(−γ /bd)p(φ ∪ {(c, b, γ )})/p(φ) ≤ π(φ ∪ {(c, b, γ )} | x)/π(φ | x) ≤ M, (38)
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where M > 0 is a constant. Furthermore, 0 < µ(D) < ∞ implies that, for any positive
integer K , there exist a constant LK > ε and a nonvoid interval BK ⊆ B such that ρK :=
inf BK ∈ (0,∞), ((1 − q1)/q1) exp(−LK/ρdK)µ(D)� ≤ 1, and µ(Wext ×B × (ε, LK)) > 0.
Furthermore, by condition (d), and since hK is a positive function,∫

1(kb(c, xi ) > 0, b ∈ BK, γ < LK)hK(c, b, γ ) dµ(c, b, γ ) > 0, i = 1, . . . , m. (39)

Let m′ > max{m, ((1 − q1)/q1)Mµ(D)− 1} be an integer and set a = min{q1, 1 − q1}.
For any φ = {(c1, b1, γ1), (c2, b2, γ2), . . . , (ck, bk, γk)} ∈ SN and measurable F ⊆ �x ,

Pm
′+N(φ, F )

≥
∫
D

· · ·
∫
D

∫
D

· · ·
∫
D

×
m′∏
l=1

amin{1, r[φ ∪ {(v1, u1, σ1), . . . , (vl−1, ul−1, σl−1)}, (vl , ul, σl)]} (40)

×
k∏
j=1

a

k +m′ − j + 1
min{1, r[(φ \ {(c1, b1, γ1), . . . , (cj , bj , γj )})

∪ {(v1, u1, σ1), . . . , (vm′ , um′ , σm′)}, (cj , bj , γj )]−1}
(41)

×
N−k∏
i=1

a(1 − min{1, r[{(v1, u1, σ1), . . . , (vm′ , um′ , σm′)}, (v′
i , u

′
i , σ

′
i )]}) (42)

× 1({(v1, u1, σ1), . . . , (vm′ , um′ , σm′)} ∈ F)

× dµ(v1, u1, σ1)

µ(D)
· · · dµ(vm′ , um′ , σm′)

µ(D)

dµ(v′
1, u

′
1, σ

′
1)

µ(D)
· · · dµ(v′

N−k, u′
N−k, σ ′

N−k)
µ(D)

,

corresponding to first adding (v1, u1, σ1), . . . , (vm′ , um′ , σm′) to φ; next, deleting the points in
φ; and, finally, making no changes when N − k births are proposed. From (34) and the last
inequality in (38), we obtain, for each of the terms in line (41) of the previous expression,
r[· · · ]−1 ≥ (q1/(1 − q1))(m

′ + 1)/Mµ(D) ≥ 1, i.e. min{1, r[· · · ]−1} = 1, j = 1, . . . , k,
and, for each of the terms in line (42), r[· · · ] ≤ ((1 − q1)/q1)Mµ(D)/(m

′ + 1) ≤ 1, i.e.
1 − min{1, r[· · · ]} = 1 − ((1 − q1)/q1)Mµ(D)/(m

′ + 1), i = 1, . . . , N − k. Furthermore,
combining (34), condition (b), and the first inequality in (38), we obtain, for each of the terms
in line (40),

r[· · · ] ≥ (1 − q1) exp(−Lm′+N/ρdm′+N)µ(D)
q1(k + l)

hm′+N(vl , ul, σl)

if σl < Lm′+N and ul ∈ Bm′+N , l = 1, . . . , m′. Therefore,

Pm
′+N(φ, F ) ≥ am

′+N
(

1 − q1

q1

)m′ [exp(−Lm′+N/ρdm′+N)µ(D)]m
′

[∏m′
l=1(k + l)][∏k

j=1(m
′ + j)]

×
[

1 − (1 − q1)Mµ(D)

q1(m′ + 1)

]N−k
Q(F ),
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where

Q(F) =
∫

{(v1,u1,σ1)∈D : u1∈Bm′+N , σ1<Lm′+N }
· · ·

∫
{(vm′ ,um′ , σm′ )∈D : um′ ∈Bm′+N ,σm′<Lm′+N }

× 1({(v1, u1, σ1), . . . , (vm′ , um′ , σm′)} ∈ F)
× hm′+N(v1, u1, σ1) · · ·hm′+N(vm′ , um′ , σm′)

× dµ(v1, u1, σ1)

µ(D)
· · · dµ(vm′ , um′ , σm′)

µ(D)
.

Consequently, Pm
′+N(φ, F ) ≥ ε′Q(F), where

ε′ = am
′+N

(
1 − q1

q1

)m′ [exp(−Lm′+N/ρdm′+N)µ(D)]m
′

(N + 1) · · · (N +m′)

× m′!
(N +m′)!

[
1 − (1 − q1)Mµ(D)

q1(m′ + 1)

]N
.

Notice that Q is a nonzero measure because, if we set xi = xm for i ≥ m, then

Q(�x) ≥
∫
D

· · ·
∫
D

1(kui (vi , xi ) > 0, ui ∈ Bm′+N, σi < Lm′+N, i = 1, . . . , m′)

× hm′+N(v1, u1, σ1) · · ·hm′+N(vm′ , um′ , σm′)
dµ(v1, u1, σ1)

µ(D)
. . .

dµ(vm′ , um′ , σm′)

µ(D)
,

which is positive – see (39). Thus, SN is a small set.
We can now verify the following geometric drift condition, which implies V -uniform

ergodicity: for each β > 1, there exist constants b < ∞ and b′ < 1 such that, for any
φ ∈ �x ,

E(βcard(X1) | X0 = φ) ≤ b′βcard(φ) + b 1(φ ∈ SN), (43)

where {Xn}n≥0 denotes the Metropolis–Hastings chain and N > βMµ(D). The proof follows
along lines similar to those of the proofs of Proposition 3.3 of [14], Proposition 7.14 of [34], and
Proposition 6, below. Finally, (43) implies V -uniform ergodicity; cf. Proposition 7.9 of [34].

Example 10. In applications,Wext is bounded and it does not make sense to consider arbitrary,
large bandwidths, so let us suppose that both Wext and the interval B are bounded, and let
ε > 0. For technical reasons, we also assume that Wext and B are both closed. Furthermore,
suppose that {cj } has density p̃ with respect to the unit-rate Poisson process on Wext, and is
also independent of the (bj , γj ), which are i.i.d. with density q (this setting covers, e.g. the
finite Markov point process considered in Example 4). Let the Poisson process ν be specified
by the intensity measure

dµ(c, b, γ ) = q(b, γ ) dc db dγ.

Then, � has the following density with respect to ν:

p({(c1, b1, γ1), . . . , (cn, bn, γn)}) = p̃({c1, . . . , cn}).
Conditions (c) to (e) are then satisfied if k1 is positive and continuous onWext ×Wext, e.g. if

k1 is the Gaussian kernel (3). If, on the other hand, k1 is the uniform kernel (4), then condition (c)
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is satisfied if the diameter of Wext is less than or equal to the left endpoint of the interval B;
condition (e) still holds; and condition (d) is satisfied provided that

∫
Wext

∫
B

∫ ∞

ε

1(‖c − xi‖ < b)q(b, γ ) dc db dγ > 0, i = 1, . . . , m.

The latter condition may be expected to hold for almost any natural choice ofWext, B, ε, and q.
Suppose, also, that p̃ is a Markov density, i.e.

p̃(c) =
∏
y⊆c

ϕ(y)

for all finite c ⊂ Wext, where ϕ is an interaction function; cf. (14). Then, condition (a) is
satisfied for most choices of ϕ used in practice (including repulsive models and the examples
considered below) – see Chapter 6 of [34]. However, condition (b) is usually not satisfied: for
instance, if we impose a hard-core condition, so that p̃(c) = 0 whenever c contains two points
separated by a distance less than the diameter of the hard core, then condition (b) is violated.
Two exceptions are the Strauss process [20], [45] and the area-interaction process [3], [50]. For
a Strauss process,

p̃({c1, . . . , cn}) ∝ βnθ
∑

1≤i<j≤n 1(‖ci−cj ‖≤R),

where β > 0, 0 < θ ≤ 1, and R > 0 are parameters. Then, condition (a) is satisfied
with � = β, and condition (b) holds with hK(c, b, γ ) = βθK(K+1)/2. For an area-interaction
process,

p̃({c1, . . . , cn}) ∝ βnθ−| ⋃n
i=1 b(ci ,R)|,

where β > 0, θ > 0, and R > 0 are parameters and b(ci , R) is the ball in R
d with centre ci

and radius R. Then, conditions (a) and (b) are satisfied with

� = β and hK(c, b, γ ) = βθ−|b(0,R)| if θ ≥ 1,

and with

� = βθ−|b(0,R)| and hK(c, b, γ ) = β if θ ≤ 1.

The following proposition concerns the case q2 < 1 when certain conditions, including the
following, are satisfied.

(f) The density p(φ) is constant and positive for all φ ∈ �x with card(φ) = 1.

(g) D = Wext ×B× (ε, L) withWext, B, and ε defined as before, and where L > ε is finite.

Note that the conditions in Proposition 6 imply irreducibility, and we do not need to assume
that condition (b) is satisfied. (As noted in Example 10, condition (b) is violated in most Markov
models.) Moreover, condition (d) is implied by (37), since µ(D) > 0, but we will not use it in
the proof.

Proposition 6. Assume that q2 < 1, that ε > 0, and that conditions (37), (a), (c), (e), (f),
and (g) are satisfied. Then, for any function V (φ) = βcard(φ) with φ ∈ �x and β > 1, the
birth–death–move algorithm is V -uniformly ergodic.
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Proof. As in the proof of Proposition 5, the first step is to show that SN is a small set for
any positive integer N . Let m′ > N be an integer, a = min{q1q2, (1 − q1)q2, 1 − q2},

φ = {(c1, b1, γ1), (c2, b2, γ2), . . . , (ck, bk, γk)} ∈ SN,

(c′
0, b

′
0, γ

′
0) = (ck, bk, γk), and F ⊆ �x . Then,

Pm
′
(φ, F ) ≥ am

′ 1

k!
k−1∏
j=1

min{1, r[φ \ {(c1, b1, γ1), . . . , (cj , bj , γj )}, (cj , bj , γj )]−1}

×
∫
Dm

′−k+1

m′−k+1∏
j=1

min

{
1,

π({(c′
j , b

′
j , γ

′
j )} | x)

π({(c′
j−1, b

′
j−1, γ

′
j−1)} | x)

}

× 1({(c′
m′−k+1, b

′
m′−k+1, γ

′
m′−k+1)} ∈ F)

× dµ(c′
1, b

′
1, γ

′
1)

µ(D)
· · · dµ(c′

m′−k+1, b
′
m′−k+1, γ

′
m′−k+1)

µ(D)
,

corresponding to first deleting all except one point of φ and then applying the move step
m′ − k + 1 times. (Note that condition (b) was used in the proof of Proposition 5, when we
considered them′ additions to φ; in the present proof, condition (b) is not needed because we do
not consider any births.) A straightforward computation shows that, for any j = 1, . . . , k − 1,

min{1, r[φ\{(c1, b1, γ1), . . . , (cj , bj , γj )}, (cj , bj , γj )]−1}
≥ min

{
1,

q1

(1 − q1)Mµ(D)

}
> 0,

whereM > 0 is the upper bound in (38) (which was also obtained without using condition (b)).
By conditions (37), (e), (f), and (g), for all (c, b, γ ), (c′, b′, γ ′) ∈ D,

π({(c, b, γ )} | x)
π({(c′, b′, γ ′)} | x) = exp(− ∫

W
γ kb(c, ξ) dξ)

exp(− ∫
W
γ ′kb′(c′, ξ) dξ)

(
γ

γ ′

)m m∏
j=1

[
kb(c, xj )

kb′(c′, xj )

]

≥ exp

(
− γ

bd

)(
γ δ′

γ ′δ′′

)m
≥ exp

(
− γ

bd

)(
εδ′

Lδ′′

)m
,

where δ′ = min{δ′1, . . . , δ′m} and δ′′ = max{δ′′1 , . . . , δ′′m}. Therefore,

Pm
′
(φ, F ) ≥ am

′

k!
[

min

{
1,

q1

(1 − q1)Mµ(D)

}]k−1

×
∫
D

· · ·
∫
D

m′−k+1∏
j=1

min

{
1, exp

(
− γ ′

j

b′d
j

)(
εδ′

Lδ′′

)m}

× 1({(c′
m′−k+1, b

′
m′−k+1, γ

′
m′−k+1)} ∈ F)

× dµ(c′
1, b

′
1, γ

′
1)

µ(D)
· · · dµ(c′

m′−k+1, b
′
m′−k+1, γ

′
m′−k+1)

µ(D)
.
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Since µ(D) > 0, there exists B ′ ⊆ B such that ρ := inf B ′ ∈ (0,∞) and µ(Wext × B ′ ×
(ε, L)) > 0. Thus,

Pm
′
(φ, F ) ≥ am

′

k!
[

min

{
1,

q1

(1 − q1)Mµ(D)

}]k−1

×
∫
D

· · ·
∫
D

m′−k+1∏
j=1

min

{
1, exp

(
− γ ′

j

b′d
j

)(
εδ′

Lδ′′

)m}

× 1(b′
1 ∈ B ′, . . . , b′

m′−k+1 ∈ B ′, {(c′
m′−k+1, b

′
m′−k+1, γ

′
m′−k+1)} ∈ F)

× dµ(c′
1, b

′
1, γ

′
1)

µ(D)
· · · dµ(c′

m′−k+1, b
′
m′−k+1, γ

′
m′−k+1)

µ(D)

≥ am
′

k!
[

min

{
1,

q1

(1 − q1)Mµ(D)

}]k−1

×
[

min

{
1, exp

(
− L

ρdj

)(
εδ′

Lδ′′

)m}]m′−k+1(
µ(D′)
µ(D)

)m′−k
Q(F ),

where D′ = Wext × B ′ × (ε, L) and

Q(F) =
∫
D′

1({(v, u, σ )} ∈ F)dµ(v, u, σ )

µ(D)
.

Note thatQ is a nonzero measure since, by (37) and condition (f),Q(�x) = µ(D′)/µ(D) > 0.
Furthermore, Pm

′
(φ, F ) ≥ ε′Q(F), where

ε′ = am
′

N !
[

min

{
1,

q1

(1 − q1)Mµ(D)

}]N−1

×
[

min

{
1, exp

(
− L

ρd

)(
εδ′

Lδ′′

)m}]m′+1(
µ(D′)
µ(D)

)m′

> 0.

Thus, SN is a small set.
Next, we establish V -uniform ergodicity by checking the geometric drift condition (43) with

N > max{β, (1−q1)/q1}Mµ(D). Assume that the current state φ of the Metropolis–Hastings
chain is such that φ /∈ SN , and set k = card(φ). As for the birth–death Metropolis–Hastings
algorithm, here the probability of accepting a death is again 1. Now, letting

B(φ) =
∫
D

min{1, r[φ, (c, b, γ )]}dµ(c, b, γ )

µ(D)

denote the probability of accepting a birth, we have

B(φ) ≤ (1 − q1)Mµ(D)

q1(k + 1)
≤ (1 − q1)Mµ(D)

q1(N + 1)
,

since φ /∈ SN . Therefore,

E(βcard(X1) | X0 = φ)

= q1q2β
k+1B(φ)+ q1q2β

k(1 − B(φ))+ (1 − q1)q2β
k−1 + (1 − q2)β

k

≤ βk
[
(1 − q1)q2(β − 1)

Mµ(D)

N + 1
+ (1 − q1)q2

(
1

β
− 1

)
+ 1

]
, (44)

https://doi.org/10.1239/aap/1113402399 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1113402399


72 • SGSA J. MØLLER AND G. L. TORRISI

where we have used the fact that β > 1. Therefore, when φ /∈ SN , (43) follows from setting
b′ equal to the contents of the square brackets in (44). Indeed, it is clear that b′ < 1, since
N > max{β, (1 − q1)/q1}Mµ(D). Finally, when φ ∈ SN ,

E(βcard(X1) | X0 = φ) ≤ βcard(φ)+1 ≤ βN+1,

whereby (43) is verified.

Example 11. Condition (37) is satisfied if k1 is positive, but it is easily violated by the uniform
kernel. If the situation is as in Example 10, then condition (c) is satisfied if k1 is continuous
and positive. Furthermore, condition (f) means that ϕ(y) is a positive constant β whenever
card(y) = 1. If this is not the case, condition (f) can still be obtained by redefining the intensity
measure of ν as dµ(c, b, γ ) = ϕ({c})q(b, γ ) dc db dγ . Finally, condition (g) is needed for
technical reasons (cf. the proof above), and the existence of the upper bound L on the γj may,
in many applications, be a weaker assumption.

5. Concluding remarks

Although we have demonstrated that, to some extent, GSNCPs possess many appealing
properties, it remains to investigate their statistical aspects and practical uses. The results in
Section 3.1 for the intensity and pair correlation function may be useful for model checking
and parameter estimation, particularly minimum contrast estimation; see [34]. The results
in Section 3.2 on reduced Palm distributions and J -functions may, to some extent, be useful
for statistical applications [34], [47], [48]. The most important part of this paper from a
statistical viewpoint is probably Section 4 on simulation algorithms, since they provide ways of
performing simulation-based inference, as mentioned in Section 2.1; see [34]. The algorithms in
Sections 4.1 and 4.2 for simulation of GSNCPs may be useful in connection to model checking,
while the conditional simulation algorithm in Section 4.3 has applications in both Bayesian and
likelihood inference [31].

In this paper, we have concentrated on the probabilistic aspects of GSNCPs. Future research
should address the following: (i) Markov properties of GSNCPs; cf. the discussion in [31] for
SNCPs; (ii) implementation and experimentation with the simulation algorithms discussed in
Section 4; (iii) convergence properties of MCMC hybrid algorithms (or Gibbs within Metro-
polis algorithms – see, e.g. [11]) for conditional simulation, when we extend the setting of
Section 4.3 by imposing a prior distribution on the hyperparameters of the distribution of �
(e.g. imposing a prior on θ in Example 3); and (iv) application of our current understanding of
GSNCPs to related models, e.g. spatial Hawkes processes (see point (e) in Section 2.1).
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