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1. Introduction

In a recent note, M. Kuczma [5] has obtained a general result concerning
real solutions <f>(z) on the interval O j £ a ; < a ; S o o o f the Schroder func-
tional equation

(1.1) 4>[f(x)] = s<f>(x), 0 < s < 1

providing the known real function satisfies the following (quite weak)
conditions:

(1.2) f(x) is continuous and strictly increasing in [0, a);

(1.3) /(0) = 0 and 0 < f(x) < x for x e (0, a);

(1.4) h'ma!_>0+ {f{x)jx} = s; and

(1.5) f(x)/x is monotonic in (0, a).

His theorem may be stated as follows:

THEOREM A. (Kuczma). If conditions (1.2) —(1.5) hold, the limit

(1.6) ^ ( x ) = c l i m ^ , xe[0,a)
n-«>/„(«)

exists (where c is an arbitrary constant, d is fixed in (0, a) and fn(x) is the »-th
functional iterate of f(x)) and defines a one-parameter family of solutions of
(1.1) such that <f>(x)/x is monotone on (0, a). Moreover, all real solutions <f> on
(0, a) of (1.1), such that <f>(x)jx is monotone on this interval, belong to this
family.

We note before proceeding that (1.3) ensures that the functions fn(x)
(with fo(x) = x) are well defined for n 2: 0 and positive on (0, a). Moreover
as n -> oo fn(x) -> 0 by (1.2) and (1.3).

The ratios {fn(x)lfn{d)} occurring in (1.6) are a modification introduced
by Szekeres [8] of Koenigs' ratios {s~nfn(x)} which occur in the classical
theory (see e.g. [7], Chapter IV), of the Schroder equation, and whose
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asymptotic behaviour is of interest in its own right. The primary purpose
of this paper is to completely specify the behaviour of Koenigs' ratios
under the conditions (1.2) —(1.5) which ensure the validity of Kuczma's
theorem.

A further section, § 3, briefly discusses our result in the context of the
known theory of Koenigs' ratios and the Schroder equation. This leads in
turn to a strengthening of a result due in part to each of Koenigs, Kneser
and Szekeres.

2. The limit of Koenigs' ratios

THEOREM B. Under conditions (1.2) —(1.5), the limit

(2.1) <f>(x) = lim {*-" /»} , xe[0,a)
n-»oo

exists in the sense that it is either positive, infinite, or zero throughout (0, a).
A necessary and sufficient condition for oo > <f>[x) > 0 in (0, a) is

where d is an arbitrary fixed number in (0, a). Under condition (2.2), <f>(x)jx
is monotone in (0, a), and <f>(x) satisfies (1.1), with

lim #(*)/*}(= f (0 +)) = l . i

PROOF. Let g(x) = {f(x)jsx}, x e (0, a). Then

(2-3) r«/.(*)=*n«l/,(4
r=0

Now, since either 0 < g(x) ^ 1 or g(x) ^ 1 as {f(x)/x} is decreasing or
increasing, in view of (1.4) and (1.5), {s~nfn(x)} approaches a positive finite
limit if and only if
(2-4) l|l-g[/»]|<oo.

n=0

We now obtain geometric bounds for fn(x) as n -> oo. For x sufficiently
close to zero, and s arbitrarily chosen in (0, min (s, 1—s)), but fixed,

(s—s)x ^ f{x) ^ {s+s)x

from (1.4). Hence for x fixed in (0, a), and n 5; no(x; e)

1 Hence <f>(x) belongs to the family defined by (1.6) if (2.2) holds, and is uniquely speci-
fied by </>'(0+) = 1.
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(s-e)/,-i(«) ^/.(*) ^ (s+e)/.-i(*)
so that

(2.5) (s-e)"{(s-e)—+V..-i(*)} ^ /.(*) ^ ( s + ^ ^ ^ + e ) - ^ 1 / ^ - ! ^ ) } -
Now, since ^(x) is monotonic, from (1.4)

\l-g(Ax')\ ^ 11—^(^^+1)1

for arbitrary A > 0, 0 < a < l , and / S: /0 ^ 1 where A a3'0 < a. Hence
by the Cauchy integral test

)\ and

converge or diverge together. Investigating the integral, put Aa.y = w to
obtain

1

rs \1—P(W)\

(2.6) 2A_2L dw (0<d<a)
Jo w

Jo w

which converges or diverges as

\1

Jo
independently of the actual size of A and a.

Hence returning to (2.4) and using the geometric bounds for
/„(*) in (2.5), in conjunction with the monotonicity of g(x), it follows that
(2.4) holds if and only if (2.6) holds, for any fixed 6 e (0, a). Hence the first
assertion of the theorem.

Moreover, under (2.2), for x e [0, a)

4>[f(*)l = lim {s-n/«+i(*)} = s Urn {s-<«+» fn+1(x)}
n-+oo n-*oo

= s<t>(x),

and from the product representation

X r=0

it follows that {<f>(x)jx} is monotone in (0, a), since g is, and from (1.2),
/,(*) is-

Finally we may evaluate <£'(0+) = lira,..,,, {cf>(x)lx} by noting that from
(1.1) for x e [0, a)

,, ^ <£[/(*)] = . . . = ^F/»(»)]

(2.7)
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so that as n -> oo, <f>(x) = <f>'(O+)<f>(x), whence <£'(0+) = 1 since oo > <f>(x) > 0
for x e (0, a).

COROLLARY 1. When the integral in (2.2) diverges, <f>(x) = 0 or = oo as
{f(x)lx} is decreasing or increasing.

COROLLARY 2. Under conditions (1.2) —(1.4) a real positive solution
(f>(x) on (0, a) of (1.1) with <f>(0) = 0 way Aawe 0 < </>'(0+) < oo if and only if
Koenigs' ratios {s~nfn(x)} converge to a positive limit for all x in (0, a), in
which case <f>(x) is a positive multiple of their limit, (c.f. Kuczma [3], Theorem
8.3). (This is a direct consequence of (2.7).)

3. Complementary remarks and a general result

Since the existence of the inverse function, $~x, of a real solution of
(1.1) is of importance in e.g. the theory of continuous Schroder iteration,
we devote some discussion to this topic.

Even when condition (2.2) holds in addition to Kuczma's conditions
(1.2) —(1.5), <f>(x) the 'principal' Schroder function as defined by (1.6)
(or (2.1)), although monotone and with <f>'{0+) = 1, may still not be con-
tinuous and strictly monotone in (0, a), so that <£-1 may not be defined.2

We note however that the often cited example due to Szekeres [8] of
pathological behaviour in this connection, viz.

fix) = — -\ x% sin — , x > 0
(3.1) 2 ^

= 0, x = 0

while satisfying conditions (1.2) —(1.4) in a neighbourhood of zero, will not
really serve here, since condition (1.5) is certainly not satisfied in any right
neighbourhood of zero, although we note for future purposes that (2.2) is.

On the other hand, if Kuczma's condition (1.5) is replaced by the
condition of convexity/concavity of f(x) on (0, a) (which in view of the
other conditions implies monotonicity of f(x)lx), it is easy to see that,
regardless of whether or not (2.2) holds, <f>(x) as defined by (1.6) is invertible
on (0, a). (For related discussion, see Kuczma [3], § 12; [4], §§ 16—17.)

We need also to mention at this stage, that the work of Kneser ([2],
§ 2), and Szekeres ([8], § 5), implies that if conditions (1.2)—(1.3) hold,
and in addition, as x -> 0+

(3.2) f(x) = sx+O^+y), y > 0

then the sequence {s~n/„(#)} converges on [0, a) to a solution <j>(x) of the

1 Lundberg [6], p. 200, has indicated this cannot happen if f(x)jx is increasing in (0, a).
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Schroder equation, such that <j>'[0+) = 1. It is interesting to note that these
assumptions imply that (2.2) is satisfied if <5 is small. This suggests that it
may be possible to replace assumption (3.2) by (2.2) in general, providing
(1.2) —(1.4) hold, to obtain the same conclusion. However, as the relevant
portions of the proof of Theorem B then break down, since g(x) = {f(x)jsx}
is not necessarily monotone, we put this question aside, and pass onto a
related one.

There is clearly a gap between our Theorem B and the Kneser-Szekeres
result; to bridge it, it is necessary to find a condition which is equivalent
to (2.2) when {f{x)jx} is monotone, and implied by (3.2) — when the
standard conditions (1.2) —(1.4) hold a priori in each case — but which is
itself sufficient to yield convergence of Koenigs' ratios. The following result
(Theorem C) is of the appropriate kind, as will be seen from its Corollary,
in conjunction with Theorem D.

THEOREM C. Suppose f(x) satisfies conditions (1.2) —(1.4) and for some
fixed p, s < p < min (1, 2s) also satisfies

(3.3) f { sup

where px = 2s—p, p2 = p, for any two constants At, A2 satisfying
0 < Ax < A2 < a.

Then the sequence {s~nfn(x)} converges on [0, a) to a solution, <f>(x), positive
on (0, a) with <f>'(0+) = 1, of the Schroder equation.

PROOF. Suppose x is a fixed number in \fix, /?2] C (0, a). Then we may
proceed as in the proof of Theorem B upto (2.5) but choose the fixed e
initially to be e = p—s. Then we have for n 2> no(x; e)

and since for n Sj 0, /„(#) is strictly monotone increasing on (0, a)

Moreover, for n 2; nx = max (n0, r)

( 3 . 4 ) p r { / > r n ° + 1 / n o - i ( / ? i ) } ^ / . ( * ) ^ p r w .

where r — r(x; e) is fixed and chosen so that

Hence making the choice

A , = pr°+1/no-i(&). * =
and invoking (3.4) it follows that for n^nx
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\l-g(fn(x))\ ^ { sup

whence

n

by (3.3). Therefore the product

r=0

is absolutely convergent, and hence convergent 3 for arbitrary fixed x in
arbitrary [fix, /32] C (0, a) i.e. for arbitrary x e (0, a).

The remaining assertions of the theorem now follow easily, precisely as
in the proof of Theorem B.

COROLLARY. / / f(x) satisfies conditions (1.1) —(1.3), then (3.2) implies
that (3.3) holds.

PROOF. From (3.2)
\l—g(t)\ ^ Ctr, y > 0, 0 < C = const.,

for t sufficiently small and positive. Hence for any px, p2, Ax, A2 satisfying
only

(3.5) 0 < Px < p2 < 1, 0 < Ax < A2 < a

sup \l-g(t)\ ^ CAlpy

if n is sufficiently large, whence (3.3) follows easily.

THEOREM D. Under conditions (1.1) — (1.4), condition (3.3) — even
with the weaker restrictions (3.5) on the constants px, p2. — implies (2.2).

/ / also g(x) is monotone, (3.3), under the weaker restriction (3.5) on the
p/s, and (2.2) are equivalent.

PROOF. From (3.3), for any Ax, A2, 0 < Ax < A2 < a

J{ sup

SUp \l-g(t)\}
it£A«

n=0

{
n=0

We note that assumption (1.3) precludes the possibility g(x) = 0 for any x e (0, a).
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and since A2pl~x 2i Axp\ on account of (3.5),

\l-g(t)\
^A\ it

whence (2.2) follows immediately.
To prove the second assertion we need only prove that if g(z) is mono-

tone, (2.2) implies (3.3), in view of the above. The proof of Theorem B
shows that (2.2) implies that

2 |l-g(4«')l < oo
)=0

for every A , <x satisfying only 0 < A < a, 0 < a < l . Hence for a n y A t , pi

satisfying only (3.5)

(3.6) 2\l-g(AiP{)\<oo, . -=1,2.

But since g(x) tends to unity monotonically

sup \l-g(t)\ = vaax\l-g(AtP:)\

for n ^ 0, whence our assertion follows from (3.6).
In conclusion we need to remark that the procedure in the proof

of Theorem B (viz. the use of the integral 'test' after a geometric bounding
of the iterates) is a generalisation of the technique in the proof of the main
Lemma of [1]. That probabilistic result is basically due to D. Vere-Jones.
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