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ABSTRACT. Dry-snow slab avalanches initiate from a failure in a weak snow layer below a cohesive
slab. Snow is considered as a porous ice structure, and the strength distribution of the single elements of
this structure, i.e. grains and bonds between grains, shows a high degree of disorder. On the bond or
microstructural level, the failure process is believed to start if the fracturing of bonds between snow
grains is not balanced by the formation of new bonds. We use a statistical fracture model – a fibre
bundle model – to study the failure process in a weak snow layer. The model consists of fibres of various
strengths representing single snow grains between two rigid plates which represent the slab above and
the substratum below the weak layer. The fibres deform in a linear elastic manner and break instantly at
their rupture strength. Broken fibres may sinter (re-bond) and regain strength after a finite sintering
time. We show that the different characteristic times for breaking and sintering lead to the rate
dependence of snow strength. This is, to our knowledge, the first statistical model to reproduce the
ductile-to-brittle transition which snow exhibits with increasing strain rate. When the model is applied
to simulate experimental stress–strain curves for different strain rates, the model and experimental
results are in fair agreement.

INTRODUCTION
Dry-snow slab avalanches start with a failure in a weak snow
layer below a cohesive slab (McClung, 1979; Schweizer and
others, 2003). Fracture mechanical models of dry-snow slab
avalanche release postulate an initial crack in the weak layer
and study the circumstances under which this pre-existing
crack will propagate in terms of crack energy (e.g. McClung,
1981; Schweizer, 1999; Heierli and others, 2008). However,
how this initial crack originates cannot be determined
within the theory of linear elastic fracture mechanics. In
other words, the failure initiation problem related to
spontaneous avalanche release is essentially unsolved.

We aim to model the mechanical behaviour, on the basis
of heterogeneities within the weak layer, with a statistical
failure model, namely a fibre bundle model. We are
particularly interested in the ductile-to-brittle transition
(DBT) which snow exhibits with increasing strain rate, and
the formation of the initial crack (which may lead to crack
growth and avalanche release). In the following, we use the
terms ductile and brittle as described in Narita (1983) and
commonly used in ice mechanics (Petrenko and Whitworth,
1999). Brittle fracture behaviour means that virtually no, or
very little, plastic deformation occurs before fracture.
Ductile behaviour implies large irreversible deformation
before failure or no failure at all. Subsequently, we briefly
introduce a few elements of the mechanical behaviour of
snow such as the DBT, microstructure, sintering and
disorder.

Field measurements of weak layer strength show large
scatter in results (e.g. Jamieson and Johnston, 2001) because
the mechanical properties of snow depend on microstruc-
tural characteristics which are variable both in space and
time. This impairs the reproducibility of experiments
performed at different times even at the same snowpack
location. Therefore, various studies on shear failure of
homogeneous snow samples under controlled laboratory
conditions have been performed (e.g. Schweizer, 1998).

Depending on snow type and temperature, these studies
showed brittle behaviour of snow at deformation rates
typically faster than 10–3 s–1 and ductile behaviour at smaller
deformation rates. Up to now, experiments on layered snow
samples have only been performed by Fukuzawa and Narita
(1993). For their experimental set-up they found the DBTat a
strain rate of about 10–4 s–1, an order of magnitude smaller
than what Schweizer (1998) found for homogeneous snow
samples under shear loading. Scapozza and others (2004)
reported that the acoustic emission response of snow under
compression shows a clear strain-rate dependency which is
related to the DBT. Narita (1983) performed tensile
experiments with homogeneous samples, and observed
brittle fracture above strain rates of the order of 10–4 s–1.
The DBT increased with increasing temperature and with
increasing snow density.

Density, which is an easily measured macroscopic
parameter, is often used to characterize the bulk properties
of snow. However, it is not a good predictor of mechanical
strength (Shapiro and others, 1997): two snow samples with
the same density but different types of microstructure may
have strengths differing by as much as a factor of four (Keeler
and Weeks, 1968). Bartelt and von Moos (2000) reported
that snow properties change for a given density by as much
as an order of magnitude due to differences in microstruc-
ture. It is therefore important to consider the microstructure
of snow, especially when studying small-scale processes like
failure initiation. The term microstructure refers to objects or
geometries with characteristic length scales of about
O(10–4m) (form, arrangement, and size of grains and
bonds), while macroscopic objects are of length scales of
O(10–1m) and larger (the initial crack, snow samples used in
the laboratory, avalanches).

During snow deformation (density: �� 300 kgm–3), the
microstructure (and hence the bulk mechanical properties)
constantly changes because of rearrangement of single snow
grains (Camponovo and Schweizer, 2001). In other words,
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continuous bond breaking must occur. Since snow in a
natural snow cover exists close to its melting point, two
snow grains which come into contact may easily bond to
each other. The failure process preceding avalanche release
is therefore believed to be related to two fundamental, but
competing, processes at the microscale: bond fracturing and
sintering (bond formation) (Schweizer, 1999).

Three-dimensional (3-D) images of snow microstructure
(e.g. Schneebeli, 2004) clearly show that snow is a highly
disordered material consisting of an ice matrix and open
pores filled with air and water vapour. The degree of
heterogeneity is supposed to affect failure initiation at
various scales (e.g. Schweizer and others, 2008). Continuum
(macroscopic) quantities like global stress, global strain and
global strength are not evenly distributed over all micro-
structural elements of the snow structure. We assume that
failure starts where the weakest points meet the highest
stress within the structure. Accordingly, the strength distri-
bution is expected to play a major role in the failure process.

To model snow deformation and failure, both the
microstructure and the disorder of snow need to be
considered. There are several mechanical snow models that
have included the microstructure in some way. These can be
divided into three groups:

1. Models that are essentially continuum models but
include some parameterization of microstructure (e.g.
Mahajan and Brown, 1993). This approach has been
used to describe snow viscosity (Bartelt and von Moos,
2000) and to simulate the mass and energy balance of
the snow cover (Lehning and others, 2002). The model
by Gibson and Ashby (1997), where snow is considered
as an open-cell foam of ice with two structural par-
ameters (beam length and beam cross-section), also
belongs to this group. Louchet (2001) followed their
approach and considered healing using rate equations
for bond rupture and bond formation.

2. Models that try to reproduce the microstructure in
simplified (or generalized) form, for example as an
arrangement of beams (or spheres), possibly with some
random variations of the local properties from one
element to the next (Herrmann and Roux, 1990). Johnson

(1998) used a dynamic finite-element computer program
to study the rapid compaction of snow represented as an
arrangement of randomly distributed spheres.

3. With new experimental techniques, such as X-ray
microtomography (mCT), the full 3-D representation of
microstructure is used as input for a real microstructural
(or specimen-specific) finite-element model (Schneebeli,
2004).

An approach that considers disorder, although on a
macroscopic scale, was used by Fyffe and Zaiser (2004)
who introduced time-dependent strength recovery and
randomly varying shear strength into a model of snow slope
failure.

Fibre bundle models (FBMs) (Daniels, 1945; Alava and
others, 2006; Raischel, 2007) are statistical fracture models
that can include a simple representation of the microstruc-
ture of porous, granular materials (see Kun and others, 2006,
for a detailed description). They are especially helpful in
describing materials with time-dependent failure effects (e.g.
the fatigue failure of asphalt (Kun and others, 2007)). As
such, the FBM technique offers the possibility of simulating
the important ductile-to-brittle failure transition of snow, as
well as competing microscale processes such as bond
fracturing and sintering (Schweizer, 1999). FBMs belong to
the second class of microstructural models mentioned
above.

In this paper, we apply a fibre bundle to simulate snow
deformation, damage, and failure of a weak snow layer. Our
aim is to investigate the influence of microstructural
parameters on the bulk mechanical response of weak snow
layers under shear loading. In particular, we test the
hypothesis that different timescales of fracturing and
sintering of bonds explain the strain-rate dependence of
the failure behaviour of snow (Schweizer, 1999). We use
experimental results of snow under shear deformation
(Schweizer, 1998) for comparison with our model output.

METHODS
On an inclined slope, the gravitational force induces shear
and normal deformation in the snowpack. Experimental
studies and observations of natural buried weak layers show
that the shear deformation is concentrated in the weak layer
(Fukuzawa and Narita, 1993; Jamieson and Schweizer
2000). In our approach, the snow crystals (e.g. buried
surface hoar) that form the weak layer correspond to fibres
(Fig. 1). The fibres are located between two rigid plates
which represent the slab above and the substratum below
the weak layer. Since the layers above and below are
substantially stronger and about an order of magnitude stiffer
than the weak layer (Fukuzawa and Narita, 1993; Jamieson
and Schweizer, 2000), the simple assumption of rigid plates
is justified as a first approximation.

Each fibre i, where i=1,. . .N, behaves in a perfectly
elastic manner. In order to statistically model the spatial
variability of strength which is presumed to be caused by
variations in crystal orientation, size and bonding within the
weak layer, the initial strengths �c, i are taken from a Weibull
probability distribution, where the density function is given
by

pð�c, ij�,�Þ ¼ �������1
c, i e�

�c, i
�ð Þ� , ð1Þ

Fig. 1. Photo of a buried surface hoar layer, fractured on the left,
intact on the right. Overlying the photo is a schematic drawing of
the fibre bundle. Photo adapted from Jamieson and Schweizer
(2000).
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with scale factor � and shape factor �. This is the most
commonly used probability distribution in statistical fracture
models (Herrmann and Roux, 1990; Chakrabarti and
Benguigui, 1997) and has previously been used to describe
the strength of snow (e.g. Sommerfeld, 1973; Kirchner and
others, 2004). The effect of microstructure is incorporated
into the model through this strength distribution.

Following the deformation-controlled shear experiments
mentioned above, at each discrete time-step the upper plate
is moved along the x axis by a constant amount �x (Fig. 2).
The constant global shear strain rate is therefore given by

_"global ¼ 1
l0

�x
�t

, ð2Þ

where l0 is the initial fibre length (Fig. 2). As a first step we
assume no vertical (z-direction) displacement of the upper
plate. Furthermore, we treat the fibres as long, thin truss
elements under uniaxial tension, i.e. shear deformation
within a fibre is neglected.

Since the deformation of the (stiff) upper plate is imposed,
the load on a single fibre is always given by the external
deformation, no matter how many fibres are intact. The
fibres break in order of increasing strength as determined by
the Weibull distribution applied to each fibre, i.e. the
weakest fibres break first. The elongation �l of a fibre can be
calculated via

�l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20 þ ðm �xÞ2

q
� l0, ð3Þ

where m is the number of time-steps the fibres have been
intact. The force fjðtÞ to deform a single fibre is

fjðtÞ ¼ �jðtÞ a ¼ E "jðtÞ a, ð4Þ
where �jðtÞ is the stress the fibre experiences, E is the
Young’s modulus, a is the cross-section of the fibre,
j ¼ 1, :::Nintact with Nintact the number of intact fibres, and
"jðtÞ denotes the axial strain on the fibre.

If �jðtÞ acting on a fibre reaches its rupture strength, i.e.
�jðtÞ ¼ �c, j, the fibre breaks instantaneously. At the next
discrete time-step the strength of the fibre �c,j is zero, and
the fibre is considered broken. If more than half the fibres
are broken, we consider the whole bundle as fractured.
However, at each time-step there is the probability ps that
the broken fibre can start sintering (re-bonding). The
sintering probability is proportional to the square of the
number of broken fibres, ps = pmax(Nbroken/N)2 since two
fibre ends are necessary for sintering (second-order kinetics).
We use periodic boundary conditions, i.e. the total number
of fibres (broken and intact) remains constant and each
broken fibre end always has an appropriate partner for

sintering, no matter how far the upper plate has already
moved. This seems realistic, since a weak snow layer’s
height (in nature and also in the laboratory) is very small
compared to its width and length. If a fibre is chosen to sinter
at tn, it is considered intact at the next time-step
tnþ1 ¼ tn þ�t and will then experience deformation and
therefore also stress. Its final strength will only be reached
after s time-steps, i.e. at tn þ ts. The time evolution of fibre
strength during sintering is given by

�0
c, iðtÞ ¼ 1� e

�t
ts�t

� �
�0
c, i, final for t < ts: ð5Þ

The new final fibre strength after sintering (t > ts), �0
c, i, final, is

again taken from the same probability distribution as the
initial �c, i . So after sintering, the fibre strength can be
smaller or larger than it was initially while the Young’s
modulus stays the same.

The global force FðtÞ needed to perform the change of
position of the upper plate (dynamics in the sense of
accelerations are not considered) is calculated via

FðtÞ ¼
XNintact

j¼1

fjðtÞ, ð6Þ

and the global stress �globalðtÞ is then obtained via

�globalðtÞ ¼ FðtÞ
A

, ð7Þ
where A is the area of the upper/lower plate. The FBM is
governed by only three model parameters: the shape of the
Weibull distribution, �, the maximum sintering probability,
pmax, and the time it takes for a fibre to regain its full
strength, ts.

MODEL RESULTS AND DISCUSSION
We first compare our model to the analytical solution which
exists in the absence of sintering. The constitutive relation
for a deformation-controlled FBM under tension is given by

� ¼ E" 1½ � PðE"Þ�, ð8Þ
where Pð�c ¼ E"Þ is the cumulative probability distribution
of fibre strength (Kun and others, 2006). If the sintering
probability is set to zero and we simulate tensile deform-
ation, i.e. �lfibre ¼ �xbundle, our simulations agree with the
analytical solution. The fact that we have shear deformation
shifts the global stress–strain curve towards higher deforma-
tions (Fig. 3), because �l < �x (Equation (3)). Without
sintering, the strain rate has no effect on the global stress–
strain relation. As we assume stiff plates and imposed
external deformation, there is no load sharing. A more

Fig. 2. Schematic representation of model geometry.
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detailed description of deformation- vs force-controlled fibre
bundles is given by Kun and others (2006).

Compared to a FBM without sintering, our model
produces stress–strain curves with a larger initial slope and
a higher peak stress. This is due to a shift in fibre strengths to
higher values. Although the newly assigned fibre strengths
after sintering are taken from the same probability distri-
bution as the strengths assigned initially, stronger fibres
survive longer. In the natural snow cover, strengthening also
occurs with time due to compaction and densification under
its own weight which also leads to rearrangement, i.e.
breaking of bonds and sintering, of grains.

Figure 4 shows the effect of different maximum sintering
probabilities pmax and sintering times ts on the mechanical
behaviour for constant shape factor � =1 and strain rate
_"global = 5� 10–6. Note that the model results are given in

arbitrary units. At this strain rate, the bundle fractures only
for low pmax. The slope of the stress–strain curve increases
with increasing sintering probability. Brittle behaviour is
favoured by either decreasing pmax or increasing ts, or by
increasing the strain rate (Fig. 5).

The snow microstructure is included in the model by the
shape of the strength distribution. Since no experimental
data yet exist, we have to assume the parameters. As Figure 5
suggests, they strongly influence the type of stress–strain
curve. While the brittle fracture behaviour is not altered with
increasing �, the ductile failure behaviour changes from
creep (no failure) to strain softening. For ductile behaviour,
the strength increases with the spread of the initial

Fig. 3. Comparison of the analytical solution (tension) with FBM
simulation results without sintering (tension: circles; shear: small
solid dots) (N=1000, � =3, �=2).

Fig. 4. FBM simulation results with varying sintering time ts and
maximum sintering probability pmax (N=10000, _"global = 5� 10–6,
� =1, �=2). The vertical arrows mark the point where the bundle
fractures, while the horizontal arrows indicate that the bundle is
still intact but the simulation was stopped (stress–strain curve would
continue almost horizontally).

Fig. 5. FBM simulation results with varying shape factor � for the Weibull distributions of single-fibre strength: (a) � =0.5; (b) � =1; and
(c) � =3. For each shape factor, stress–strain curves for three different strain rates (10–2, 7.2� 10–5 and 5� 10–6 ) are given (N=100000,
�=2, pmax = 0.0001, ts=450). The vertical arrows mark the point where the bundle fractures, while the horizontal arrows indicate that the
bundle is still intact but the simulation was stopped (stress–strain curve would continue almost horizontally).
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distribution. For � >1 we find strain softening in the ductile
case because the (always present) strengthening effect
cannot compensate for the broken fibres which do not
contribute to the global stress.

In case the gain of strength due to sintering is faster than
the increasing internal stress which results from the external
deformation, a sintering fibre survives, i.e. it sinters until it
reaches its final strength. Since the breaking of a fibre occurs
instantaneously (within one time-step) while the sintering
takes s time-steps, slow deformation rates favour the
sintering while the breaking dominates at fast deformation
rates. This leads to a transition from ductile failure behaviour
to brittle fracture with increasing strain rate. At high strain
rates, the bundle breaks after little deformation. At slow
deformation rates, the bundle does not break at all, as we
use periodic boundary conditions. If open boundary
conditions were imposed, the bundle would break when
the deformation exceeded half the length, in the same way
that a natural finite snow sample will break at some point.

To compare our model with experimental data, we assign
physical units to the time of a fibre breaking (time-step) and
the geometric dimensions of the model (Table 1). The
parameters that are not directly accessible in an experiment
have to be assumed. For the Young’s modulus and the tensile
strength, we have taken typical values for ice (Petrenko and
Whitworth, 1999). Density, height and area of the bundle
are as in the experiment. We assume that 10% of the ice
matrix contributes to the mechanical resistance of snow, in
accordance with findings by Bartelt and von Moos (2000).
The sintering time we use agrees with the range of values
found by Szabo and Schneebeli (2007) in their study on
sintering of ice.

In Figure 6 we plot the experimental data from Schweizer
(1998) together with our model results. Between the three
modelled curves, only the strain rate is altered; all other
parameters remain unchanged (in accordance with the
experiment). At the slowest strain rate, the model results
agree quite well with the experimental data. The higher
residual stress reached in the simulation might be due to the
periodic boundary conditions used for the model. For the
intermediate strain rate, a higher fracture strain than in the
experiment is found, but the fracture stress is roughly the
same. At the highest strain rate, the model shows higher
fracture strain and stress than found in the experiment. The
convexity of the modelled curve is due to the geometric
arrangement of the fibres. They are arranged vertically but
the plates move horizontally. At small deformations, the

exact orientation of the microstructural elements becomes
increasingly important. This effect we cannot capture in our
model containing vertical fibres only. However, the different
failure behaviour which snow exhibits at different strain
rates, i.e. brittle behaviour at high and ductile behaviour at
low strain rates, is captured very well by our model.

CONCLUSIONS
We used a simple FBM to simulate the deformation and
failure of a weak snow layer under shear loading. For the
case of no sintering, the model can be solved analytically
and our simulation results agreed with the analytic solution
(Fig. 3). By incorporating sintering (i.e. re-bonding of fibres
after fracture) into the model, we showed that the rate
dependence of snow strength and the rate-dependent
mechanical behaviour can be reproduced by introducing a
sintering probability and two different characteristic times
for sintering and for breaking of fibres (Fig. 5). Thus the
competing effects of bond breaking and sintering of bonds
(after rearranging) between snow grains might be sufficient
to explain the strain-rate-dependent bulk behaviour of snow.
This has so far only been hypothesized (Schweizer, 1999).
Our results also suggest that incorporating sintering is
crucial for realistically modelling the mechanical behaviour
of snow, at least for timescales of the order of seconds or
larger.

Despite the simplicity of the model, we found good
qualitative agreement of the model output with the
experimental data of deformation-controlled shearing of
snow samples at different strain rates (Schweizer, 1998).

A more realistic modelling approach to describe the
behaviour of snow will include dropping the assumption of
stiff plates and introducing load sharing into the model. We
could then study the influence of slab stiffness on the weak
layer. Furthermore, metamorphism could be included in the
model so that the strength distribution would explicitly
change over time.

In the future, a more sophisticated, statistically based
microstructural failure model might be coupled with a
fracture mechanical model to simulate failure initiation, as
well as fracture propagation in the snow slab-avalanche
release process.

Fig. 6. Comparison of FBM simulation with experimental results
from Schweizer (1998).

Table 1. Overview of the model input parameters with typical
values used

N Number of fibres 1000
ts Time it takes for a fibre to sinter 1.09 s
�t Time it takes for a fibre to break 0.01 s
pmax Maximum sintering probability 0.015
_"global Global strain rate 2.7 � 10–4 s–1

E Elastic modulus of a single fibre 12GPa
a Fibre cross-section 1mm2

A Area of bundle 3�104mm2

l0 Height of bundle 20mm
� Shape factor of Weibull distribution 0.7
�c;i Mean fibre strength 4.2MPa
� Density of bundle 300 kgm–3

Reiweger and others: Modelling snow failure with a fibre bundle model 1001

https://doi.org/10.3189/002214309790794869 Published online by Cambridge University Press

https://doi.org/10.3189/002214309790794869


ACKNOWLEDGEMENTS
We thank F. Michel, A. van Herwijnen and M. Schneebeli
for valuable inspiration and discussion. We acknowledge
suggestions by anonymous reviewers that helped to improve
the paper. Funding was provided by the Swiss National
Science Foundation (No. 200021-109366). This work also
profited from collaborations within the Framework Program
6 (FP6) project Triggering of Instabilities in Materials and
Geosystems (TRIGS) (European Commission) and the Com-
petence Centre Environment and Sustainability (CCES)
project Triggering of Rapid Mass Movements in Steep
Terrain (TRAMM) (ETH Board).

REFERENCES
Alava, M.J., P.K.V.V. Nukala and S. Zapperi. 2006. Statistical

models of fracture. Adv. Phys., 55(3–4), 349–476.
Bartelt, P. and M. von Moos. 2000. Triaxial tests to determine a

microstructure-based snow viscosity law. Ann. Glaciol., 31,
457–462.

Camponovo, C. and J. Schweizer. 2001. Rheological measurements
of the viscoelastic properties of snow. Ann. Glaciol., 32, 44–50.

Chakrabarti, B.K. and L.G. Benguigui. 1997. Statistical physics of
fracture and breakdown in disordered systems. New York,
Oxford University Press.

Daniels, H.E. 1945. The statistical theory of strength of bundles of
threads. I. Proc. R. Soc. London, Ser. A, 183(995), 405–435.

Fukuzawa, T. and H. Narita. 1993. An experimental study on
mechanical behavior of a depth hoar under shear stress. In
Armstrong, R., ed. A merging of theory and practice. Proceedings
of the International Snow ScienceWorkshop, 4–8 October 1992,
Breckenridge, Colorado. Denver, CO, Avalanche Information
Center, 171–175.

Fyffe, B. and M. Zaiser. 2004. The effects of snow variability on slab
avalanche release. Cold Reg. Sci. Technol., 40(3), 229–242.

Gibson, L.J. and M.F. Ashby. 1997. Cellular solids: structure and
properties. Second edition. Cambridge, etc., Cambridge Uni-
versity Press.

Heierli, J., P. Gumbsch and M. Zaiser. 2008. Anticrack nucleation
as triggering mechanism for snow slab avalanches. Science,
321(5886), 240–243.

Herrmann, H.J. and S. Roux, eds. 1990. Statistical models for the
fracture of disordered media. Amsterdam, North-Holland/
Elsevier Science Publishers.

Jamieson, B. and C.D. Johnston. 2001. Evaluation of the shear frame
test for weak snowpack layers. Ann. Glaciol., 32, 59–69.

Jamieson, J.B. and J. Schweizer. 2000. Texture and strength changes
of buried surface-hoar layers with implications for dry snow-slab
avalanche release. J. Glaciol., 46(152), 151–160.

Johnson, J.B. 1998. A preliminary numerical investigation of the
micromechanics of snow compaction. Ann. Glaciol., 26, 51–54.

Keeler, C.M. and W.F. Weeks. 1968. Investigations into the
mechanical properties of alpine snow-packs. J. Glaciol., 7(50),
253–271.

Kirchner, H.O.K., H. Peterlik and G. Michot. 2004. Size indepen-
dence of the strength of snow. Phys. Rev. E, 69(1), 011306.
(10.1103/PhysRevE.69.011306.)

Kun, F., R. Hidalgo, F. Raischel and H. Herrmann. 2006. Extensions
of fibre bundle models. Lect. Notes Phys., 705, 57–92.

Kun, F. and 6 others. 2007. Fatigue failure of disordered materials.
J. Stat. Mech., 2007(2), P02003. (10.1088/1742-5468/2007/02/
P02003.)

Lehning, M., P. Bartelt, B. Brown, C. Fierz and P. Satyawali. 2002.
A physical SNOWPACK model for the Swiss avalanche warning.
Part II: snow microstructure. Cold Reg. Sci. Technol., 35(3),
147–167.

Louchet, F. 2001. Creep instability of the weak layer and natural
slab avalanche triggerings. Cold Reg. Sci. Technol., 33(2–3),
141–146.

Mahajan, P. and R.L. Brown. 1993. A microstructure-based
constitutive law for snow. Ann. Glaciol., 18, 287–294.

McClung, D.M. 1979. Shear fracture precipitated by strain soft-
ening as a mechanism of dry slab avalanche release. J. Geophys.
Res., 84(B7), 3519–3526.

McClung, D.M. 1981. Fracture mechanical model of dry slab
avalanche release. J. Geophys. Res., 86(B11), 10,783–10,790.

Narita, H. 1983. An experimental study on tensile fracture of snow.
Contrib. Inst. Low Temp. Sci., Ser. A, 32, 1–37.

Petrenko, V.F. and R.W. Whitworth. 1999. Physics of ice. Oxford,
etc., Oxford University Press.

Raischel, F. 2007. Fibre models for shear failure and plasticity. (PhD
thesis, University of Stuttgart.)

Scapozza, C., F. Bucher, P. Amann, W. Ammann and P. Bartelt.
2004. The temperature- and density-dependent acoustic emis-
sion response of snow in axial shear tests. Ann. Glaciol., 38,
291–298.

Schneebeli, M. 2004. Numerical simulation of elastic stress in the
microstructure of snow. Ann. Glaciol., 38, 339–342.

Schweizer, J. 1998. Laboratory experiments on shear failure of
snow. Ann. Glaciol., 26, 97–102.

Schweizer, J. 1999. Review of dry snow slab avalanche release.
Cold Reg. Sci. Technol., 30(1–3), 43–57.

Schweizer, J., J.B. Jamieson and M. Schneebeli. 2003. Snow
avalanche formation. Rev. Geophys., 41(4), 1016. (10.1029/
2002RG000123.)

Schweizer, J., K. Kronholm, J.B. Jamieson and K.W. Birkeland.
2008. Review of spatial variability of snowpack properties and
its importance for avalanche formation. Cold Reg. Sci. Technol.,
51(2–3), 253–272.

Shapiro, L.H., J.B. Johnson, M. Sturm and G.L. Blaisdell. 1997.
Snow mechanics: review of the state of knowledge and
applications. CRREL Rep. 97-3.

Sommerfeld, R.A. 1973. Statistical problems in snow mechanics. In
Perla, R.I., ed. Advances in North American Avalanche
Technology: 1972 Symposium. Fort Collins, CO, Rocky Moun-
tain Forest and Range Experiment Station, 29–36. (US Depart-
ment of Agriculture, Forest Service General Technical Report
Rm-3.)

Szabo, D. and M. Schneebeli. 2007. Subsecond sintering of ice.
Appl. Phys. Lett., 90(15), 151916. (10.1063/1.2721391.)

MS received 24 December 2008 and accepted in revised form 29 October 2009

Reiweger and others: Modelling snow failure with a fibre bundle model1002

https://doi.org/10.3189/002214309790794869 Published online by Cambridge University Press

https://doi.org/10.3189/002214309790794869

