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G R O B N E R BASES A N D P R O D U C T S OF C O E F F I C I E N T R I N G S

GRAHAM H. NORTON AND ANA SALAGEAN

Suppose that A is a finite direct product of commutative rings. We show from first
principles that a Grobner basis for an ideal of A[x\,... ,xn] can be easily obtained
by 'joining' Grobner bases of the projected ideals with coefficients in the factors of A
(which can themselves be obtained in parallel). Similarly for strong Grobner bases.
This gives an elementary method of constructing a (strong) Grobner basis when the
Chinese Remainder Theorem applies to the coefficient ring and we know how to
compute (strong) Grobner bases in each factor.

1. INTRODUCTION

Let A be a commutative ring with 1 ^ 0 . We are interested in obtaining a (strong)
Grobner basis of a non-zero ideal / of A[x\,..., xn] when A — Ai x • • • x Am is a direct
product of rings and we know how to obtain (strong) Grobner bases of the projected ideals
TTi(I) for i = 1 , . . . , m. We show that this can be done by 'joining' (strong) Grobner bases
for the 7Ti(7) of J4 ; [ :EI , . . . , xn]. Thus we can compute a (strong) Grobner basis for / when
we know algorithms for computing a (strong) Grobner basis for TTJ(7). AS an application,
we compute a (strong) Grobner basis for / when the Chinese Remainder Theorem applies
to A and we can compute (strong) Grobner bases in each factor. Recall that if A is a
principal ideal ring, any non-zero ideal of A[x] has a strong Grobner basis [3, Algorithm
6.4]. We give another proof of this fact.

The preliminary Section 2 recalls the necessary background on (strong) Grobner
bases from [1, 3]. Section 3 discusses the join of Grobner bases while Section 4 describes
the strong join of strong Grobner bases. In the final section, we assume that A is a
principal ideal ring.
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2. PRELIMINARIES

We have A = Ai x • • • x Am and we write A[x] for A[xi,..., xn). The monoid of
terms in x\,... ,xn is denoted by T. Let < be a fixed but arbitrary admissible order on
T. Throughout the paper, we use the same term order < on each Ai[x] as on A[x).

If / = J2 fit € A[x] \ {0} and v - max{t € T : ft ^ 0} then v is the leading term,
teT

fv the leading coefficient and fvv the leading monomial of / , denoted l t( /) , lc(/) and
lm(/) respectively. We also write lm(S) for {lm(/) : / 6 S} where 5 C A[x] \ {0}.

Let G C A[x] \ {0} be finite. Then / g A[x) has a standard representation with
k

respect to G if / = £ c^H^g^ for some c& e A \ {0}, t^ € T, g& € G such that

t^\t{gu)) ^ l t ( / ) , [2, p. 218]. We write Std(G) for the polynomials which have a
standard representation with respect to G.

Also, if G C J4[X] \ {0} is finite, then G is a Grobner basis for a non-zero ideal
/ C A[x] if and only if / = Std(G), [1, Theorem 4.1.12]. If A is Noetherian, every
non-zero ideal of A[x] has a Grobner basis [1, Corollary 4.1.17].

Recall that if G C A[x] \ {0} is finite, then G is a strong Grobner basis for / = (G)

if and only if for any f E I there is a g € G such that lm(</) | lm(/), [1, Definition 4.5.6].
If A is a principal ideal ring, Algorithm 6.4 of [3] constructs a strong Grobner basis for
any non-zero ideal of .4[x]. Also, a strong Grobner basis G is called minimal if no proper
subset of G is a strong Grobner basis for (G).

3. T H E JOIN

The projections -K{ : A —> Ai induce maps TT* : ^4[x] -> Ai[x\. It is straight-
forward to check that the induced map n : A[x] -4 Ai[x] x ••• x Am[x] given by
"•(/) = ( ^ I C / ) ) • • ) 7 rm(/) ) and the map K : Ai[x] x ••• x Am[x] ->• A[x], which col-
lects coefficients of like terms, are mutually inverse ring homomorphisms. We relate
Grobner bases of / C A[x] to Grobner bases of TTJ(/) C >li[x], where 1 $C j ' $J m.

PROPOSITION 3 . 1 . IfG is a Grobner basis for a non-zero ideal I C A[x], then
7Ti(G) \ {0} is a Grobner basis for 7Tj(7) in Ai[x] for i — 1 , . . . , m.

PROOF: We can assume that i = 1. Let fi € TTI(I) \ {0} C Ai[x) and put d =

*\{G) \ {0}. We show that fx € S t d ( d ) . For let / = K{fu0,..., 0) e / \ {0}. We have
lm(/) = (lc(/!), 0 , . . . , 0) l t ( / 0 , so that lt(/) = lt(/i). Since G is a Grobner basis for / ,

k
f = J2 cUHWgU) for some c& £ A \ {0}, t® € T, gW> € G with t<» \t(gU)) < lt(/) =

j=i

l t(/i). Then / i = E 7r1(c^')t(>'7r1(^-'v>) for some j r , 1 ^ j , < • • • < j s ^ k with all
r = l

Tti(c^r)) and 7Ti(^Or)) nonzero. We have t^\t(ni(g^)) ^ t^') lt(ffov>) ^ l t( /) = lt(/i),
that is, fi G Std(Gi) and Gi is a Grobner basis for 7Ti(7). D
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DEFINITION 3.2: Let G{ c ^ [ x ] \ {0} for z = 1,2. Then, Gx U G2, the join of Gx

and G2 is the subset Gx x {0} U {0} x G2 of Ai[x] x ,42[x].

PROPOSITION 3 . 3 . Let I be a non-zero ideal of A[x] and G{ C Aj[x] \ {0} for
i = 1 , . . . ,m. Then n(GiU- • -UGm) is a Grobner basis for I if and only ifG{ is a Grobner

basis for 7TJ(/) for i = 1 , . . . , m.

PROOF: Note first that 0 £ H = K(GX U ••• U Gm). We show / c Std(H) if
each Gt is a Grobner basis. Let / G / \ {0}. Since n{(f) € 7r,(/) = Std(Gi), we can

write TT,(/) = E c p ^ f f P for some A* ^ 1, c<j) £ A{ \ {0}, i | j ) G T, # G G{ with

^ l t ( / ) . Then

, . . . , 7Tm(/))

= £ C^K^\ 0,..., 0) + • • • + ]T ctt)*O)«(0,..., 0,
i=\ j=\

Now K ( 0 , . . . , 0 , ^ ' ) , 0 , . . . , 0 ) € ff, tP lt(«(0 0, 5P, 0, . . . , 0)) = ij^lttoP)
^ lt(/) for j = l,...,k{ and i = 1 , . . . , m, so that / € Std(#). The converse follows
immediately from Proposition 3.1. D

EXAMPLE 3.4. Let / = 2z2 + 3:r + 1 6 Z6[x]. We obtain a Grobner basis for (/> as
follows. The usual isomorphism x : 2 6 4 Z2 x Z3 induces an isomorphism x '• %e{A —>
(Z2 x Z3)[i] and xU) = (0,2)i2 + (1,0)z + (1,1). We have TTX(/) = ( I + 1, 2x2 + 1)
6 Z2[x] x Z3[x) and clearly {x + 1} and {x2 + 2} are Grobner bases in Z2[x] and Z3[x]
respectively. By Proposition 3.3, K({X + 1}U{X 2 +2}) = {(l,0)x + (l,0), (0, l)x2 + (0,2)}
is a Grobner basis for (x ( / ) ) a n d we deduce that x-1«;({x + 1} U {x2 + 2}) = {3(x +
l),4x2 + 2} is a Grobner basis for ( /) .

4. T H E STRONG JOIN

First note that G = {3(x + l),4x2 + 2} is not a strong Grobner basis for (G) in
Example 3.4: x2 - 3x + 2 = 4x2 + 2 - 3x(x + 1) 6 (G), but 3 and 4 are not units in Z6,
so there is no g G G such that \m(g) | lm(x2 - 3x + 2). We shall now show how to obtain
a strong Grobner basis in A[x] from strong Grobner bases in the Aj[x].

PROPOSITI ON 4 . 1 . If G is a strong Grobner basis for a non-zero ideal I C A{x]

then 7Tj(G) \ {0} is a strong Grobner basis for iTi(I) in Ai[x] for i = 1 , . . . , m.

P R O O F : We take i — 1. Let G be a strong Grobner basis and let }x G TTI(/) \ {0} C
.4)[x]. Put / = K ( / I , 0 , . . . ,0) as in Proposition 3.1. There is a g G G such that
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lm(g) | lm(/), so ^ ( l m ^ ) ) | lm(/t). This means that ^ ( l m ^ ) ) ^ 0, so 7^(5) ^ 0 and
^(lmfo)) = \m{7n(g)). Since l m ^ ) ) | l m ^ ) and n{g) G TT,(G) \ {0}, TT,(G) \ {0} is
a strong Grobner basis for (^(G)) = TT\(I). D

DEFINITION 4.2: Let Gj C ^,-[x] \ {0} for i = 1,2. Then G\ LJ G2, the s£ron# join

of Gi,G2 is the subset G i U G 2 u | ( i i 5 i , i2ff2) : 9i £ Git U = \cm(\t{gi),\t{g2))/\t{gi) j

of J4I[X] x A2[x].

PROPOSITION 4 . 3 . K(K(GI U G2) U G3) = K(GI LJ K(G2 LJ G3)).

PROOF: Use the fact that in K(GI LJ G2), It(«;(ii<h,i2<?2)) = lcm(lt(<7i),lt(<72)) and
that the 1cm of leading terms is associative. u

For m ^ 3 we define /c(Gi U • • • U Gm) inductively to be K(K(GI LJ • • • U Gm-i)

UG m ) .

THEOREM 4 . 4 . Let I be a non-zero ideal in A[x\ and d C TT^I) \ {0} for
i = 1 , . . . , m. Then K{G\ LJ • • • U Gm) is a strong Grobner basis for I if and only if
d is a strong Grobner basis for ^ (7) for i = 1 , . . . , m.

PROOF: It suffices to prove the result for m = 2, as the general case follows induc-
tively. Assume that Gj is a strong Grobner basis for TT^/) for 2 = 1, 2. We shall prove
that for any / e / \ {0} there is a g £ K(GI LJ G2) such that \m(g) | lm(/). For i = 1,2,
put 7Tj(/) = / j . We consider several cases.

(i) fi ^ 0 and / 2 = 0. Then lm(/) = (lc(/i),0) lt(/i). Since GX is a strong
Grobner basis for TTI(7), there is a gx € G\ such that lm(^i) | lm(/i).
Putting g = «(ffi,0) € K(G\ LJ G2), we have lm(p) = (lc(5i),0) l t ^ ) and
so lm(ff) I lm(/).

(ii) /1 7̂  0, / 2 7̂  0 and lt(/i) > lt(/2): this is similar to case (i) since lm(/) —

(iii) /1 = 0 and / 2 7̂  0: this is analogous to case (i).

(iv) h ^ 0, h ^ 0 and l t( /0 < lt(/2): see case (iii).

(v) / , ± 0, h ± 0 and lt(/0 = lt(/2). Then lm(/) = (lcC/O, lc(/a)) lt(/,).
For i = 1,2, let 5, 6 Gj be such that lm(^) | lm(/;). Putting g =
t(^i5ij i2p2) € «(Gi LJ G2), where ij is as in Definition 4.2, we have
\m{g) = (Ic(si),lc(s2)) lcm(lt(Sl),lt(52)) and so \m{g) \ lm(/).

For the converse, assume that n{G\ U G2) is a strong Grobner basis for / and fix i £ {0,1}.
Let Hi = 7Ti(Gi U G2) \ {0}, which is a strong Grobner basis for 7T;(/) by Proposition 4.1.
From the definition of G\ U G2, Gi C Hi and any hi € //, \ G, is of the form hi = tigi for
some U e T. Thus (G;) = (//j) and for any / £ 7 (̂7) = (d), there is an /ij € 77, and a
pi € Gi such that lm(5,) |lm(/ij)| lm(/). Hence G, is a strong Grobner basis for 7!"i(7). D

Theorem 4.4 thus gives an iterative algorithm for computing a strong Grobner basis
in A{x], provided we have an algorithm (SGBj say) that computes a strong Grobner
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basis in each Ai[x\ for 1 ^ i < m. The SGBj can be done in parallel and the complexity

of computing n{Gx U • • • U Gm) from Gu--,Gm is Of f[ \G{\ \. The latter can be

improved by first minimising each G*. We note that K(GI U • • • U Gm) may not be
minimal, so in general, a further minimisation step will be necessary. We formalise this
as follows.

ALGORITHM 4.5.
m

Input: F C A[x] \{0}, F finite, A = f] M and we have an algorithm strong SGB;
t=i

which computes a strong Grobner basis in AJx] for 1 < i ^ m.
Output: G, a minimal strong Grobner basis for (F).

begin
for i <- 1 to m do

minimise G{
end for
G*-Gi
for i <— 2 to m do

G ( - K ( G U Gi)

end for
minimise G
return(G)
end

Finally, we note that in computing G = /c(Gi U • • • LJ Gm) we can first compute lm(G)
to preselect the polynomials of G belonging to a minimal strong Grobner basis. Only
these polynomials need then be computed in full. See Example 5.3.

5. THE PRINCIPAL IDEAL RING CASE

In this final section, we restrict A to be a principal ideal ring. We give an alternative
proof that any non-zero ideal of A[x] has a strong Grobner basis and conclude with some
examples.

COROLLARY 5 . 1 . (Compare [3, Algorithm 6.4].) If A is a principal ideal ring
then any non-zero ideal of A[x] has a strong Grobner basis.

m

PROOF: We have A = Yl M, where each At is a principal ideal domain or a finite-
•=i

chain ring by [4, Theorem 33, Section 15, Chapter 4]. We can obtain a strong Grobner
basis over a principal ideal domain using for example, [2, Algorithm D-Grobner, p. 461]).
Over a finite-chain ring any Grobner basis is a strong Grobner basis by [3, Proposition
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3.9], so it suffices to compute a Grobner basis, using for example [3, Algorithm 6.1] which
computes a Grobner basis over any principal ideal ring. Hence by Theorem 4.4 we can
compute a strong Grobner basis for any non-zero ideal of A[x]. D

An improved strong Grobner basis algorithm for finite-chain rings is described in the
Appendix.

EXAMPLE 5.2. (Compare [3, Example 7.3].) Let F = {2x2 + 3x + 1} c Z6[x] as in
Example 3.4. We obtain a strong Grobner basis for (F) by applying Algorithm 4.5 to
X(F). Firstly, nx(F) = (x + 1.2a ;2 + !) a n d trivially {x + 1} and {x2 + 2} are minimal
strong Grobner bases in Z2[x) and Z3[x] respectively. We have {x + 1} U {x2 + 2} =
{(x + l,0),(0,x2 + 2),(x2 + x,x2 + 2)} and G = K({X + 1} U {x2 + 2}) = {( l ,0) i +
(1,0), (0, l)x2 + (0, 2), (1, l)x2 + (1,0)a: + (0,2)} is a strong Grobner basis for (x(F)).
We minimise G to obtain H = {(1,0)2; + (1,0), (1, l)x2 + (l ,0)z + (0,2)}. Finally
X~X{H) = {x2 + 3x + 2,3(x + 1)} is a minimal strong Grobner basis for (F).

In the next example, we use Algorithm SGB-FCR of the Appendix.

EXAMPLE 5.3. As in [1, Example 4.2.12], let F — {Axy + x, 3x2 + y} c Z20[x,y].
Using lexicographic order with x > y, they obtain a Grobner basis G' = {3x2 + y, 4xy +
x, 5x, Ay2 + y, I5y} via the method of syzygy modules. This is not a strong Grobner
basis since xy — x = 5xy — (Axy + x) is not strongly reducible with respect to G".
Likewise for y2 - y = by2 — {Ay2 + y). (We note that [3, Corollary 5.12] shows that
{a:2 + 7y, xy — x, bx, y2 — y, by} is a minimal strong Grobner basis.)

Instead, we compute a strong Grobner basis for (F) from scratch using the usual
isomorphism x '• Z2o —> Z4 x Z5 and Algorithm 4.5. We have TTX{F) — {(x,Axy +
x),(3x2 + y,3x2 + y)} c Z4[x] x Z5[x].

We obtain d = {x, y} as a strong Grobner basis for {x, 3x2 + y} using Algorithm
SGB-FCR; alternatively G\ is a Grobner basis by [3, Theorem 4.10] and it is a (minimal)
strong Grobner basis by [3, Proposition 3.9]. In Z5[x,y], we work with {xy + Ax,x2 + 2y}.
A minimal strong Grobner basis is G2 = {xy + 4x,x2 + 2y,y2 + Ay}. First comput-
ing lm{K(Gl U G3)) yields H = {(1, l)x2 + (0, 2)y, (1, l)xy + (0, A)x, (1,0)x, (1, \)y2 +
(0,4)2/, (l,0)y} as a minimal strong Grobner basis for (x(F))- So x~l{H) = {x2 +
12y, xy + Ax, bx, y2 + Ay, by} is a minimal strong Grobner basis for (F).

6. APPENDIX

We derive an algorithm for computing a strong Grobner basis over a finite-chain
ring R from [3, Algorithm 6.1], using the definitions and notation of [3, Sections 3.1,
4.3]. In particular, for j,!\-,h S R\x\ \ {0} and a finite set G of non-zero polynomials,
SpoK/1,/2), Apol(/), Rem(/,G), SRem(/,G) denote the set of S-polynomials of fuj2,
the set of A-polynomials of / , the remainder and the strong remainder of / with respect
to G, respectively.
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Algorithm 6.1 of [3] computes a Grobner basis over any principal ideal ring, so

in particular over R. We know tha t any Grobner basis over R is a strong Grobner

basis by [3, Proposition 3.9]. We also know that / is reducible with respect to G if

and only if / is strongly reducible with respect to G by [3, Proposition 3.2], so that

SRem(/ , G) C Rem( / , G). So over R we only need to use strong reduction, which is

more efficient than reduction. The improved algorithm follows.

A L G O R I T H M 6 . 1 .

G <r- SGB-FCR(F)

Input: F a finite subset of R[x] \ {0}, where if is a computable finite-chain ring.

Output: G a strong Grobner basis for (F).

Notes: B is the set of pairs of polynomials in G whose S-polynomials still have to be

computed.

C is the set of polynomials in G whose A-polynomials still have to be computed.

begin
G<-F
B<-{{fi,h} •• / J j eC/ i / / , }

while B U C ^ 0 do
if C / 0 then

select / from C
C^C\{f}
compute h 6 Apol(/)

else
select {/j, f2} from B
B<-B\{{fuf2}}
compute h € Spol^, /2)

end if
compute g € SRem(/i, G)
if g ̂  0 do

B^Bu{{g,f} : f £ G}

G<-GU{g}
end if

end whi le

return(G)

end
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