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Non-spherical particles transported by turbulent flow have a rich dynamics that combines
their translational and rotational motions. Here, the focus is on small, heavy, inertial
particles with a spheroidal shape fully prescribed by their aspect ratio. Such particles
undergo an anisotropic, orientation-dependent viscous drag with the carrier fluid flow
whose associated torque is given by the Jeffery equations. Direct numerical simulations
of homogeneous, isotropic turbulence are performed to study systematically how the
translational motion of such spheroidal particles depends on their shape and size. It is
found that the Lagrangian statistics of both velocity and acceleration can be described
in terms of an effective Stokes number obtained as an isotropic average over angles of
the particle’s orientation. Corrections to the translational motion of particles due to their
non-sphericity and rotation can hence be recast as an effective radius obtained from such
a mean.

Key words: isotropic turbulence, particle/fluid flow

1. Introduction

Small complex particles suspended in a turbulent flow occur in a wide variety of natural
processes. They are present in the oceans as phytoplankton (Sengupta, Carrara & Stocker
2017) and in the atmosphere as volcanic ash (Del Bello et al. 2015) or sea-salt aerosols
(Grythe et al. 2014). These instances play a key role in climate balances: the atmospheric
concentration of CO2 is partly regulated by phytoplankton blooms (Leblanc et al. 2018),
while the Earth’s radiative budget is largely impacted by airborne particles such as ash and
salts (Prata & Lynch 2019; Horowitz et al. 2020). The dynamics of such particles involves
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intricate internal and external physical interactions, the proper characterisation of which
is still a challenge.

We are here interested in understanding and modelling the joint effects of the particles’
inertia and non-sphericity on their transport by a turbulent flow and, for that, we focus
on small, heavy, ellipsoidal particles. In the case of spherical particles, the influence
of inertia has been intensively studied, both numerically and experimentally – see, for
instance, Brandt & Coletti (2022) and references therein. In particular, it is now well
known that inertia has two important signatures: preferential sampling, whereby particles
are ejected from rotation-dominated regions of the flow and concentrate in those regions
with high strain; and filtering, which is due to the delays that the particles have in
following the fluid (Toschi & Bodenschatz 2009). The first effect dominates at low inertia
and the particles oversample the most energetic regions of the flow, leading to velocity
fluctuations slightly higher than those of the fluid. The second effect takes precedence at
larger inertia, leading to a noticeable reduction of the particle kinetic energy. Concerning
particle acceleration, these two mechanisms both contribute to a significant depletion of
the most violent fluctuations. However, much less is known about non-spherical particles,
for which translational and rotational dynamics are a priori tightly coupled. For example,
preferential sampling could be significantly modified by the preferential alignment of the
particles with the local geometrical structure of the flow.

The simplest instance of non-spherical particles is axisymmetric ellipsoids, also referred
to as spheroids, whose shape is defined by a single parameter, their aspect ratio. Since
Jeffery (1922), explicit equations for their translational and rotational motion have been
known in the limit where their Reynolds number is zero. In recent years, significant work
has been devoted to the dynamics of spheroidal particles in turbulent flows (see Voth &
Soldati 2017). Two main issues have received attention. The first concerns the rotation
rate of particles and how the relative contributions of spinning and tumbling depend on
their shape. In the absence of inertia, rod-like particles in homogeneous isotropic flow
align their axis of symmetry with the fluid vorticity, while disk-shaped particles have
it orthogonal (Pumir & Wilkinson 2011; Ni, Ouellette & Voth 2014). As a result of
this preferential alignment, inertialess prolate particles have a higher spinning rate than
oblate ones, and vice versa for the tumbling rate (Parsa et al. 2012; Marcus et al. 2014;
Byron et al. 2015), with similar observations in inhomogeneous, anisotropic channel flows
(Marchioli & Soldati 2013; Baker & Coletti 2022). Inertia reduces both the tumbling and
spinning rates because of preferential sampling (Gustavsson, Einarsson & Mehlig 2014;
Zhao et al. 2015; Roy, Gupta & Ray 2018). The second issue studied at length is the effect
of non-sphericity on the gravitational settling of particles. Small heavy spheroids tend
to fall with a preferential orientation that fluctuates under the action of turbulence (Klett
1995; Siewert et al. 2014a; Anand, Ray & Subramanian 2020), with significant effects on
their collision rates (Siewert, Kunnen & Schröder 2014b; Jucha et al. 2018). However, this
problem is rather delicate, because the inertial torque of the fluid plays a dominant role
(Gustavsson et al. 2019; Sheikh et al. 2020).

Previous studies on spheroidal particles have hence primarily focused on their
orientation dynamics, with less attention given to their translational motion. However,
Shapiro & Goldenberg (1993) and Zhang et al. (2001) suggested that shape effects on
the deposition velocity of spheroids can be cast as an effective Stokes number based
on an isotropic average of the particle mobility tensor (inverse of its drag/resistance).
Direct numerical simulations (DNS) by Mortensen et al. (2008) and Challabotla, Zhao
& Andersson (2015) in turbulent channel flow confirm that average translational motions
weakly depend on the aspect ratio for spheroids with the same effective Stokes number.
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Figure 1. (a) An oblate particle, λ < 1, together with a representative trajectory on which green arrows stand
for particle orientation eẑ and black ones for its acceleration dV/dt. (b) Same for a prolate particle, λ > 1.
(c) Various response times (see text for definitions), normalised by the equal-mass time τ̄ = 2ρpλ

2/3a2/(9ρf ν),
as a function of the particle aspect ratio.

In this work, we focus on the fine turbulent fluctuations of the velocity and acceleration
of heavy spheroids transported by a homogeneous isotropic flow. We provide evidence
that these statistics, including rare events, are characterised in terms of the effective,
isotropically averaged Stokes number. Such findings imply that the translational dynamics
of small inertial spheroids is indistinguishable from that of small heavy spheres with an
equivalent shape-dependent radius.

This paper is structured as follows. In § 2, we briefly overview the equations of
motion for inertial spheroids, discuss associated time scales and present our numerical
simulations. In § 3, we report and discuss our main results on the statistics of particle
translational velocities and accelerations. Finally, in § 4, we draw conclusions and offer
perspectives for future work.

2. Dynamics of small inertial spheroids, time scales, and numerical methods

We focus on spheroidal particles, which are ellipsoids of revolution with two equal
semi-axes a = b and a principal axis c = λa. The aspect ratio λ characterises their shape:
oblate particles have λ < 1, spheres λ = 1 and prolate particles λ > 1 (see figure 1a,b).
We consider the case where such particles are suspended in a developed, incompressible
turbulent velocity field u(x, t) and are much smaller than the associated Kolmogorov
dissipative scale, namely a, b, c � η = ν3/4/ε1/4, where ν is the fluid kinematic viscosity
and ε is the mean dissipation rate of kinetic energy. Moreover, we assume that the particles
are much heavier than the surrounding fluid, i.e. their mass density ρp is much larger
than the fluid density ρf , and that their velocity relative to the fluid, together with their
size, defines an infinitely small Reynolds number. Finally, the particles are presumed to be
sufficiently dilute to neglect their feedback on the flow and turbulence is presumed to be
sufficiently intense to ignore the effects of gravity.

The dynamics of non-spherical particles involves both translational and rotational
motions. The translation is determined by the position X and velocity V of the particle’s
centre of mass in the inertial frame of reference R = (ex, ey, ez) of the fluid flow. Under
the above assumptions, they are given by the linear momentum equations (Brenner 1964)

dX
dt

= V ,
dV
dt

= −1
τ̄

ATDA [V − u(X , t)] , (2.1a,b)
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where we have introduced the response time τ̄ = 2ρpλ
2/3a2/(9ρf ν) associated with a

spherical particle with the same mass as the spheroid. Here A denotes the rotation matrix
that maps R to the reference frame R̂ = (ex̂, eŷ, eẑ) of the particle, eẑ being along its
revolution axis (see figure 1a,b). The drag tensor is expressed in frame R̂ where it is
diagonal, D = diag[D⊥, D⊥, D‖], with

D⊥ = 8(λ2 − 1)

3λ1/3[χ(2λ2 − 3) + λ] , D‖ = 4(λ2 − 1)

3λ1/3[χ(2λ2 − 1) − λ] (2.2a,b)

and

χ = log(λ+ √
λ2 − 1)√

λ2 − 1
. (2.2c)

For detailed derivations of these drag coefficients, we refer the reader to Brenner (1964).
Note that when λ < 1, the factor χ involves the logarithm of a unit-modulus complex
number and reduces to χ = arctan(

√
1 − λ2/λ)/

√
1 − λ2, as usually stipulated for oblate

particles.
The components of D define two shape-dependent time scales, τ⊥ = τ̄/D⊥ and τ‖ =

τ̄/D‖, associated with the drag in the directions perpendicular and parallel to the particle
axis of symmetry, respectively. Shapiro & Goldenberg (1993) introduced an effective
response time τ̂ by performing an isotropic average of the mobility tensor τ̄D−1 over all
orientations:

τ̂ = 1
3

tr(D−1)τ̄ = 2τ⊥ + τ‖
3

= τ̄λ1/3χ = 2ρpλa2

9ρf ν

log(λ+ √
λ2 − 1)√

λ2 − 1
. (2.3)

Fan & Ahmadi (1995) considered an alternative effective response time τ̌ obtained
by averaging the drag tensor rather than the mobility matrix. This corresponds to the
harmonic mean of the orientation-dependent response times, namely

τ̌ =
(

1
3

tr(D)

)−1

τ̄ =
(

2τ−1
⊥ + τ−1

‖
3

)−1

= ρpλa2

2ρf ν

4χ2(λ2 − 1)2 − (λ− χ)2

(λ2 − 1)[10χ(λ2 − 1) − 3(λ− χ)]
.

(2.4)

The dependence of the two response times τ̂ and τ̌ upon the aspect ratio λ is shown
in figure 1(c). Surprisingly, their difference hardly exceeds a couple of per cent. The
relative discrepancy Δ = (τ̂ − τ̌ )/τ̄ between these two time scales can be obtained by
asymptotic expansion in different limits. Specifically, we find Δ � (2/225)(λ− 1)2 for
nearly spherical particles (λ � 1), Δ � (π/56)λ1/3 for thin disks (λ� 1), and Δ �
(1/10)(log λ)λ−2/3 for slender fibres (λ� 1). Such tiny differences make it almost
impossible to select the most relevant of these two response times from numerical or
experimental data. Nevertheless, as observed in figure 1(c), the difference between these
two time scales and the perpendicular and transverse response times becomes more evident
and exceeds 10 % when there is a significant deviation of λ from 1. This substantial
dependence on λ and τ̄ enables us to differentiate τ̂ and τ̌ from other possible definitions
of an effective particle response time.

Turning now to rotational dynamics, the orientation matrix A evolves with an angular
velocity Ω , which is more conveniently expressed in the particle reference frame
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R̂, so that

dA

dt
= −

⎡⎣ 0 −Ωẑ Ωŷ
Ωẑ 0 −Ωx̂

−Ωŷ Ωx̂ 0

⎤⎦A,
d(IΩ)

dt
+ Ω × (IΩ) = T , (2.5a,b)

where I = (4/15)πρpλa5 diag[1 + λ2, 1 + λ2, 2] is the spheroid’s moment of inertia
about its principal axis and T the hydrodynamic torque acting on the particle. The latter
reads (Jeffery 1922)

T =
⎡⎣Tx̂

Tŷ
Tẑ

⎤⎦ = 16
3

πρf ν a3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− λ4 − 1
χ(2λ2 − 1) − λ

(
Ωx̂ − 1

2
ωx̂ + λ

2 − 1
λ2 + 1

Sẑŷ

)
− λ4 − 1

χ(2λ2 − 1) − λ
(

Ωŷ − 1
2
ωŷ − λ

2 − 1
λ2 + 1

Sx̂ẑ

)
−λ

2 − 1
λ− χ

(
Ωẑ − 1

2
ωẑ

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.6)

and depends on the fluid vorticity ω = ∇ × u and strain tensor S = (∇u + ∇uT)/2, both
evaluated at the particle position and in the rotating reference frame R̂. Note that the fluid
velocity gradient sampled by the particle is itself determined by the dynamics (2.1a,b),
resulting in an intricate coupling between translational and rotational motions through the
fluid flow.

Equations (2.5a,b) and (2.6) define two rotational response times associated with the
particle tumbling (rotation along the x̂ and ŷ axes) and with its spinning (rotation along the
spheroid’s axis of symmetry ẑ). They correspond to the ratio between the components of
the moment of inertia and the shape-dependent coefficient appearing in Jeffery’s torque
and read

τtumb = ρpλa2

20ρf ν

χ(2λ2 − 1) − λ
λ2 − 1

= 3
10

τ‖, τspin = ρpλa2

10ρf ν

λ− χ

λ2 − 1
= 3

10
(2τ⊥−τ‖).

(2.7a,b)

These two times are displayed in figure 1(c). As stressed by Zhao et al. (2015) and
Marchioli, Zhao & Andersson (2016), they remain shorter than the translational time
scales for all values of the aspect ratio. More precisely, one can actually show that both
the tumbling and the spinning response times are smaller than (9/20)τ̂ for all λ > 0,
this bound being attained by τtumb for λ→ ∞ and by τspin for λ→ 0. The separation of
time scales between the translational and rotational motions of the particle is hence clear,
but one can question whether a factor ≈2 is enough to assume complete decoupling. To
address this, we have recourse to DNS and investigate shape dependence in the statistics
of heavy spheroids transported by a homogeneous isotropic turbulent flow.

The three-dimensional incompressible Navier–Stokes equations with large-scale forcing
are integrated using the parallel pseudospectral solver LaTu with third-order Runge–Kutta
time marching (see Homann, Dreher & Grauer 2007). Relevant simulation parameters are
summarised in table 1. Equations (2.1a,b) and (2.5a,b) for the dynamics of spheroidal
particles are integrated numerically using an exponential integrator with the same time
stepping as the fluid flow. The fluid velocity and its gradient are obtained at the particle
position by tricubic interpolation of the corresponding fields from the Eulerian grid.
The orientation of each individual particle is represented as a quaternion
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N3 ν �t ε η τη urms L τL Reλ

10243 2 × 10−4 5 × 10−4 0.431 0.0021 0.022 0.87 1.52 1.753 315

Table 1. The DNS parameters: N3, number of collocation points; ν, kinematic viscosity; �t, time step;
ε, average dissipation rate; η = (ν3/ε)1/4, Kolmogorov dissipative scale; τη = (ν/ε)1/2, Kolmogorov time;
urms, root-mean-square velocity; L = u3

rms/ε, large scale; τL = L/urms, large-eddy turnover time; and Reλ =√
15 u2

rms/(νε)1/2, Taylor-scale Reynolds number.

(see Mortensen et al. 2008; Siewert et al. 2014a) to ease numerical integration and stability.
In order to span the particles’ parameter space, we have considered 90 different families of
500 000 particles each. They combine nine different aspect ratios, ranging from λ = 0.1 to
10, and ten response times, spanning S̄t = τ̄/τη = 0.1 to 6.4, where τη = (ν/ε)1/2 denotes
the Kolmogorov dissipative time scale. The properties of spheroids are stored with a period
≈6.8τη. Statistics are computed over approximately four large-eddy turnover times after a
statistical steady state is reached.

3. Results and discussion

3.1. Fluctuations of particle velocities
To analyse the translational motion of inertial spheroidal particles, we start by measuring
the fluctuations in the velocity of their centre of mass along Lagrangian trajectories. For
this purpose, we introduce the particle root-mean-square (r.m.s.) velocity

Vrms = 〈V2
i 〉1/2 = 〈1

3 |V |2〉1/2 (3.1)

computed from an arbitrary component i = x, y, z, where we recall that V = (Vx, Vy, Vz)
is the particle translational velocity in the reference frame of the fluid flow and 〈·〉 denotes
averages over both time and particle initial positions.

Figure 2(a) shows the particle r.m.s. velocity as a function of the isotropically averaged
Stokes number Ŝt = τ̂/τη, which is obtained by non-dimensionalising the response time τ̂

defined in (2.2c) by the Kolmogorov time scale. We observe that the data collected across a
range of aspect ratios λ collapse on top of each other when plotted as a function of Ŝt. This
indicates that the variance of the particle velocity is effectively as if given by an average
over all its possible orientations. Note that, as argued in the previous section, a similar
collapse in the data is observed if, instead of Ŝt, we use the harmonically averaged Stokes
number Št = τ̌/τη, with τ̌ given by (2.4). As shown in the Appendix, other definitions of
the Stokes number, based for instance on the drag parallel or perpendicular to its axis
of symmetry, do not lead to any collapse of the data. Interestingly, our data indicate
that the approach to the tracer limit Ŝt → 0, where particle r.m.s. velocities converge to
that of the fluid urms, depends on particle shape only through Ŝt up to statistical errors.
In addition, the depletion of particle velocities occurring at large values of Ŝt, which is
generally attributed to filtering of the fluid velocity, also seems independent of the aspect
ratio λ. Finally, we find that at intermediate Stokes numbers, Ŝt � 0.3, the particles’ r.m.s.
velocities are slightly larger than urms. This feature has previously been observed for
spherical particles (Salazar & Collins 2012) and is due to the preferential sampling of
energy-containing, strain-dominated regions of the flow by heavy inertial particles.

Preferential sampling is generally quantified by evaluating the mean trace of the squared
fluid-velocity gradient 〈tr[∇u2(X , t)]〉 along particle paths. The inset of figure 2(a) shows
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Figure 2. (a) The r.m.s. particle velocity Vrms as a function of the isotropically averaged Stokes number Ŝt =
τ̂/τη. Inset: Average of tr(∇u2) along particle paths versus Ŝt. (b) The p.d.f. of the particle velocity components
(normalised to unit variance) for combinations of τ̄ and λ ∈ {0.1, 1, 10} associated with four different values
of Ŝt (as labelled). The various curves have been vertically shifted by a factor 3 from each other to increase
visibility. Inset: Flatness 〈V4

i 〉/V4
rms of the particle velocity as a function of Ŝt for the various aspect ratios,

labelled as in panel (a).

this quantity for various aspect ratios λ. Once again, the measurements collapse on top
of each other when plotted as a function of the isotropically averaged Stokes number Ŝt.
This confirms that the relevant response time of the spheroids is given by τ̂ (or τ̌ , up to
statistical precision), rather than by the time τ̄ associated with a spherical particle with
equivalent mass.

Higher-order velocity statistics also exhibit independence of shape. Figure 2(b) shows
the probability distributions of particle-velocity components for λ = 0.1, 1 and 10,
using selected values of the response time such that Ŝt ≈ 0.1, 0.4, 1 and 4. The
distributions associated with different aspect ratios collapse onto master curves that
depend solely upon Ŝt, indicating that the isotropically averaged Stokes number captures
dependence on particle shape for single-time velocity fluctuations. This observation is
further supported by the flatness of the particle-velocity distributions shown in the inset of
figure 2(b). Overall, our findings indicate that Ŝt is a robust and informative parameter for
characterising velocity statistics of heavy spheroidal particles in homogeneous isotropic
turbulent flow.

3.2. Fluctuations of particle accelerations
In the previous subsection, it was observed that the orientation of inertial spheroids
appears to be uncorrelated with their translational motion. However, this behaviour might
be due to the fact that velocity fluctuations involve only large-scale turbulent eddies, and,
on such scales, the orientation may be effectively averaged in an isotropic manner. To
investigate this possibility further, it is necessary to examine small-scale quantities, which
motivates the study of particle accelerations.

We begin by computing the r.m.s. acceleration

arms = 〈a2
i 〉1/2 = 〈|a|2/3〉1/2, with a = dV/dt, (3.2)

evaluated along an arbitrary component i = x, y, z. The inset of figure 3(a) illustrates
the dependence of this quantity upon the particle aspect ratio λ. We observe that
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arms(λ) increases as non-sphericity becomes more pronounced, for all values of
the equivalent-mass Stokes number St = τ̄/τη. However, when the particle shape is
incorporated into the Stokes number, the behaviour of a sphere is recovered, as in the
case of velocity fluctuations. Figure 3(a) indeed shows that the r.m.s. components of the
particle acceleration depend solely on the isotropically averaged Stokes number Ŝt. The
relevance of this effective Stokes number, as compared to other possible definitions, is
further supported in the Appendix, where we use alternative approaches for representing
the same data. It is worth noting that in figure 3(a) accelerations are normalised by
the dimensional value expected for fluid elements, which is proportional to η/τ 2

η =
ε3/4/ν1/4. Our measurements suggest arms/(ε

3/4/ν1/4) ≈ 1.8 in the limit Ŝt → 0. This
value, which depends on the fluid-flow Reynolds number, is consistent with previously
reported measurements at Rλ ≈ 300 (see e.g. Yeung et al. 2006). At large values of Ŝt, a
continuous depletion of particle acceleration is observed, similar to the case of spherical
particles. This depletion is caused by a complex interplay between preferential sampling
and filtering, as discussed in Bec et al. (2006).

Figure 3(b) shows the probability density functions (p.d.f.s) of the acceleration
components. Similar to the velocity components, distributions with the same value of Ŝt
but different aspect ratios λ collapse on top of each other, even at large fluctuations. This
trend is confirmed by the flatness of the distribution of particle acceleration shown as a
function of Ŝt in the inset of figure 3(b). We emphasise that particle acceleration statistics
depend solely on the isotropically averaged Stokes number Ŝt, just like velocity statistics,
and can thus be straightforwardly deduced from those of spheres. This suggests again that
there is a fundamental independence between the orientation of spheroidal particles and
the dynamics of their centre of mass.

3.3. Two-time statistics
To highlight further the relevance of the isotropically averaged Stokes number, we study
the time autocorrelations of the particle velocity and acceleration components

Avel(t) = 〈V (t) · V (0)〉/(3V2
rms), Aacc(t) = 〈a(t) · a(0)〉/(3a2

rms). (3.3a,b)
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Figure 4. (a) Time autocorrelations Avel of particle velocity components for different combinations of λ and τ̄

associated with four values of Ŝt, as labelled. Inset: Correlation times τc obtained from exponential fits of Avel,
plotted here as a function of Ŝt. (b) Time autocorrelations Aacc of particle acceleration for the same aspect
ratios and isotropically averaged Stokes numbers as in panel (a). Inset: Zero-crossing time τ� of Aacc.

The time correlation of particle velocity is shown for selected values of Ŝt and different
aspect ratios λ in figure 4(a). These results provide further evidence for the importance
of the isotropically averaged Stokes number. The autocorrelation Avel(t) exhibits an
exponential decay ∝ exp(−t/τc), allowing for an estimate of the Lagrangian correlation
time τc of particle velocity. In the inset of figure 4(a), we plot τc as a function of Ŝt. For
tracers, it is known that τc ≈ 0.3τL (see e.g. Yeung & Pope 1989), and this is recovered in
our simulations. At large inertia, τc grows almost linearly as a function of Ŝt. Interestingly,
for Ŝt � 1, the correlation time is slightly reduced by inertia, consistent with our previous
observation that particles with small to intermediate inertia tend to oversample the highly
energetic regions of the flow.

Figure 4(b) confirms the relevance of Ŝt for two-time acceleration statistics. The
correlation time can now be estimated by the zero-crossing time τ�, defined as the
smallest time at which Aacc(τ�) = 0. The inset of figure 4(b) shows that τ� starts from
≈2.2τη at Ŝt = 0 (as documented for tracers in Yeung & Pope (1989)), and then increases
monotonically with the isotropically averaged Stokes number.

4. Concluding remarks

In this study, we investigated the dynamics of heavy spheroidal particles transported by a
homogeneous isotropic turbulent flow. Our numerical simulations provided evidence that
the isotropically averaged Stokes number, as introduced by Shapiro & Goldenberg (1993),
and based on the effective response time obtained by averaging the particle mobility
tensor over all possible orientations, captures the shape dependence in their translational
dynamics. Whether this definition is more relevant than that proposed by Fan & Ahmadi
(1995), where the drag tensor is averaged instead, remains to be determined by future
work with much more precise statistics. Nevertheless, our results demonstrate that the
single-particle statistics of an inertial spheroid, including the probability distributions of
velocity and acceleration and their time correlations, are similar to those of an equivalent
spherical particle whose effective radius can be written as aeff = (λχ)1/2a, where the
dependence of χ on the aspect ratio λ is given in (2.2c).
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This paves the way for the development of macroscopic models for turbulent transport
of non-spherical particles, in which particles can be approximated as effective spheres,
eliminating the need to consider the intricacies of their angular motion. This simplified
approach holds significant potential for the various applications mentioned in the
introduction. Our observations suggest that angular and translational dynamics are only
weakly correlated, which can be explained by the fast time scales associated with particle
spinning and tumbling. Specifically, the response to fluid-flow rotation is at least twice as
fast as translational equilibration.

While our study has focused on statistically isotropic situations, it is worth noting
that intricate relations between rotation and translation could arise when anisotropies are
significant. A first instance is when particle gravitational settling is of the same order
as turbulent motions. The preferential orientation of particles during their fall that sets
their settling speed could compete with orientation fluctuations induced by turbulence.
A second instance is flow with a mean shear or in the presence of boundaries. In these
cases, prolate particles tend to orient in the direction of the flow, whereas oblate particles
are more likely to align in the direction of its gradient. Turbulent structures in such flows
also exhibit strong anisotropies, and the response of spheroids to turbulent fluctuations
may depend non-trivially on their shape. Recent experimental results by Baker & Coletti
(2022) suggest that, near to the walls of a channel flow, rods tumble more frequently than
disks, and the latter respond more slowly to fluid-velocity fluctuations. These observations
imply that efficient macroscopic models for the transport of spheroids by anisotropic flow
may need to weigh differently the components of the particle mobility tensor. Further work
is needed to develop a comprehensive understanding of the effects of anisotropies on the
turbulent transport of non-spherical particles.

Finally, many questions remain unanswered regarding two-particle statistics of
spheroids in turbulence. While we observed a decoupling between translation and rotation
at the single-particle level, this may not hold true for their relative motion. Previous
studies have shown that, in the absence of inertia, spheroidal particles tend to align
with the eigendirections of the Cauchy–Green tensor (Ni et al. 2014), and we expect
these correlations to persist for low-inertia particles. In this case, particles concentrate
on dynamically evolving attractors with a fractal structure related to the stretching
and compression directions of the Cauchy–Green tensor. This could lead to intricate
relationships between clustering and alignment, possibly making it impossible to describe
particle spatial patterns in terms of a single shape-dependent Stokes number. For particles
with large inertia, the presence of caustics, where particles with very different histories
come arbitrarily close to each other, competes with fractal clustering. Such particles are
likely to have significantly different orientations, making it even more challenging to
predict how their relative motion depends on their shape.
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Appendix. Testing alternative definitions of the Stokes number

In order to provide additional evidence regarding the relevance of the isotropically
averaged Stokes number, we compare the results obtained with other definitions of the
Stokes number. These alternative definitions include the equivalent-mass Stokes number
St = τ̄/τη and those based on the drag coefficients parallel or perpendicular to the particle
axis of symmetry. Figures 5 and 6 present the particle r.m.s. velocity and acceleration,
respectively, plotted as a function of these alternative definitions. It is evident that
the data do not exhibit a clear collapse, or at least the collapse is by far much less
convincing compared to the corresponding figures 2(a) and 3(a) that use Ŝt.
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