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Assembling RKHS with Pick kernels
and assembling polyhedra in CH

n

Richard Rochberg
Abstract. We study the geometry of Hilbert spaces with complete Pick kernels and the geometry
of sets in complex hyperbolic space, taking advantage of the correspondence between the two
topics. We focus on questions of assembling Hilbert spaces into larger spaces and of assembling
sets into larger sets. Model questions include describing the possible three-dimensional subspaces
of four-dimensional Hilbert spaces with Pick kernels and describing the possible triangular faces of
a tetrahedron in CH

n . A novel technical tool is a complex analog of the cosine of a vertex angle.

1 Introduction and summary

We begin with an informal overview; precise statements are in the later sections.

1.1 Prelude

There are close relationships between the analytic properties of certain Hilbert spaces
and the geometric properties of certain sets in complex hyperbolic space. Here, we
explore some aspects of those relationships in detail; other aspects are studied in
[ARSW, Ro, Ro2, Ro3].

1.2 Introduction

A finite-dimensional reproducing kernel Hilbert space (RKHS) may have, or may
fail to have, the complete Pick property (CPP), and substantial work has been done
establishing which spaces have this property and describing its consequences, for
instance, [AM, ARSW2, Ha, Sh]. Here, we study the rules governing building an
RKHS+CPP from given pieces using specified amalgamation rules. Because of the
correspondence between those Hilbert spaces and finite sets in complex hyperbolic
space CHn , we obtain at the same time rules governing assembly of finite sets in CH

n

into larger sets.
We have two essentially equivalent model questions: one geometric and the other

functional analytic. The geometric version of question is more intuitive so we present
it first.
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2 R. Rochberg

Question 1: Given four triangles in complex hyperbolic space, CHn , is there a
tetrahedron in CH

n with faces congruent to those triangles?
In Euclidean space of any dimension, the necessary and sufficient condition for

three segments to be the sides of a triangle is that the lengths satisfy the triangle
inequality and if that holds then those lengths determine the triangle up to congru-
ence. On the other hand, given four Euclidean triangles with matching side lengths,
there might not be a tetrahedron with faces congruent to those triangles, or, what is
the same thing, edges the same lengths as the sides of those triangles. For instance,
the numbers {4, 4, 4, 4, 4, 7} are not the edge lengths of a tetrahedron. A necessary
and sufficient condition for there to be such a tetrahedron is the nonnegativity
of the determinant of the associated Cayley–Menger matrix, a matrix with entries
constructed using the side lengths. This is an elegant condition, but it is an inequality
for a sixth degree polynomial in the lengths, [WD].

In real or complex hyperbolic space, the necessary and sufficient condition for
three lengths to be the side lengths of a triangle is that they satisfy the hyperbolic
version of the triangle inequality (2.2) [Ro]. In CH

1 and in RH
n , n ≥ 1, those lengths

determine the congruence class of the triangle; but in CH
n , n > 1, the side lengths do

not determine the congruence class and an additional number is needed, for instance,
the symplectic area of the triangle. Brehm [Br] presents the inequalities the four
numbers must satisfy and shows that if they are satisfied, then there is a triangle in
CH

n , unique up to congruence, with that geometric data. We recall the details in
Theorem 3.1.

If we are given four triangles to be the faces of a tetrahedron in CH
n , then

the starting data are determined by 4 × 4 = 16 parameters. If it is possible to form
the tetrahedron, then various side lengths must be equal, reducing the number of
parameters to 10. Further, it is not hard to show that if there is a tetrahedron, then
the sum of the signed symplectic areas of the triangular faces must vanish, reducing
the number of free parameters to 9. We see in Theorem 3.2 that the congruence
class of a tetrahedron in CH

n is determined by nine numbers; Question 1 asks for
the constraints those numbers must satisfy, and in Section 6, we give the explicit
inequalities.

The relative complexity of the results for Euclidean space in [WD] is partially due
to the choice of side lengths as data. In answering Question 1, in addition to working
with side lengths, we also consider the geometry of the vertices. We describe them
using a functional kosa(b, c) of triples of points {a, b, c} in CH

n which is a complex
analog of the cosine of the angle at the vertex a formed by the segments ab and ac. If
we can form a tetrahedron from given triangles, then at a vertex a of the tetrahedron
there will be three edges and three bivalent vertices. The shape of each bivalent vertex
is determined by a value of kosa(⋅, ⋅). The lengths of those three edges together with the
three complex values of kos for the bivalent vertices give nine real parameters which
suffice to determine if there is a tetrahedron and if so to determine its congruence
class.

Here is an informal statement of our results on Question 1. The first part is a
restatement of Brehm’s result, and the second part is from Theorem 6.2. It includes
the algebraic inequality that the values kosa(⋅, ⋅) must satisfy for there to be a
tetrahedron.
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Pick spaces and polyhedra 3

Theorem 1.1 (1) If a, x , y are vertices of a triangle in CH
n , then the two real numbers

length (ax) and length(ay) together with the complex number kosa(x , y) deter-
mine the congruence class of the triangle.

The lengths must be in the interval (0, 1), and we must have ∣kosa(x , y)∣ ≤ 1.
Given data that satisfy those conditions, there is a triangle with those data.

(2) If a, x , y, z are the vertices of a tetrahedron CH
n , then the three real numbers

length (ax) , length(ay), and length (az) together with the three complex numbers
kosa(y, z), kosa(z, x), and kosa(x , y) determine the congruence class of the
tetrahedron.

The lengths must be in the interval (0, 1), and the values of kos must be of
modulus at most one and satisfy

∣kosa(y, z) − kosa(x , y)kosa(x , z)∣
2
≤ (1 − ∣kosa(x , y)∣2)(1 − ∣kosa(x , z)∣2).

(1.1)

Given data that satisfy those inequalities, there is a tetrahedron with those data.

The functional kos and also the functional δ(⋅, ⋅), the pseudohyperbolic distance
between pairs of points, are defined for points inCH

n . The “same” functionals are also
defined for tuples of kernel functions in any RKHS. In an RKHS, δ(a, b) is related
to the angle between kernel functions and kosa(b, c) describes the geometry of the
projection of one kernel function onto the linear span two others. The functionals
defined on points in CH

n are invariant under automorphisms of CHn , and the RKHS
versions are invariant under rescalings of the Hilbert space. Accepting the guidance of
Klein’s Erlangen Program, these invariant quantities are geometric descriptors of sets
in CH

n and of RKHS.
In Theorem 5.1, we use those functionals to give similar descriptions of finite sets in

CH
n and of finite-dimensional RKHS with the CPP. The similarity extends to assembly

questions in the two contexts, and in particular, Question 1 is essentially equivalent to
the following.

Question 2: Given four three-dimensional RKHS+CPP, is there a four-dimensional
space RKHS+CPP whose regular three-dimensional subspaces are rescalings of the
given spaces?

A basic question is giving conditions which insure a finite-dimensional RKHS H
has the CPP. The question is trivial if H is one-dimensional and elementary if the
dimension is 2. Because having the CPP is equivalent to an associated geometric con-
figuration being realizable in CH

n , the three-dimensional case is settled by Brehm’s
result, the first statement in the previous theorem. If H is four-dimensional, then it
is certainly necessary that each regular three-dimensional subspace satisfies Brehm’s
condition, but an example due to Quiggin [Q] shows that those conditions are not
sufficient. This work arose as an attempt to place Quiggin’s example in a general context
and gives necessary and sufficient conditions for questions such as Question 2 to have
a positive answer. The specific answer to Question 2, given in Theorem 6.4, is an
inequality for values of the functional kos .

A theme of this paper is that certain geometric questions such as Question 1 and
Hilbert space questions such as Question 2 are equivalent. Although we could have
given a geometric analysis of Question 1 or a Hilbert space analysis of Question 2, we
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4 R. Rochberg

have combined the two viewpoints to emphasize their unity. However, the geometric
language often seems to carry more intuition, for instance, discussing congruence of
sets rather than rescaling of Hilbert spaces, and so we often just use the geometric
language and do not record the equivalent Hilbert space statements. However, the
Hilbert space statements are always part of the story and, in fact, it is the author’s view
that they are more fundamental.

1.3 Contents

Here is an overview of the contents. In the next section, we give background informa-
tion about geometry and about Hilbert spaces; in the section after that, we recall results
connecting those topics. In Section 3, we formulate our basic assembly and coherence
question and explain why Questions 1 and 2 are equivalent. Most of our analysis is
based on the functional kos introduced in Section 2. That functional is new, and we
take time in Section 4 to discuss the geometry associated with it. In Section 5, we
describe finite sets X in CH

n , and also an associated class of Hilbert spaces H. We use
a version of spherical coordinates with values of kos taking the role of cosines of angles.
That description involves the positive semidefiniteness of a matrix A, A ≽ 0, which has
the form A = (kos1(i , j)) . Principal submatrices of A encode the geometry of subsets
of X and of subspaces of H, and Sylvester’s criterion lets us recast the fact that A ≽ 0
as statements about those submatrices. We use that to relate the geometry of X to the
geometry of its subsets and the geometry of H to that of its subspaces. In Section 6, we
specialize the results from Section 5 to four-point sets and four-dimensional spaces,
answer Questions 1 and 2, and analyze the examples of Quiggin [Q].

In Section 6.4, we consider what happens when a four-point set in CH
n is in

fact inside a copy of RHk . Then our results specialize to results about sets in real
hyperbolic space and there is then a fundamental simplification, the value of kos at
a vertex equals the cosine of the vertex angle. The earlier results then simplify to the
classical constraints on the vertex angles or the dihedral angles of a tetrahedron in real
hyperbolic space or Euclidean space.

The brief final section contains a few remarks.

2 Background

2.1 Hyperbolic geometry

A background reference for complex hyperbolic geometry is [Go]. We will use the ball
model of complex hyperbolic space CHn . In that model, the manifold for CHn is the
unit ball, Bn ⊂ Cn , and the geometry is the Poincare Bergman geometry determined
by the transitive group of biholomorphic automorphisms of the ball, AutBn . For each
α ∈ Bn , there is a unique involution ϕa ∈ AutBn , which satisfies ϕa(a) = 0. The group
AutBn is generated by those involutions together with the unitary maps. We will say
two sets Z, W ⊂ CHn are congruent, Z ∼W , if there is a ϕ ∈ AutBn with ϕ(Z) =W .
If the sets are ordered then, absent other comment, we suppose that ϕ respects the
ordering. Congruence is an equivalence relation, and we are particularly interested in
congruence equivalence classes.
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Pick spaces and polyhedra 5

The pseudohyperbolic metric δ on CH
n is defined by ∀α, β ∈ CHn

δ(α, β) = ∣ϕα(β)∣ = ∣ϕβ(α)∣ .(2.1)

Equivalently, δ is the distance on Bn , which satisfies δ(0, z) = ∣z∣ for z ∈ Bn and is
AutBn invariant [DW]. δ is not a length metric; the length metric it generates is the
Poincare Bergman metric for the ball normalized to agree with the Euclidean metric to
second order at the origin. For n = 1, the formula is δ(α, β) = ∣ α−β

1−β̄α ∣ . The formula for
general n is given in (2.9). δ satisfies a strengthened version of the triangle inequality,
[DW]; for x , y, z ∈ Bn ,

∣δ(x , z) − δ(z, y)∣
1 − δ(x , z)δ(z, y) ≤ δ(x , y) ≤ δ(x , z) + δ(z, y)

1 + δ(x , z)δ(z, y) .(2.2)

The space CH
n contains various totally geodesic submanifolds of interest here.

These include the classical geodesics which are totally geodesic copies of RH1 , and
also include totally geodesic copies of CH1 , sometimes called complex geodesics. Every
pair of points is contained in a unique classical geodesic which is in turn contained
in a unique complex geodesic. There are also totally geodesic copies of the real hyper-
bolic plane RH2 inside CHn . In particular, for R2 = {(x , y, 0, ..., 0) ∶ x , y ∈ R} ⊂ Cn ,
consider the two-dimensional real ball, RB2 = R2 ∩CHn . That intersection is a totally
geodesically embedded submanifold whose induced geometry is that of the Beltrami–
Klein model of RH2 with constant curvature −1/4. All of the automorphic images of
RB2 are also totally geodesically embedded submanifolds of real dimension 2, and
they, together with the complex geodesics, are the only such.

The geometry of RB2 is not conformal with the Euclidean geometry of the con-
taining R

2 . However, the two geometries are conformally equivalent at the origin, in
particular angles with vertex at the origin have the same size in both geometries. There
is a useful picture of RB2 in [Go, p. 83], and there is a discussion of the geometry of that
model (although the version with curvature −1) as well as the more familiar Poincaré
disk model in Appendices B and C of [J].

If G is a complex geodesic and x ∈ CHn , we define the metric projection of x onto
G, PG x , to be that point in G which is closest to x in the pseudohyperbolic metric.

For z, w ∈ Br , we define the kernel function k by

kz(w) = k(w , z) = 1
1 − ⟨⟨w , z⟩⟩ .(2.3)

(We write ⟨⟨⋅, ⋅⟩⟩ for the inner product on C
n to distinguish from the inner products

on the general Hilbert spaces we consider.)
There is a fundamental identity which describes the interaction of the involutive

automorphisms with the kernel functions [Ru]: for any y, z, w ∈ Br ,

k(ϕy(z), ϕy(w)) =
k (y, y)1/2

k(z, y)
k (y, y)1/2

k(y, w) k(z, w).(2.4)

By a triangle in CH
n , we mean an ordered set of three distinct points called

vertices, or those vertices together with the sides, the geodesic segments connecting
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6 R. Rochberg

the vertices. We allow the degenerate case of three points in a single geodesic. The
length of a side is the δ distance between the corresponding vertices. Triangles inCH

n

do not necessarily have “faces”; three points in CH
n are not generally contained in a

totally geodesic submanifold of real dimension 2.
Similarly, a tetrahedron in CH

n is an ordered set of four vertices. Its four subsets
of three vertices are its triangular faces, even though they may not be faces in the
geometric sense.

2.2 Hilbert spaces with reproducing kernels

Our background references for Hilbert spaces are [AM, ARSW2, PR, Ro].
Except for the spaces DAr discussed this section, all the Hilbert spaces in this paper

are finite-dimensional.
An n-dimensional RKHS is an n-dimensional Hilbert space H together with a

distinguished basis of vectors called reproducing kernels, RK(H) = {h i}ni=1 . For any
v ∈ H, we write v̂ for its normalized version; v̂ = v/ ∥v∥ . For h i , h j ∈ RK(H), we write
h i j for their inner product and ĥ i j for the inner product of their normalizations:

h i j = ⟨h i , h j⟩ , ĥ i j = ⟨ĥ i , ĥ j⟩ = ⟨
h i

∥h i∥
,

h j

∥h j∥
⟩ .

The Gram matrix of H is the matrix Gr(H) = (h i j)
n
i , j=1 .

Any v in H is regarded as a function on the index set of RK(H) by setting
v(i) = ⟨v , h i⟩. If m is a function on RK(H), then the associated multiplier operator
Mm acting on H is the linear operator which satisfies Mmv(i) = m(i)v(i).

A regular subspace of H is a subspace J spanned by a subset S of RK(H) and
regarded as an RKHS by setting RK(J) = S .

We now recall the Drury–Arveson spaces, DAr ; some basic references are [AM, Ar,
Sh]. With kz(⋅) the functions from (2.3), DAr is the infinite-dimensional RKHS with
kernel functions {kz ∶ z ∈ Br = CHr} and inner product given by ⟨ks , kt⟩ = ks(t).
DA1 is the classical Hardy space H2 of the unit circle, a space which can also
be described as the space of holomorphic functions on the unit disk with square
summable sequences of Taylor coefficients. For r > 1, DAr is a proper subspace of
the Hardy space of the sphere. It is in the scale of Besov–Sobolev spaces, which
also contains the Hardy space of the sphere and the Bergman space of the ball
[ARSW2].

We are particularly interested in finite-dimensional regular subspaces of DAr . For
Z = {z j}

n
j=1 ⊂ CH

r , let DAr(Z) be the regular subspace of DAr spanned by the kernel
functions {kz i}

n
i=1 . We abbreviate them by {k i} and set k i j = ⟨k i , k j⟩ .

If r′ > r, there are natural inclusions of DAr , Cr , Br , and CH
r into the correspond-

ing objects with r′ . These inclusions interact in harmless ways with the constructions
we are using. For instance, an inclusion ofBr intoBr′ takes Z ⊂ Br to a Z′ ⊂ Br′ . There
is then an obvious natural map of DAr(Z) onto DAr′(Z′) which preserves all the
structure of interest here. Going forward, we will suppose r is sufficiently large, identify
such pairs of sets and spaces, and drop the subscript r; thus, DA(Z).
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Pick spaces and polyhedra 7

2.2.1 Rescaling

Rescaling is a fundamental equivalence relation between RKHSs. Given a finite-
dimensional RKHS, G , H with RK(H) = {hα}α∈A, RK(G) = {gβ}β∈B , we say G is
a rescaling of H and write G ∼ H if there is a one-to-one map θ of A onto B and a
nonvanishing complex valued function γ defined on A such that for all α1 , α2 in A,

⟨hα1 , hα2⟩ = ⟨γ(α1)gθ(α1), γ(α2)gθ(α2)⟩ = γ(α1)γ(α2) ⟨gθ(α1) , gθ(α2)⟩ .(2.5)

For instance, the linear map which sends each kernel function hα to its normalized
version, ĥα = hα/ ∥hα∥ is a rescaling. If A and B are ordered, then, unless we specify
otherwise, we suppose that θ respects the ordering.

A basic class of rescalings in our discussion are those induced on spaces DA(Z) by
ball automorphisms. It is a consequence of (2.4) that given any Z ⊂ Br and any y ∈ B,
the automorphism ϕy induces a rescaling of DA(Z) to DA(ϕy(Z)).

If GH is a regular subspace of G and H ∼ GH , we will write H ↝ G or H ↝ GH ⊂ G
and will say that H has a rescaling into G .

2.2.2 Assuming irreducibility

In [AM, p. 79], an RKHS H is called irreducible if no two elements of RK(H) are
parallel and no two are orthogonal. We denote the class of all finite-dimensional
irreducible RKHSs by RK. If H ∈ RK, then the entries of the Gram matrix of H are
nonzero. That is convenient when we define the invariants δ and kos later.

The DA(X) spaces we work with here all irreducible. The first condition is a
consequence of their definitions; the second holds because the kernel functions in
(2.3) are nonvanishing.

2.2.3 The complete Pick property

The CPP is a property which some H ∈ RK have and some do not. The class of H with
that property is of fundamental importance in function-theoretic operator theory and
is actively studied. Some background references are [AM, Ar, ARSW2, Sh]. A sample
recent reference is [Ha].

We will use the following definition of the CPP.

Definition 2.1 We will say a finite-dimensional RKHS H has the CPP if there is finite
X ⊂ CHr so that H is a rescaling of DAr(X).

This is very much a definition of convenience. The classical definition of the CPP is
in terms of extension properties of multipliers. Using that classical definition neither
the fact that for any X, we have DAr(X) ∈ CPP nor the fact that any H ∈ CPP is a
rescaling of a DAr(X) is straightforward. The full story is in [AM] where one can also
find a characterization of H ∈ CPP using the Gram matrix entries of H.

If H ∈ RK has the CPP, then we write H ∈ CPP. It is immediate that every
DAr(X) ∈ CPP, and that the CPP is preserved by rescaling and inherited by regular
subspaces.
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2.3 Invariants

Given H ∈ RK, we now define several numerical functions of tuples of elements
of RK(H) the set of reproducing kernels of H. The definitions involve algebraic
combinations of Gram matrix entries which by (2.5) are seen to be unchanged when
H is replaced by a rescaling of H. Thus, the functions are rescaling invariants, well
defined on the rescaling equivalence classes.

These functionals can also be regarded as defined for tuples of points in CH
n as

follows. Given a functional F defined on, for instance, pairs of kernel functions, and
given x , y ∈ CHn select by X ⊂ CHn with x , y ∈ X and set F(x , y) = F(kx , ky) where
kx and ky are the kernel functions in RK(DA(X)). It is straightforward to check that
this value is independent of the choice of X (and we will not mention X again) and that
if F acting on Hilbert spaces is rescaling invariant, then the “same” functional acting
on CH

n is automorphism invariant. We will use the same names and notation for the
functionals acting on an RK(H) and for the induced functionals acting on points in
CH

n .

2.3.1 Distance

For H ∈ RK and h1, h2 ∈ RK(H), we define δH by

δH(i , j) = δH(h i , h j) =

�
   !1 −

∣h i j ∣
2

h i i h j j
=
√

1 − ∣ĥ i j ∣2 .(2.6)

This function is a metric on H ([AM, Lemma 9.9], [ARSW]) and is clearly invariant
under rescaling. Using the scheme of the previous paragraphs, we can extend this
definition to a functional, call it δ′ for the moment, acting on pairs of points in CH

n .
One of the main links between the Hilbert space theory and hyperbolic geometry is
that δ′ equals the pseudohyperbolic distance, δ, between points, already defined in
(2.1). To see this, use (2.3) and rewrite (2.4) as, for w , x , y, z ∈ CHn ,

1 − k(w , y)k(y, z)
k(y, y)k(w , z) = ⟨⟨ϕy(z), ϕy(w)⟩⟩ .(2.7)

Taking z = w, we have

δ2(y, w) = ∣ϕy(w)∣
2 = 1 − ∣k(y, w)∣2

k(y, y)k(w , w) = δ′2(y, w).(2.8)

The first equality in (2.8) is the definition of δ, the second is a special case of (2.7), and
the third is the definition of δ′2 . Thus, δ = δ′ . Alternatively, note that for any z ∈ Bn ,
we have δ(0, z) = ∣z∣ = δ′(0, z) and both δ and δ́′ are invariant under automorphisms;
hence, the two metrics are equal. We now drop the notation δ′ and simply write δ for
the functional defined on RKHS and for the pseudohyperbolic metric. Using (2.7), we
can express δ in terms of coordinates; for y, w ∈ Bn ,

δ2(y, w) = 1 − (1 − ⟨⟨y, y⟩⟩)(1 − ⟨⟨w , w⟩⟩)
∣1 − ⟨⟨y, w⟩⟩∣2

.(2.9)
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2.3.2 Angular invariant

For H ∈ RK, we define the angular invariant α by, for k1, k2, k3 ∈ RK(H),

α(1, 2, 3) = α(k1 , k2 , k3) = − arg ⟨k1 , k2⟩ ⟨k2 , k3⟩ ⟨k3 , k1⟩ = − arg k12k23k31 .(2.10)

(In general situations, care is needed in selecting a branch of arg . However, for
k ∈ RK(DA(Z)), Re k > 0 and that lets us avoid problems.) Notice that α satisfies a
cocycle identity; if k4 is a fourth kernel function, then

α(1, 2, 3) − α(2, 3, 4) + α(3, 4, 1) − α(4, 1, 2) = 0.(2.11)

We discuss some of the geometry associated with α in Section 4.4. More about this
invariant is in [BIM, C, CO, Go, HM, M, Ro].

2.3.3 kos

For H ∈ RK, we define kos, a functional of triples of kernel functions. For k1, k2, k3 ∈
RK(H), k1 ≠ k2, k3 , set

kosk1(k2 , k3) = kos1(2, 3) = 1
δ12δ13

(1 − k21k13

k11k23
) ,(2.12)

and note the symmetry kos1(2, 3) = kos1(3, 2).
If H = DA(X) for some X ⊂ CHn , then kos is related to the geometry of X . Recall

that if x ∈ CHn , then ϕx is the ball involution which interchanges x and 0. We can use
(2.7) and obtain

kosx(y, z) = 1
δ(x , y)δ(x , z) ⟨⟨φx (y) , φx (z)⟩⟩ .(2.13)

In particular, if ξ is at the origin, ξ = o, then ϕξ is the identity, for any w ϕξ(w) = w ,
and δ(ξ, w) = δ(o, w) = ∣w∣ . In that case,

koso(y, z) = ⟨⟨ y
∣y∣ ,

z
∣z∣ ⟩⟩ = ⟨⟨ ŷ, ẑ⟩⟩ .(2.14)

(Although kos is invariant under automorphisms of Bn , this formula is an inhomoge-
nous representation and is not invariant.)

If the vectors y and z were in R
n , this would be the inner product of unit vectors

in R
n and would equal the cosine of the angle between the segments oy and oz. That

is the source of the name kos .
If dim H = n, then for 1 ≤ s ≤ n, we define the (n − 1) × (n − 1)matrices

KOS(H, s) = KOS(Gr(H), s) = (koss(i , j))ni , j=1
i , j≠s

,(2.15)

MQ(H, s) = (δs i δs j koss(i , j))ni , j=1
i , j≠s
= (1 −

k i s ks j

k i j kss
)

n

i , j=1
i , j≠s

.(2.16)

We also write KOS(X , s) for KOS(DA(X), s).
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10 R. Rochberg

2.4 Matrix notation

For an n × n matrix A, we write A ≻ 0 if A is positive definite and A ≽ 0 if it is positive
semidefinite. We say B is a principal submatrix of A if it is obtained from A by removing
certain rows and also the corresponding columns. Note that if H ∈ RK, then J is a
regular subspace of H if and only if Gr(J) is a principal submatrix of Gr(H). We
denote the set of all principal submatrices of A byPS(A). If B ∈ PS(A) and the indices
of the rows and columns retained in B are an initial segment, indices j with 1 ≤ j ≤ k
for some k ≤ n, then B is said to be a leading principal submatrix. The determinants of
those matrices are called principal minors and leading principal minors, respectively.

3 The CPP and point sets in CH
n

We will sometimes use a model triangle Γ or a model tetrahedron Δ which have
convenient coordinates. Our model triangle is Γ ⊂ CH2:

Γ = {x1 , x2 , x3} = {(0, 0}, (a, 0), (x , b)} ,(3.1)
a > 0, b ≥ 0, x ∈ C,

0 < a, ∣x∣2 + b2 < 1.

Our model tetrahedron is Δ ⊂ CH3:

Δ = {x1 , x2 , x3 , x4} = {(0, 0, 0), (a, 0, 0), (x , b, 0), (y, z, c)} ,(3.2)
a > 0, b, c ≥ 0, x , y, z ∈ C,

0 < ∣a∣2 , ∣x∣ 2 + ∣b∣2 , ∣y∣ 2 + ∣z∣2 + ∣c∣2 < 1.

It is easy to check that any triangle in CH
n , once the numbering of the vertices is

fixed, is congruent to a unique Γ; similarly for tetrahedra and Δ.
To a three-dimensional H ∈ RK with RK(H) = {h i}3i=1, we associate the following

sets of invariant quantities:

S = {∣ĥ12∣, ∣ĥ23∣, ∣ĥ13∣, α123} ,
S′ = {δ12 , δ13 , δ23, α123} ,

S′′ = {δ12 , δ13 , kos1(2, 3)}.(3.3)

And, for convenience, we set

Γabc = ∣
ĥab ĥbc

ĥca
∣ =
�
  !(1 − δ2

H(a, b)) (1 − δ2
H(b, c))

(1 − δ2
H(c, a)) .(3.4)

The following describes three-point sets X in CH
2 and the associated DA(X)

spaces.

Theorem 3.1 [AM, Br, Ro] Given a three-dimensional H ∈ RK, the following are
equivalent:
(1) H ∈ CPP.
(2) There is a three-point set X in CH

2 with H ∼ DA(X).
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Pick spaces and polyhedra 11

(3) There is a Γ as in (3.1) with H ∼ DA(Γ).
(4) Let J be the regular subspace of H spanned by {h1, h2}. Let M be the multiplier on

J of norm one specified by the following action of its adjoint:

M∗h1 = 0,
M∗h2 = δH(h1 , h2)h,

then M extends to a multiplier of norm one on H.
(5) KOS(H, 1) ≽ 0.
(6)

. ∣kos1(2, 3)∣ ≤ 1.(3.5)

(7) S and the Γ’s defined from S using (3.4) satisfy

Γ123 + Γ231 + Γ312 ≤ 2 cos α123 .(3.6)

(8) S′ and the Γ’s defined from S′ using (3.4) satisfy (3.6).
Furthermore, X sits inside a complex geodesic if and only if det KOS(H, 1) = 0, or

equivalently ∣kos1(2, 3)∣ = 1, or the b coordinate of Γ in (3.1) is 0. It sits inside a totally
real geodesic submanifold of real dimension 2 if and only if kos1(2, 3) is real.

Conversely, given
data S and Γ’s defined from S using (3.4) such that (3.6) holds,

or
data S′ and Γ’s defined from S′ using (3.4) such that (3.6) holds,

or
data S′′ f or which (3.5) holds,

there is triangle X in CH
2 , unique up to congruence, which has those parameters.

Proof The equivalence of the first two statements is by definition. The equivalence
of statements (2)–(6) is in [Ro]. Statement (7) and the parts of (8) about existence of
the triangle are due to Brehm [Br]. The statement about X being in a complex geodesic
is implicit in the proof of Theorem 16 in [Ro]. ∎

Thus, each of S, S′ , or S′′ could be used to describe a triangle. The equivalence of
using S or S′ is clear. Passing between S′ and S′′ is described in Section 4.2.

Remark 1 We will see in Proposition 4.5 that the value of kos determines the
congruence class of a vertex. Hence, the fact that the parameters in S′′ determine the
congruence class of a complex triangle is an analog of the fact that two side lengths
and the shape of the included angle determine the congruence class of a Euclidean
triangle.

Some aspects of the previous theorem extend to larger sets and spaces. The next
result is an amalgam of the fact that up to rescaling the H ∈ CPP are exactly the spaces
DA(X) for X a finite set inCH

n [AM], the fact mentioned earlier that automorphisms
of the ball induce rescalings of spaces DA(X), and the description of congruence
classes of finite sets in CH

n given in [BE, G, HS, Ro].

Theorem 3.2 An n-dimensional H ∈ RK satisfies H ∈ CPP if and only if there is an
X = {x i}n1 ⊂ CH

n−1 with H ∼ DA(X).
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12 R. Rochberg

Given another n-dimensional H′ ∈ CPP with H′ ∼ DA(X′) for X′ = {x′i}
n
1 ⊂

CH
n−1, the following are equivalent:

(1) H ∼ H′ .
(2) X ∼ X′ .
(3) DA(X) ∼ DA(X′).
(4) All the triangles of X are congruent to the triangles of X′; i.e., for each triple i , j, k,

1 ≤ i, j, k ≤ n, there is a ball automorphisms taking {x i , x j , xk} to {x′i , x′j , x′k}.
(5) The triangles of X which have one vertex at x1 are congruent to the corresponding

triangles of X′; for each pair i , j, 1 < i < j ≤ n, the triangles {x1, x i , x j} and {x′1 , x′i ,
x ‘′

j } are congruent.
(6) The regular three-dimensional subspaces of H are rescalings of the corresponding

regular three-dimensional subspaces of H′ .
(7) The regular three-dimensional subspaces of H which contain kx1 are rescalings of the

corresponding three-dimensional subspaces of H′ .

Corollary 3.3 The relationship H ∼ DA(X) establishes a bijection between the class
of n-dimensional H ∈ CPP modulo rescaling and the class of n point sets X in CH

k ,
k ≥ n − 1, modulo congruence. The correspondence respects passage to regular subspaces
and to subsets.

If we use S, S′, or S′′ to characterize the triangles in (4) of the theorem, we
obtain O(n3) real numbers which describe X up to congruence. However, that list
has repetitions and redundancies. Restricting to the triangles listed in (5) and noting
that some side lengths are listed twice leads to a list of (n − 1)2 real parameters which
determine X up to congruence. That number is optimal; triangles are determined by
four parameters, tetrahedra by nine. There are also constraints on the parameters; the
inequality (3.6) for triangles is the simplest example. We give analogous constraints
for tetrahedra in Theorem 6.2. Also, noting the previous corollary, the same param-
eters (or, perhaps, similarly named parameters) describe spaces DA(X) and spaces
in CPP.

3.1 Assembly and coherence

We might know that each of several spaces {J i} is equivalent under rescaling to a
subspace H i of some H; J i ↝ H i ⊂ H. In that case, there are coherence conditions
connecting the {J i}; if H i ∩H j = H i j , then the corresponding subspaces, J i( j) ⊂ J i
which corresponds to H i j and J j(i) ⊂ J j which also corresponds to H i j , must be
rescalings of each other. This condition is nontrivial if dim H i j > 1. If these conditions
are met, then the {J i} are said to be a coherent set of spaces and we will write {J i} ⇉ H.

Here is how this works in the context of Question 2. For a four-dimensional H ∈
CPP with RK(H) = {h i}4i=1, denote the four regular three-dimensional subspaces
{H i}4i=1 by

RK(H i) = {hr ∶ 1 ≤ r ≤ 4, r ≠ i} .

Question 2 asks for necessary and sufficient conditions on four three-dimensional
spaces {J i}4i=1 ⊂ RK to insure that there is an H ∈ CPP with for 1 ≤ i ≤ 4, H i ∼ J i .
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Pick spaces and polyhedra 13

If there are such rescalings, then we suppose the indices on the reproducing kernels
j ir of J i have been chosen so that for each i , r, the rescaling of H i and J i matches the
kernel function hr of H i with the kernel function j ir of J i .

If {J i} is a coherent set of spaces, then the space J1 , with kernel functions
{ j12 , j13 , j14} , is a rescaling of H1 which has kernel functions {h2 , h3 , h4} with j1s
pairing with hs ; similarly for J3 with kernels { j31 , j32 , j34} and H3 with kernels
{h1 , h2 , h4} . Thus, subspace J1,24 of J1 with kernel functions { j12 , j14} and the sub-
space J3,24 of J3 with kernel functions { j32 , j34} are both rescalings of the subspace
of H24 with kernel functions {h2 , h4} , and hence J1,24 ∼ J3,24 . The other coherence
conditions are all of this form; given p < q, r < s distinct elements of {1, 2, 3, 4}, we
must have Jp,rs ∼ Jq ,rs . These conditions are necessary for there to be rescalings of
{J i} into H. These conditions are the Hilbert space analogs of the matching side length
conditions necessary to assemble triangles into a tetrahedron.

Notice that the conditions we obtained just now, Jp,rs ∼ Jq ,rs , did not involve the
space H and in fact we can have a coherent set of spaces {J i} without having an H.
It suffices to have a consistent set of coherence conditions, statements that certain
subspaces of the various {J i} are rescalings of each other. The consistency requirement
is that the set of specified rescalings must be compatible with the fact that rescaling is
an equivalence relation which interacts coherently with passage to subspaces. That is
automatic if {J i} ⇉ H but is also possible otherwise. In that case, we still call the {J i}
a coherent set of spaces and we will write {J i} ⇉ ??.

Thus, the statement {J i} ⇉ ?? is the statement that there is a description (perhaps
only implicit) of a type of target space H and an assembly scheme for constructing
such an H. The statement {J i} ⇉ H is that there is such an H.

Given {J i} ⇉ H, we would like to obtain information about H from the spaces
{J i} together with the coherence data {J i} ⇉ ??. We know from Theorem 3.2 that
the values of δ i j and kosi( j, k) for H describe H up to rescaling and would like to
compute them from the {J i} . Given {J i} ⇉ ??, we can construct the imputed value
of δH(a, b) by selecting any Js whose image under the rescaling Js ↝ H contains the
kernel functions ha and hb of RK(H). If jra and jrb are the elements of RK(Js)which
correspond to ha and hb under that rescaling map, then δJr( jra , jrb) is our candidate
value for δH(a, b). Note that this is defined even if there is no H; however, if there is an
H, then the rescaling Js ↝ H insures that this value is δH(a, b). Also, if there is another
possible choice for Js , then the coherence conditions insure that choice will produce
the same value of δ. If there is no such Js , then we have no candidate for the value
δH(a, b) and that value would be a free variable in our analysis; the free variable K42
in Corollary 6.3 is an example. The procedure for constructing our candidate values
for kosa(b, c) is the same except that we need to select a Js whose image would contain
the three elements of RK(H) with indices a, b, and c.

The general pattern is that given {J i} ⇉ ??, we can use the coherence data and
compute (some of) the entries kosa(b, c) that the matrix KOS(H, a)will have if there
is an H with {J i} ⇉ H. (We are supposing that it has been specified which kernel
functions (if any) of the spaces J i are to be associated with the distinguished kernel ka
in H.)We denote the partially defined matrix computed this way by KOS({J i} , a).
If {J i} ⇉ H, then KOS({J i} , a) = KOS(H, a). In Section 5.1, we give necessary and
sufficient conditions on a matrix for it to be KOS(H, a) for an H ∈ CPP. Those
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14 R. Rochberg

conditions applied to KOS({J i} , a) give necessary and sufficient conditions for the
assembly question {J i} ⇉ ?? to have a positive solution.

By Corollary 3.3, statements about spaces, subspaces, rescalings, values of invari-
ants, and coherence are equivalent to statements about sets in CH

m , subsets, con-
gruences, values of invariants, and an appropriate notion of coherence. We will use
the same language and notation in both contexts. For instance, given sets {Yi} in
CH

n , we will write {Yi} ⇉ X if there are specified congruences of each Yi into some X
describing which points from the {Yi} are to be mapped to which points of X . Those
specifications force congruences of various subsets of the various Yi that are analogs
to the rescaling statements for the subspaces Jp,rs in the previous paragraphs. We write
{Yi} ⇉ ?? if we know the {Yi} satisfy those congruences even if we do not know that
there is an X .

We will pass freely between these ideas for RKHS and for sets in CH
n .

3.2 Equivalence of the two questions

Using Theorems 3.1 and 3.2, we can see that the two questions in the introduction are
equivalent. Those theorems give us the following facts:

(1) Given a set of triangles {Yi}4i=1 in CH
n , there are three-dimensional {J i}4i=1 ⊂

CPP such that

J i ∼ DA(Yi), i = 1, ..., 4.(3.7)

In the other direction, given three-dimensional {J i}4i=1 ⊂ CPP, there are {Yi}4i=1
such that (3.7) holds. In either case, (3.7) continues to hold if the {J i} are replaced
by rescalings {J′i} or if the {Yi} are replaced by sets congruent to the {Y ′i }.

(2) Given a tetrahedron X in CH
n , there is a four-dimensional H ∈ CPP such that

H ∼ DA(X).(3.8)

In the other direction, given H ∈ CPP, there is an X such that (3.8) holds. In either
case, (3.8) continues to hold if H is replaced by a rescaling H′ or X is replaced by
a congruent X′ .

Hence, we have the following proposition.

Proposition 3.4 Given triangles {Yi}4i=1 in CH
n and Hilbert spaces {J i}4i=1 ⊂ CPP

which are related as in (3.7), there is an X with {Yi} ⇉ X if and only if there is an
H ∈ CPP with {J i} ⇉ H. In that case, H and X satisfy (3.8).

Proof This follows from statements (1) and (2) above together with the observation
that for a finite X ⊂ CHn , the regular subspaces of DA(X) are exactly the spaces
DA(Y) for Y a subset of X . ∎

In the proposition, the assumption that (3.7) holds insures the J i ∈ CPP. Even with
that condition, having H ∈ RK and {J i} ⇉ H is not enough to insure that H ∈ CPP.
This is shown by, for instance, Quiggin’s example which is discussed in Section 6.3.
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4 Geometry and Kos

We will use the functional kos extensively below and so we pause now to develop the
geometry associated with this functional.

4.1 Evaluating Kos

Because kos is an automorphism invariant, we can study it for a general triple by first
using an automorphism to place our triple in the configuration Γ described in (3.1):
{x1 , x2 , x3} = {(0, 0) , (a, 0) , (x , b)}. In that case, computing using (2.14) gives

kos1(2, 3) = ⟨⟨ (a, 0)
∥(a, 0)∥ ,

(x , b)
∥(x , b)∥⟩⟩ =

ax̄
∥x2∥ ∥x3∥

= x̄
∥x3∥
= ∣x̄∣∥x3∥

x̄
∣x̄∣ .(4.1)

To evaluate kos1(2, 3) for a general triple {x1 , x2 , x3}, we want a description that is
invariant under automorphism of hyperbolic space and which gives the value in (4.1)
for the particular triple {(0, 0) , (a, 0) , (x , b)} . Given the general triple, let G(1, 2)
be the complex geodesic which contains x1 and x2. Recall that PG(1,2) is the metric
projection onto G(1, 2).

We will use the notion of angle between two geodesic segments in G(1, 2). Two
geodesic segments in CH

n form a bivalent vertex; however, there is not a natural
notion of “vertex angle” which determines the shape of the vertex, rather the geometry
of the vertex is determined by the complex number kos, this is discussed in Section 4.3.
If, however, the two geodesics lie in the same complex geodesic, then there is a
conformal map of that complex geodesic to the Poincare disk. In that case, we take the
angle between the two segments to be the angle between their images in the Poincare
geometry of the disk (which is in fact the same as the Euclidean angle).

Here is the invariant statement we want.

Proposition 4.1 Set PG(1,2)x3 = y. Writing kosx1(x2 , x3) = re iθ , r > 0,−π ≤ θ < π and
angle for the hyperbolic angle, we have

r = δ(x1 , y)
δ(x1 , x3)

,(4.2)

θ = angle(x1x2 , x1 y).(4.3)

Proof We need to show that the formula is correct for Γ and that it is invariant. For
Γ, the complex geodesic G(1, 2) is the unit disk in the first coordinate line, and in that
case, it is elementary to show that the metric projection of x3 onto G(1, 2) is (x , 0).
Also, for angles in the unit disk, the Euclidean angle and the hyperbolic angle are the
same. These facts show that both (4.2) and (4.3) are correct for Γ.

To see that (4.2) is invariant, note that the statement PG(1,2)x3 = y is invariant
as is δ. The equality (4.3) is more subtle because there is no natural definition of
the angle of intersection for two geodesics in CH

n . However, the geodesic segments
x1PG(1,2)x3 and x1x2 are both in G(1, 2). Any complex geodesic, in particular G(1, 2),
is conformally equivalent to the classical Poincaré disk which does carry an invariant
notion of angle between intersecting curves. Using that notion of angle, we see that
(4.3) is also invariant. ∎
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Given points {x1 , x2 , x3}, we are using kos to describe the geometry of the
intersection of the geodesics x1x2 and x1x3 . Other parameters can be used for the
same purpose, for instance, in [Go, p. 88], Goldman uses angles, ϕ, θ which satisfy
cos ϕ = ∣kos1(2, 3)∣ and cos θ = Re kos1(2, 3) .

If the triangle is not in general position, we can say more about the relationship
between the values of kos at the vertices and the shape of the triangle. Given a triangle
T = {x1 , x2 , x3} ⊂ CH

2, we use an automorphism to suppose that x1 is at the origin.
Regard CH

2 as B2 inside C2 , denote by V the real linear span of the points of T , and
set W = V ∩B2 . It may be that W is a totally geodesic submanifold of CH2 . In that
case, with the origin in W , there are three possibilities. First, W may be a classical
geodesic in which case it will be a line segment through the origin. Second, W may
be a complex geodesic which contains the origin. In that case, we can suppose it is
the unit disk in the plane of the first coordinate and hence it is the classical Poincaré
disk with constant negative curvature −1. The final possibility is that W is a totally
real totally geodesic disk and hence, after an automorphism, we can suppose it is
RB2 = {(r, s) ∈ B2 ∶ r, s ∈ R} , the Beltrami-Klein disk of constant curvature −1/4.

In the first case, noting (4.2) and (4.3), we see that kos1(2, 3) = ±1. The value
−1 occurs when x1 separates the other two points, the value +1 when it does not.
In the second case, x3 is in G(1, 2) and so PG(1,2)x3 = x3 . From (4.2), we see that
∣kosx1(x2 , x3)∣ = 1 and then from (4.3) that kos1(2, 3) = e−iγ where γ is the Euclidean
angle between the segments x1x2 and x1x3 . Thus, γ is the Euclidean and also the
hyperbolic angle at vertex x1 . Similarly, the values of kos at the other two vertices give
the other angles. The congruence class of a triangle in a plane of constant negative
curvature is determined by its angles and hence in this case also by the three values
of kos. Finally, in the third case, the triangle is in a totally real vector space and
we are in the situation discussed in Proposition 6.7. By automorphism invariance,
we may suppose x1 is at the origin. From (2.14), we see that kosx1(x2 , x3) = cos θ
where θ is the Euclidean angle of the vertex at the origin of the triangle with vertices
{x i}3i=1 . However, the intersection of the real plane with those vertices withCH

2 is the
Beltrami–Klein model of RH2 which, at the origin, is conformal with the Euclidean
geometry. Hence, θ is also the angle at x1 of the hyperbolic triangle with vertices
{x i}3i=1 sitting in a copy of RH2 . Similarly for the other two vertices. Hence, again,
we know the three angles of a triangle in a plane of constant negative curvature and
hence know its congruence class. Finally, looking backward, we see that the first case
is the second and third cases holding simultaneously.

In each of these cases, the argument can be reversed. If kos1(2, 3) = ±1, then
W is a line through the origin, if ∣kosx1(x2 , x3)∣ = 1, then PG(1,2)x3 = x3, and hence
the triangle lies in a complex geodesic, and finally, again noting Proposition 6.6, if
kosx1(x2 , x3) is real, then after automorphism, the triangle is in the position described.

4.2 Kos and other invariants

In Theorem 3.1, we recalled the result of Brehm [Br] that equality of the data sets S′
is a congruence criterion for triangles in CH

n . That criterion and variations are often
used in describing the geometry of finite sets in CH

n [BE, CG, HS, G, Ro]. Here, we
mainly use the congruence criterion given by the dataset S′′which is, as we noted in
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Remark 1, an analog of the classical side-angle-side congruence criterion for Euclidean
triangles.

It is straightforward to pass between S′ and S′′ . The parameters are invariant, so
we can assume that we are in the model case and the triangle is Γ = {x1 , x2 , x3} =
{(0, 0) , (a, 0) , (x , b)} . First, suppose we have the data S′′ , that is, a = δ(x1 , x2),
ω = δ(x1 , x3), and kos1(2, 3) are known. Using those values and (2.14), we also know
ax̄. Hence, using (2.9), we can find the third side length using

δ2(x2 , x3) = 1 − (1 − ∥x2∥2)(1 − ∥x3∥2)
∣1 − ⟨⟨x2 , x3⟩⟩∣2

= 1 − (1 − α2)(1 − ω2)
∣1 − αx̄∣2

.(4.4)

To finish determining S′, we need to find β, the angular invariant. For this triangle,
β = arg(1 − ax̄), and, as we just mentioned, ax̄ is known; hence, β is known.

In the other direction, to go from S′ to S′′, we need to find kos1(2, 3). In this case,
we know the three side lengths, and hence, noting (4.4), we know ∣1 − αx̄∣ . We also
know the angular invariant β = arg(1 − ax̄). Combining these two, we know ax̄ . With
that information, and using (4.1), we can find kos1(2, 3).

4.3 Kos and the geometry of vertices

For a bivalent vertex in R
n , the cosine of the vertex angle carries all the intrinsic

geometric data about the vertex. The geometry of a trivalent vertex is determined
by the geometry of the three component bivalent vertices. The values of kos provide
similar information for vertices in CH

n .
To set the stage, we first consider sets in R

n . By a vertex V in R
n , we mean a

collection of two or more line segments, rays, with a common starting point the vertex
point, or vertex, V. We call V bivalent if it has two rays, trivalent if there are three,
multivalent in general. We suppose the rays of a bivalent vertex are ordered. (That
will be important in the complex case.) The two rays of a bivalent vertex span an
affine plane and form an angle in that plane, the vertex angle. We say two vertices
are (Euclidean) congruent if there is a Euclidean isometry placing the second vertex
point at the same position as the first and so that the initial segments of the rays of the
second vertex coincide with the initial segments of the rays of the first.

Proposition 4.2 Two bivalent vertices in R
n are congruent if and only if the cosines of

their vertex angles are equal.

If three Euclidean triangles have pairs of matching side lengths, then they can be put
together as faces of a tetrahedron if and only if the three dihedral angles that would be
joined at a vertex can, in fact, be joined to form a trivalent vertex. (The simple classical
condition for this is in Corollary 6.9.) In particular, there is no constraint on the side
lengths beyond the matching condition. Here is a precise statement.

Suppose we are givenS, a set of three triangles {Ti}3i=1 each contained in someRn .
Suppose for i = 1, 2, 3 that Ti has vertices {x i1 , x ia , x ib} , that the Euclidean length of
the side x i1x ia is l ia and similarly for l ib , and that Wi is the bivalent vertex in Ti with
vertex point x i1 and rays ordered similarly to the sides of the triangle; x i1x ia first, x i1x ib
second. It may or may not be possible to join these three triangles as faces of a tetrahe-
dron in some Rn . That is there may be or may not be a tetrahedron {y1 , y2 , y3 , y4} in
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some Rn with the triangular face {y1 , y2 , y3} congruent to T1 , {y1 , y3 , y4} congruent
to T2 , and {y1 , y2 , y4} congruent to the triangle T̃3 = {x31 , x3b , x3a}. (The triangle T̃3
has the same vertices as T3 but in a different order.) Certainly, a necessary condition
for building a tetrahedron is that certain side lengths match.

Definition 4.3 The set of three triangles S is said to be a matched set if there are
numbers {L i}3i=1 such that

l1b = l2a , = L1 , l2b = l3a = L2 , l3b = l1a = L3 .(4.5)

Proposition 4.4 Given a matched set of three Euclidean triangles S, the following are
equivalent.
(1) The triangles of S are congruent to the three faces of a tetrahedron.
(2) If S′ is another matched set of three triangles (with associated data denoted by

primes) and for i = 1, 2, 3 the bivalent vertex W′
i is congruent to the bivalent vertex

Wi , then the triangles of S′ are congruent to the faces of a tetrahedron. That is, the
previous conclusion holds for any choice of the lengths {L′i}.

(3) There is a trivalent vertex V whose three component bivalent vertices are congruent
to the three bivalent vertices {Wi}3i=1 .

In each case, the tetrahedron or the trivalent vertex is unique up to Euclidean
congruence.

Proof That (2) implies (1) implies (3) is trivial. To finish, we show (3) implies (1). If (3)
holds, we have a trivalent vertex V. Extend the three segments forming V to half lines
starting at the vertex point. Select points on those three half lines so that their distances
from the vertex point are the values L′i from (2). Those three points together with the
vertex point give the four vertices of the desired tetrahedron. By construction, the side
lengths meeting at the vertex point are correct. The congruence of the triangular faces
meeting at that point to the target triangles is a consequence in each case of congruence
of triangles with a pair of matching side lengths and equality of the included angel. The
side lengths match by construction, and the angles are equal by the hypotheses in (3)
on the bivalent vertices which form the given trivalent vertex. ∎

We now prove analogs of the two previous propositions for CHn . By a vertex V
in CH

n , we mean a collection of two or more geodesic segments, rays, R i , with a
common starting point the vertex point, V . Again, a vertex may be bivalent, trivalent,
or multivalent. We say two vertices are congruent if there is an automorphism placing
the second vertex point on the first and so that initial segments of the two sets of rays
overlap.

The geometry of a bivalent vertex in CH
n can be described by two real numbers

or one complex number. We will use the complex quantity kos (V) which we define
to be kosV(x1 , x2) where V is the vertex point and x i is chosen on the ray R i ,
i = 1, 2. The formula (2.14) shows that this value does not depend on those choices.
Thus, if {x1 , x2 , x3} is a triangle and V the bivalent vertex with vertex point x1, then
kos (V) = kos1(2, 3).

Proposition 4.5 Two bivalent vertices,V, W, in CH
n are congruent if and only if

kos (V) = kos (W) .

https://doi.org/10.4153/S0008414X23000469 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000469


Pick spaces and polyhedra 19

Proof If the vertices are congruent, then the conclusion is clear. In the other
direction, let v be the vertex point of V, pick ε small, and pick x and y on the two
rays of V at distance ε from v . Let w be the vertex point W and pick points r, s on
the rays forming W at distance ε from w . The triangles {v , x , y} and {w , r, s} give the
same values for (3.3), the dataset S′′ of Theorem 3.1, and hence, by that theorem, they
are congruent. That congruence of triangles also gives the required congruence of the
vertices.

There is a contrast between the real and complex cases. For a bivalent vertex V,
let Vrev be the vertex obtained from V by reversing the order of the two rays. For
vertices inRH

n , Vrev is congruent to V. However, if V ⊂CHn , then Vrev is generically
not congruent to V, and it is congruent to V∗ , the vertex obtained by conjugating
the coordinates of V. This can be seen by computing that kos(Vrev) = kos (V) =
kos(V∗). ∎

Now, suppose we are givenS, a set of three triangles each inCH
n . We continue the

earlier notation and terminology, but now we use the pseudohyperbolic side lengths
δ(⋅, ⋅). With that change, the analog of Proposition 4.4 holds.

Proposition 4.6 Given a matched set of triangles S in CH
n , the statements (1)–(3)

of Proposition 4.4 are equivalent. If the conditions hold, then the congruence class of
the tetrahedra and of the trivalent vertex are uniquely determined. In particular, the
congruence class of three faces of a tetrahedron together with the congruence class of the
vertex at which they meet determines the congruence class of the fourth face.

Proof It is immediate that (2) 0⇒ (1) 0⇒ (3). To see that (1) 0⇒ (2), suppose
from (1) that we have S and the associated tetrahedron Λ and that we are given a new
set of lengths {L′i} from (2). Use an automorphism to replace Λ with the tetrahedron
Δ with coordinates given by (3.2). For i = 2, 3, 4, select γ i > 0 so that the tetrahedron
Δ′ = {x1 , γ2x2 , γ3x3 , γ4x4} has ∥γ i x i∥ = L′i . The bivalent vertices of Δ′ at the origin are
obtained from those of Δ by changing the lengths of the rays which does not change
the congruence class of the vertices. Hence, those vertices have the desired congruence
classes. Also, the lengths of the edges of Δ′ which meet at the origin match the {L′i} .
Thus, by the results on S′′ in Theorem 3.1, the triangles of S′ are congruent to the
faces of Δ′ , establishing (2). To show that (3) 0⇒ (1), first use an automorphism to
place the trivalent vertex V at the origin with its rays in the directions of the rays of Δ of
(3.2). Next, select a point on each ray whose distance from the origin is the appropriate
L i . The triangles with vertex at the origin are, again by Theorem 3.1, congruent to
the triangles of S and hence the origin together with those three new points are the
vertices of the tetrahedron required to show that (1) holds.

For uniqueness, first consider two trivalent vertices W and W′ which satisfy
condition (3). Pick a small ε and pick a point on each ray at distance ε from the vertex.
Let Σ be the tetrahedron determined by those four points, and let Σ′ be the similar
tetrahedron constructed using W′ . We will be done if we show that Σ and Σ′ are
congruent. The argument which shows they are congruent also gives the uniqueness
in statements (1) and (2). First, note that the results on S′′ in Theorem 3.1 insures that
the triangular faces of Σ meeting at the vertex point W are congruent to those in Σ′
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meeting at the vertex point of W′ . By condition (5) of Theorem 3.2, this is enough to
show that the tetrahedra are congruent. ∎

In particular, note that in both the real and complex cases, the congruence class
is completely described by the shapes of three faces and the geometry of the vertex
where they meet. There need not be any mention of the geometry of the fourth face.

The analogous congruence result for multivalent vertices in CH
n is given in

Corollary 5.3.

4.4 Kos and area

There is not a natural notion of area for a general triangle T in CH
m ; however, there

is a related invariant, the symplectic area of T , obtained by integrating the symplectic
form of CHn over a real two manifold bounded by the sides of T .

However, if T sits inside a complex geodesic A ⊂ CHm , then we can define and
compute its area as follows. After an automorphism, we can suppose T is inside a
copy of CH1 inside CHn . That copy of CH1 is isometric to the classical Poincare disk
of curvature−1. We define the area of T, Area(T), to br the area of that copy of T in the
Poincare disk. This definition is an automorphism invariant, and it can be shown that
Area(T) equals both the symplectic area of T and is also twice the angular invariant,
α, of T (defined in Section 2.3) [Go, HM].

We can also evaluate Area(T) using kos .
Proposition 4.7 If T = {x1 , x2 , x3} is a triangle in CH

n which sits inside a complex
geodesic, then

π − arg (kos1(2, 3)kos2(3, 1)kos3(1, 2)) = 2α(x1 , x2 , x3) = Area(T).(4.6)

Proof After an automorphism of CHn , we suppose that T is in the unit disk of C
which we identify withCH

1 . From (2.13), we see that kos1(2, 3) is a positive multiple of

κ123 = ⟨⟨ϕx1(x2), ϕx1(x3)⟩⟩ .
Hence, in computing the left-hand side, LHS, of (4.6), we can replace kos(2, 3) with
κ123 and similarly for other indices. The conformal involutions of the disk are given
by Blaschke factors. Hence, noting that for a, b in the disk ⟨⟨a, b⟩⟩ = ab̄, we find that
κ123 = x1−x2

1−x1 x2

x1−x3
1−x1 x3

. Thus,

LHS = π − arg
−Π ∣x i − x j ∣

2

Π (1 − x i x j)
2

with both products over the index pairs {(1, 2) , (2, 3) , (3, 1)} . The positive factor
Π ∣x i − x j∣

2 does not affect the value of arg, and hence we continue with

LHS = π − (π + 2 arg Πk(x i , x j)) = 2α,

the last equality by (2.10).
To finish, we need to know that 2α = Area(T). That is in [Go]. Alternatively,

going back to (4.6), let γ i be the angle at vertex x i . Because T ⊂ CH1, we see from
Proposition 4.1 that kos1(2, 3) = e iγ1 where γ1 is the angle at x1 of the triangle T .
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Similarly for the other indices. Using that, we see that LHS in (4.6) equals π − (γ1 +
γ2 + γ3), which equals Area(T) by the classical result based on the Gauss–Bonnet
theorem.

In contrast to T, consider now a triangle R that sits inside a totally real submanifold
M. (If M exists, it can be taken to have real dimension 2.) The previous discussion
does not apply, and, in fact, the symplectic area of R is 0. However, we have the
following observation. We can suppose M is two-dimensional, and using a conformal
automorphism, we can move M to RB2 = {(x , y, 0, ..., 0) ∈ Bn ∶ x , y ∈ R} inside
CH

n = Bn . That subspace of complex hyperbolic space is, isometrically, a copy of the
Beltrami–Klein model of RH2 which has constant curvature −1/4. As such, it carries
a natural area measure, and we let Area(R) denote the area of R as a triangle in that
space. This quantity is also invariant under conformal automorphisms of CHn . ∎

Proposition 4.8 Suppose R = {x1 , x2 , x3} sits in a totally real totally geodesic subman-
ifold of CHn . Then

4(π − (cos−1 kos1(2, 3) + cos−1 kos3(1, 2) + cos−1 kos2(3, 1))) = Area(R).

Proof Without loss of generality, M = RB2. The equality is a consequence of two
facts. First, taking note of (2.14), cos−1 kos(2, 3) is the angle between the geodesics x1x2
and x1x3 , and similarly for the other indices. Second, by the Gauss–Bonnet theorem,
the area of a triangle with angles α, β, γ in a plane of constant curvature −1/4 is 4(π −
(α + β + γ)). ∎

One proposition gives a result involving a sum of values of arg kos and the other
a sum of values of cos−1 kos . It would be interesting to have a general result which
unifies the two.

5 Finite sets in CH
n

5.1 Describing sets by their triangles

In Theorem 3.2, we saw that the congruence class of a finite X ⊂ CHn is determined by
the congruence classes of those of its subtriangles which share a specified designated
vertex. From Theorem 3.1, we know that the congruence class of each of those triangles
can be described using side lengths and the angular invariant. Those parameters have
been used in describing the congruence class of finite X ⊂ CHn [BE, CG, G, HS,
Ro] and have also been used for more general geometric questions, [C, CG]. When
those parameters are restricted to sets in real hyperbolic space, the angular invariant
trivializes leading to descriptions of polyhedra in RH

n in terms of edge lengths.
Here, instead of side lengths and the angular invariant, we use side lengths and kos

to describe the constituent triangles of X . This alternative description emphasizes a
different type of geometric data. For instance, when restricted to sets in real hyperbolic
space, it produces a description of polyhedra using side lengths and vertex angles.
The parameters only have natural geometric constraints, and their values interact
well with passage to subsets. That lets us give explicit answers to the questions in the
introduction.
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Suppose we are given X = {x i}n+1
i=1 ⊂ CH

n . If we connect x1 to each of the other
x i by a geodesic γ1i , then the point x1 will be the vertex point of an n-valent vertex V
which is composed of the bivalent vertices Vi j , 2 ≤ i , j ≤ n + 1 having γ1i as a first ray
and γ1 j as a second. We can describe X using the distances between x1 and the other x j
and the numbers K i j = kos(Vi j). Specifically, recalling the definition (2.15), we define
the n-vector ρ(X) and the n × n matrix M(X) by

ρ(X) = (δ(x1 , x2), ..., δ(x1 , xn+1)) , and(5.1)

M(X) = (K i j)
n+1
i , j=2 = (kos (Vi j))

n+1
i , j=2 = KOS(DA(X), 1).(5.2)

The functionals that give the entries of the vector ρ and the matrix M are defined
for any H ∈ RK, and hence those same definitions can be used to produce ρ(H) and
M(H).

The following result parametrizes congruence classes of finite sets in CH
n as well

as rescaling equivalence classes of RK with the CPP.

Theorem 5.1 (1) Given X = {x i}n+1
i=1 ⊂ CH

n , each entry of ρ(X) is between 0 and 1,
and M(X) is a positive-semidefinite matrix with 1’s on the diagonal.

(2) Conversely, given such a ρ and M, there is an X so that ρ = ρ(X) and M =M(X).
(3) Given Y ⊂ CHn , X ∼ Y if and only if ρ(X) = ρ(Y) and the matrices M(X) and

M(Y) are unitarily equivalent.
(4) If H ∈ RK, then H has the CPP if and only if ρ(H) andM(H) satisfy the conditions

in (1). If that happens, then H ∼ DA(X) with X given by condition (2).

Proof In (1), the claim for ρ(X) is clear. The matrix M(X) is invariant under
automorphisms of CHn , and hence we can suppose x1 is at the origin. Let X̂ be set of
radial projections of the remaining points onto the unit sphere, X̂ = {x̂2 , ..., x̂n+1} ⊂
∂Bn . We then see from (2.14) that K i j = ⟨⟨x̂ i , x̂ j⟩⟩ for 2 ≤ i , j ≤ n + 1. Thus, M(X) is
the Gram matrix of the set of vectors X̂ and hence is positive semidefinite. For (2), a
matrix with the properties of M must be the Gram matrix of a set W = {w i}n+1

i=2 ⊂ Cn ,
unique up to unitary equivalence. The 1’s on the diagonal of M insure that W ⊂ ∂Bn .
We now form X by designating the origin as x1 and for 2 ≤ i ≤ n + 1 picking x i on the
line segment [0, w i] with ∣x i ∣ = δ(x1 .x i). It is straightforward that X has the required
properties.

For (3), first suppose Y is congruent to X; that is, Y is the image of X under an
automorphism of the ball. The entries of ρ and M are automorphism invariants, and
this gives the desired equalities. In the other direction, suppose the data associated
with X equal the data associated with Y . Without loss of generality, we can suppose x1
is at the origin in which case M(X) is the Gram matrix of the set X̂ ⊂ ∂Bn . Similarly
for Y and Ŷ . Thus, X̂ and Ŷ have the same Gram matrix, and hence there is a unitary
map C

n which takes X̂ to Ŷ . That unitary is also an automorphism CH
n and so takes

each segment connecting the origin to a point of X̂ to a segment connecting the origin
to a point of Ŷ . Given the further assumption that ρ(X) = ρ(Y), it must take X to Y ,
as required.

The final statement follows from the first three together with the fact that ρ(H) and
M(H) determine H up to rescaling. ∎
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Thus the congruence class of a set X of k (= n + 1) points in CH
m , m ≥ k − 1, is

determined by the k − 1 real numbers in ρ(X) together with the (k − 1)(k − 2)/2
complex numbers which specify, M(X) a positive semidefinite matrix with ones on
the diagonal. Together these give (k − 1)2 real parameters, as expected. We should
emphasize that ρ(X) andM(X) only depend on the congruence class of ordered set X.
The choice of which element is placed at the origin by an automorphism substantially
affects all the values in ρ(X) and M(X). Once that point is specified, the remaining
ordering only affects the ordering of the entries in ρ(X) and M(X).

Details of M(X) contain information about the geometry of X . From the previous
theorem and proof, we have the following corollary.

Corollary 5.2 If the rank of M(X) is m, then X is congruent to a set in CH
m but is not

congruent to a set inCH
j for any j < m. In particular, if the rank is 1, then X is contained

in a complex geodesic.

Here are the details of ρ(X) and M(X) in some simple cases. Suppose n + 1 = 3.
From Theorem 3.1, we know that the congruence class of the triangle X = {x1 , x2 , x3}
is described by the set S′′ = (δ12 , δ13 , kos1(2, 3)). In the notation of the previous
theorem,

ρ(X) = (δ12 , δ13) , M(X) = ( 1 kos1(2, 3)
kos1(3, 2) 1 ) .

In this case, the condition M(X) ≽ 0 is equivalent to ∣kos1(2, 3)∣ ≤ 1, which is the
condition (3.5) in Theorem 3.1.

The case of n + 1 = 4 points is discussed in Section 6.
For X ⊂ CH1, we use the complex coordinate of C1 and write X = {rs e iθ s}n+1

s=1 with
r1 = 0. Using the computations in Section 4.1, we see that

ρ(X) = (r2 , ..., rn+1) , M(X) = (exp i (θs − θ t))n+1
s ,t=2 .

The automorphisms of CH1 which fix the base point are rotations. They do not change
the entries in M(X) or the congruence class of X . On the other hand, complex
conjugation, which is not in AutB1 , can change the matrix entries and the congruence
class.

For Y ⊂ RB2 , the Beltrami–Klein model of RH2 , we use the polar coordinates of
the containingR2 . We have Y = {(rs , θs)}n+1

s=1 with r1 = 0. Now, using Section 4.1 gives

ρ(Y) = (r2 , ..., rn+1) , M(Y) = (cos (θs − θ t))n+1
s ,t=2 .

In this case, the map (r, θ) → (r,−θ), which looks like complex conjugation, is the
restriction of an element of AutB2 to RB2 , namely, the map (z, w) → (z,−w). That
map changes the sign of the θ′s, but that does not change M(Y) or the congruence
class of Y .

The previous theorem also gives the extension to n-valent vertices of the results
in Section 4.3 for bivalent and trivalent vertices. Suppose V is an n-valent vertex in
CH

n with vertex point x1 and rays {γ1i}n+1
i=2 . We are only interested in congruence

classes, and hence we suppose x1 is at the origin. For i = 2, ..., n + 1, select a point x i
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on γ1i and set X = {x i}n+1
i=1 . From the previous theorem, we know the congruence class

of X is determined by M(X) and ρ(X). Looking at that proof, we see that knowing
M(X) is equivalent to knowing the congruence class of the projected set X̂ . From the
definitions, we see that knowing X̂ is equivalent to knowing V. Hence, definingM(V)
to be M(X), we have the following corollary of the previous theorem.

Corollary 5.3 (1) Given an n-valent vertex V in CH
n , M(V) has 1’s on the diagonal

and M(V) ≽ 0.
(2) Given N which satisfies those conditions, there is a V in CH

n with M(V) = N.
(3) Two such vertices are congruent if and only if they give the same matrix M.
(4) Given {z i}n+1

i=2 ⊂ ∂Bn there is a V in CH
n with M(V) equal to the Gram matrix

of {z i} .

5.2 Comparison with the McCullough–Quiggin theorem

Theorem 5.1 has some similarity to the McCullough–Quiggin theorem. Here is brief
informal discussion of that relation; more details are in Chapters 7 and 8 of [AM] and
the Historical Notes to those chapters.

Recall that we are only considering finite-dimensional spaces.
The first observation is that our “definition of convenience,” that H has the CPP if

and only if it is a rescaling of a space DA(X), is actually inconvenient in this context.
We need to distinguish between that definition and the actual complete Pick property
(ACPP) defined in terms of extension properties of certain matrix multipliers on H.
That property is defined and discussed in Chapter 5 of [AM].

Given H and 1 ≤ s ≤ dim H, we can form the matrices KOS(H, s) as described in
(2.15).

Consider now the following four conditions:

(1) H has the ACPP.
(2) H has the CPP.
(3) For each s, 1 ≤ s ≤ dim H, KOS(H, s) ≽ 0.
(4) For some s, 1 ≤ s ≤ dim H, KOS(H, s) ≽ 0.

We saw that if H = DA(X), then KOS(H, s) is a Gram matrix; hence, statement 2
implies statements 3 and 4.

The result of McCullough and Quiggin, Theorem 7.6 in [AM], is that statements 1
and 3 are equivalent. (Their result actually uses an equivalent formulation based on
matrices MQ(H, s) defined at (2.16). Their result also involves matrices of all sizes, but
in this finite-dimensional case, it suffices to only consider the matrices of maximum
size.) It is a result of Agler and McCarthy, Theorem 8.2 in [AM], that conditions 1 and
2 are equivalent. Combining these two results, we see that 3 implies 2.

On the other hand, by Theorem 5.1, if condition 4 holds, then 2 holds; H is a
rescaling of some DA(X). Considering the details of the proof of Theorem 5.1, this
is a simpler path to that conclusion than the path through condition 1. Also, it only
requires information about a single matrix, condition 4 rather than 3. However, this
path says nothing about the relationship between conditions 1 and 2, which is one of
the centerpieces of the theory of spaces with the ACPP.
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5.3 Assembly questions

We now return to the assembly and coherence question we discussed in Section 3.1.
We will consider questions of congruence involving subsets of sets in CH

n ; however,
recall, as we commented earlier, that these are equivalent to questions about rescaling
of regular subspaces of spaces in CPP.

The generalized version of Question 1 from the Introduction is: given a finite
collection of finite sets {Yi} in some CHn , is there an X in some CHm which contains
congruent copies of the various Yi ? We may also impose requirements on the overlap
of the copies of the {Yi} inside of X . In Section 3.1, we saw that meeting such overlap
conditions may require congruence of certain subsets of the various Yi . If all those
congruence constraints are satisfied, we write {Yi} ⇉?? and if there is such an X, we
write {Yi} ⇉ X .

For X ⊂ CHn with distinguished base point x1, recall that we write KOS(X , 1) as a
shorthand for KOS(DA(X), 1). For each i, let 1i be that point in Yi which is mapped
to the base point x1 of X under the assumed congruences, with 1i an arbitrary point
of Y1 if that definition is unfilled.

If {Yi} ⇉ X, then, as we noted in Section 3.1, we can use data from the matrices
KOS(Yi , 1i) to compute some of the entries KOS(X , 1) and those computations can
be done even without knowing if there is an X . The computations produce a (possibly
only partially filled) matrix, which we denote KOS({Yi} , 1),

We now study the possibility that there is an X by comparing KOS({Yi} , 1) with
the properties which we know from Theorem 5.1 that KOS(X , 1) must have. More
specifically, from our previous analysis culminating in Theorem 5.1, we know that the
congruence class of X is described by a vector of side lengths, ρ(X), and the matrix
M(X) = KOS(X , 1). We extract information from KOS(X , 1) by working with the
principal submatrices. From the definitions, we have the following lemma.

Lemma 5.4 If H ∈ RK, then the principal submatrices, PS(KOS(H, 1)), are the
matrices KOS(J , 1) for J which are regular subspaces of H which contain the kernel
function k1 . In particular, if H = DA(X), then they are the matrices KOS(Y , 1) for each
Y which is a subset of X which contains the distinguished point.

The following classical result will let us relate the fact that M(X) ≽ 0 to properties
of its principal submatrices PS(M(X)).

Lemma 5.5 (Sylvester’s criterion) An n × n matrix A satisfies A ≽ 0 if and only
if det B ≥ 0 for all B ∈ PS(A), that is, if and only if the principal minors of A are
nonnegative. A ≻ 0 if and only if the leading principal minors are positive.

Now, we look at three special cases, the case where the {Yi} are three point sets
whose congruent images fill an n + 1 point set, the question of specifying the geometry
of the n point subsets of a set of n + 1 points, and after those general questions, we
consider specific ad hoc variation chosen to show how these ideas work in a more
complicated situation.

In the next section, we use these ideas for a systematic study of the question in the
introduction of assembling four triangles into a tetrahedron.
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5.3.1 Variation 1

We know from Theorem 3.2 that the congruence class of a set X is determined by the
congruence classes of the triangles in X which contain a specified base point. We now
ask if a given set of triangles can be congruent to those faces of some X . We want to
know if we can map triangles {Yi}ni=1 in CH

n ,

Yj = {y j1 , y j, j+1 , y j, j+2} , j < n,
Yn = {yn1 , yn ,n+1 , yn2} ,

into a set X = {x1 , ..., xn+1} with each y jk is mapped to xk . That is, each image has its
first vertex at x1 and the images fill X with each segment x1xt in X covered twice. The
coherence conditions are that two triangle sides that cover the same x1xt must be the
same length.

Recall that the matrix KOS({Yi} , 1) is defined in (2.15).

Theorem 5.6 Given the coherence data {Yi} ⇉ ?? just described, the following are
equivalent:
(1) ∃X, {Yi} ⇉ X .
(2) KOS({Yi} , 1) ≽ 0.
(3) ∀A ∈ PS(KOS({Yi} , 1)), det A ≥ 0.
(4) ∀S ⊂ {1, ..., n}, 1 ∈ S, det KOS({Yi}y∈S , 1) ≥ 0.

Proof This is a direct consequence of Theorem 5.1 and Lemmas 5.4 and 5.5. ∎

Taking note of Corollary 3.3, we also have the same result for spaces J i ∈ CPP and
the question of moving from {J i} ⇉ ?? to {J i} ⇉ H with H ∈ CPP.

For both {Yi} and {J i}, the condition det A ≥ 0 is automatic for the A that are
1 × 1 principal submatrices and the 2 × 2 case is insured by Theorem 3.1. For A that
are 3 × 3, the situation is more complicated. For instance, if we suppose {J i} ⊂ RK
but not necessarily in CPP, then det A ≥ 0 is not automatic; see the comment after
Theorem 6.4.

The case n = 3 of this result is the tetrahedron assembly question of the introduc-
tion. We discuss it in more detail in the next section.

5.3.2 Variation 2

Suppose we are given {Yi}ni=1 , sets of size n in CH
n . Write Yi =

{y i j ∶ 1 ≤ j ≤ n + 1, j ≠ i + 1} . We impose the coherence conditions {Yi} ⇉ ??
that would hold if there were a set

X = {x1 , ..., xn+1}

and congruences Yi ↝ X which mapped the points y i s to xs , for all s ≠ i . Infor-
mally, we are trying to specify the congruence type of all the subsets of size n
inside a set of size n + 1. This coherence condition {Yi} ⇉ ?? requires strong inter-
relations between the Yi . Given Yr and Ys , there are Yrs ⊂ Yr and Ysr ⊂ Ys both
of size n − 1 with Yrs ∼ Ysr . Also, note that every A ∈ PS(KOS({Yi} , 1)) which is
not maximal, A ≠ KOS({Yi} , 1), satisfies A ∈ PS(KOS(Yr , 1)) for some individual
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Yr . We know KOS(Yr , 1) ≽ 0, and hence, by Sylvester’s criterion, det A ≥ 0. In sum,
the only A ∈ PS(KOS({Yi} , 1)) for which we do not know det A ≥ 0 is the matrix
KOS({Yi} , 1) itself. This discussion, together with Theorem 5.1, and the previous two
lemmas, complete the proof of the following.

Theorem 5.7 Given {Yi} ⇉ ??, there is an X so that {Yi} ⇉ X if and only if
det KOS({Yi} , 1) ≥ 0.

5.3.3 Variation 3

We just looked at cases where the coherence requirements on the {Yi} were minimal
and maximal. We now look at an intermediate case which is rich enough to display
some structure and simple enough for explicit computations.

Suppose we are given two four-point sets in CH
n , YA = {a1 , a2 , a3 , a4} and

YB = {b1 , b3 , b4 , b5}. The coherence requirements, {YA, YB} ⇉ ??, we impose are the
congruences that would hold if we had maps YA, YB ↝ X = {x1 , ..., x5} which respect
the subscripts of the points. If that holds, then the triangles A = {a1 , a3 , a4} and B =
{b1 , b3 , b4} are congruent, and that congruence is the only coherence requirement.

We should not expect to fill the matrix KOS({YA, YB} , 1). The set X has five points
and so is determined by (5 − 1)2 = 16 real parameters. On the other hand, each of Y ’s
provides nine parameters, but four of those are pinned by the fact that triangles A
and B are congruent, leaving 14. This suggests that our description is two real or one
complex parameter short of being able to fully describe X . In fact, we cannot construct
the entry kos1(2, 5) in the matrix KOS({YA, YB} , 1) because neither the image of YA
nor of YB contain {x1 , x2 , x5} . To move forward, we introduce a parameter z and fill
the matrix KOS({YA, YB} , 1) to a matrix Y = KOS({YA, YB , z} , 1) obtained from
KOS({YA, YB}, 1) by putting z in the place where the kos1(2, 5) entry would be, and z̄
where kos1(5, 2) would be. The values of z for which Y = KOS({YA, YB , z}, 1) ≽
0, if any, will parameterize inequivalent possible constructions of the
desired X .

We need to study the determinants of the matrices in PS(Y). Y is a 4 × 4 matrix
with rows and columns indexed by the set {2, 3, 4, 5} . The matrices in PS(Y) are
determined by the 15 nonempty subsets of that index set. We denote those matrices by
Y with subscripts denoting the rows, and hence also columns, of Y that are retained.
There are four single element subsets to consider, for each of them the resulting matrix
has the single entry 1 and hence a positive determinant. There are six possibilities
with two subscripts. The matrix Y34 will be a submatrix of both KOS(YA, 1) and
KOS(YB , 1) and hence, by Sylvester’s criterion, will have a positive determinant. The
matrix Y23 is not a submatrix of KOS(YB , 1), but it is a submatrix of KOS(YA, 1) and
that is enough to insure it has a positive determinant. The same holds for Y24, and
a similar argument applies Y35 and Y45 but with the roles of A and B reversed. The
remaining matrix of that size is Y25; it cannot be studied using either YA or YB . It is a
2 × 2 matrix with 1’s on the diagonal and z and z̄ as off diagonal elements, and it must
be dealt with separately. If we do not know about detY25, then we also cannot know
the positive semidefinite nature of the matrices of which it as a submatrix, and hence
those matrices must also be studied separately. They are Y253, Y254 , and Y2534 = Y. The
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two remaining submatrices are Y234 = KOS(YA, 1) and Y345 = KOS(YB , 1), which we
know are positive semidefinite.

Theorem 5.8 There is an X so that {YA, YB} ⇉ X if and only if there is a z so that
Y =KOS({YA, YB , z} , 1) ≽ 0, equivalently if and only ifY and the submatricesY25,Y253 ,
and Y254 have positive determinants. The condition on Y25 holds exactly if ∣z∣ ≤ 1; the
other two determinants can be studied using (6.1).

6 Tetrahedra

We now make the earlier conditions more explicit for four point sets and answer
Questions 1 and 2 of the introduction. We also use the results to analyze a family of
four-dimensional RK introduced by Quiggin.

6.1 Question 1

We are given {Ti}41 a set of four triangles in CH
n which satisfy the coherence

conditions for assembly into a tetrahedron, {Ti}4i=2 ⇉??, and we want to know if they
can, in fact, be assembled into a tetrahedron X ⊂ CHn , {Ti}4i=2 ⇉ X . That can be done
if and only if the parameter values imputed to X from the details of the {Ti} and the
coherence conditions describe a possible tetrahedron. We begin by reviewing those
parameters.

Any tetrahedron in CH
n is congruent to one of the forms X = {0, x2 , x3 , x4} ⊂

CH
2 . Here, we identifyCH2 with the unit ball inC

2 and also regard the {x i} as points
in that space. Let Vi j be the bivalent vertex x i 0x j . From Theorem 5.1, we see that we
must have each ∣x i ∣ < 1 and that the matrix

M =M(X) = (kos (Vi j))
4
i , j=2 = (⟨⟨x̂ i , x̂ j⟩⟩)

4
i , j=2

must be positive semidefinite. We will make that last condition more explicit.

Lemma 6.1 Given {a i}3i=1 ⊂ C with each ∣a i ∣ ≤ 1, set

N =
⎛
⎜
⎝

1 a1 a2
a1 1 a3
a2 a3 1

⎞
⎟
⎠

.

The following are equivalent:
(1) 0 ≼ N.
(2) 0 ≤ detN.
(3) 0 ≤ 1 + 2 Re a1a2a3 − ∣a1∣2 − ∣a2∣2 − ∣a3∣2 .
(4) ∣a1a2 − a3∣2 ≤ (1 − ∣a1∣2)(1 − ∣a2∣2).
Proof By Sylvester’s criterion, the first condition implies the second. The second and
third conditions are equivalent by definition. That the third and fourth are equivalent
can be seen by expanding both sides of the fourth statement giving

∣a1a2∣2 − 2 Re a1a2a3 + ∣a3∣2 ≤ 1 − ∣a1∣2 − ∣a2∣2 + ∣a1a2∣2 .

Cancellation and rearrangement shows that is equivalent to the third statement.

https://doi.org/10.4153/S0008414X23000469 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000469


Pick spaces and polyhedra 29

To go in the other direction, we again use Sylvester’s criterion and show the second
statement implies the first. That states that the first statement is a consequence of the
nonnegativity of the seven principal minors. Three are the determinants of the 1 × 1
matrices given by the diagonal entries and they are positive. The determinants of the
three 2 × 2 submatrices are accounted for by the assumption on the size of the a i .
Finally, the positivity of detN is the second statement. ∎

We want to know if a set of four triangles inCH
n , {Ti}41 which satisfy {Ti}4i=1 ⇉ ??,

might satisfy {Ti}4i=1 ⇉ X for some tetrahedron X = {0, x2 , x3 , x4} . By congruence
invariance, we may suppose that for i = 2, 3, 4, the triangle Ti has vertices {0, x i1 , x i2}
for various x i j of length at most one. The coherence requirements on the set of
triangles insure that ∣x22∣ = ∣x31∣, ∣x32∣ = ∣x41∣, and ∣x42∣ = ∣x21∣ . If the assembly of the
triangles into an X is possible, these three quantities will be the side lengths ∣x2∣ ,
∣x3∣ , and ∣x4∣ , of X, and those lengths, the values of the ρ of Theorem 5.1, can be
any numbers between zero and one. Hence, it only remains to check if the values of
kos (Vi j) imputed from the triangles lead to a matrix M with the required properties.
If assemble is possible, then the vertex V23 of X will be (congruent to) the vertex of
T2 at the origin, similarly for V34 and T3, V42 and T4 . Thus, M( {Ti} ), the imputed
value of M(X), is given by

M( {Ti} ) =
⎛
⎜⎜
⎝

1 kos(T2) kos(T4)
kos(T2) 1 kos(T3)
kos(T4) kos(T3) 1

⎞
⎟⎟
⎠
=
⎛
⎜
⎝

1 K23 K24
K32 1 K34
K42 K43 1

⎞
⎟
⎠

,(6.1)

where the last equality defines the matrix (K i j) .
We have collected all of the pieces to answer Question 1.

Theorem 6.2 With the numbering and naming scheme just described:

(1) There is an X such that {Ti}4i=1 ⇉ X if and only if there is an X such that
{Ti}4i=2 ⇉ X.

(2) If {Ti} ⇉ X, then M({Ti}) =M(X) ≽ 0.
(3) If M({Ti}) ≽ 0, then there is an X with {Ti} ⇉ X .
(4) M({Ti}) ≽ 0 if and only if detM(X) ≥ 0, equivalently if and only if

∣K34 − K23K24∣
2 ≤ (1 − ∣K23∣2)(1 − ∣K24∣2).(6.2)

Proof The first statement is a consequence of the observation that our computation
of the imputed values of ρ(X) and M(X) never used data from T1 . The next two
statements follow from the discussion before the theorem together with Theorem 5.1.
The final statement follows from the previous lemma together with statement (6) of
Theorem 3.1, which insures that each ∣K i j ∣ ≤ 1. ∎

The condition (6.2) was obtained by specializing general results. However, in this
low-dimensional case, we could have worked directly with the coordinates of X = Δ
as described in (3.2). In that case, the K i j can be computed using the points {x̂ i}4i=2
on the unit sphere with coordinates
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x̂2 = (1, 0, 0), x̂3 = (ξ, β, 0), x̂4 = (η, ζ , γ);
β, γ ≥ 0; ξ, η, ζ ∈ C;

∣ξ∣2 + β2 = ∣η∣2 + ∣ζ ∣2 + γ2 = 1.(6.3)

For 2 ≤ i , j ≤ 4, we have K i i = 1, K i j = K ji . The rest of the story is given by

K23 = ξ̄, K24 = η̄, K34 = ξη̄ + βζ̄ .

We also have

∣β∣2 = 1 − ∣K23∣2 ; ∣ζ̄∣2 = 1 − ∣K24∣2 − γ2 .

Hence, noting that for all i , j, ∣K i j ∣ ≤ 1, we must have

∣K34 − K23K24∣
2 ≤ (1 − ∣K23∣2)(1 − ∣K24∣2),(6.4)

which is (6.2). In the other direction, it is not hard to start from {K i j}, which satisfy
these conditions and find coordinates of points on the sphere which generate these
data.

Our path to answering Question 1 had many digressions, and it is perhaps worth-
while to summarize the essential steps. First, if there is a tetrahedron, then the
interpretation of kos in (2.14) together with the definition M =M({Ti}) insures
that M is a Gram matrix and hence is positive definite. In the other direction,
given that M is positive definite, it must be the Gram matrix of a three-point set
on the sphere. Reversing the construction of that three-point set determines three
points in the ball which, together with the origin, are the vertices of our candidate
tetrahedron. To finish, we need to show that this candidate tetrahedron has faces in
the correct congruence classes. For the faces that meet at the origin, this holds by the
complex analog of the side-angle-side criterion for congruence of triangles, Remark 1.
Proposition 4.6 then shows that that data determine the congruence class of the fourth
face and the proof of that same proposition shows that that same congruence class is
forced by the data of the first three triangles and the assumed coherence conditions.

Here is a variation on these ideas. Given two triangles, T2 and T3 , with one pair
of matching side lengths, is it possible to find a third triangle T4 so that {Ti}42 ⇉ X
for some tetrahedron X? Again the question is whether the imputed parameters for X
are an allowable set. If T2 and T3 are given and have a pair of matching side lengths,
then all of the data for a putative ρ(X) are specified and, as required, each value is
between zero and one. The value of kos at the distinguished vertex of T2 will give the
value of K23 for the potential matrix M, similarly for T3 and K24 . However, the data
from T2 and T3 are not enough to compute K42, which would be the value of kos at its
distinguished vertex of T4. Hence, the congruence class of T4 is indeterminate. To go
forward, we set K42 = z, and using z, we complete the matrix M( {T2 , T3}) to a matrix
M which has no missing values. We then apply the previous theorem to that matrix.

Corollary 6.3 If {T2 , T3} ⇉ ??, then there are a third triangle T4 and a tetrahedron X
with {T2 , T3 , T4} ⇉ X if and only if the Euclidean ball in C

1

B = B (K23K24 , (1 − ∣K23∣2)1/2(1 − ∣K24∣2)1/2)
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is nonempty. In that case, the pairing of z with the value K34 establishes a one-to-one
correspondence between z ∈ B and the congruence class of the possible third triangle T4 .
If B is empty, then there is no such T4 .

Proof Putting z into (6.2) gives ∣z − K23K24∣
2 ≤ (1 − ∣K23∣2)(1 − ∣K24∣2). ∎

6.2 Question 2

We saw in Section 3.2 that Question 2 is equivalent to Question 1. Having answered
Question 1, we now reformulate that answer in the context of Question 2. We will be
informal.

We start with four three-dimensional {J i}4i=1 ⊂ CPP and want to know if there is
an H ∈ CPP whose four regular subspaces are rescalings of the {J i} . Let {h i}4i=1 =
RK(H), and for r = 1, ..., 4, let { jrs}3s=1 = RK(Jr). The chart below gives the number-
ing scheme for the supposed rescalings and notation for certain values of kos . For
instance, the first row indicates that rescaling takes the three kernel functions of J1,
in the indicated order, to the indicated kernel functions of H. The last entry of the
line introduces notation. The other lines are similar. We will not need to consider the
values of kos associated with the last row.

J1 j11 , j12 , j13 → h1 , h2 , h3 , L23 = kos j11( j12 , j13),
J2 j21 , j22 , j23 → h1 , h3 , h4 , L34 = kos j21( j22 , j23),
J3 j31 , j32 , j33 → h1 , h4 , h2 , L42 = kos j31( j32 , j33),
J4 j41 , j42 , j43 → h2 , h3 , h4 .

The required coherence is that when rescaled images overlap, they must be compatible;
so, for instance, we must have δ( j11 , j13) = δ( j21 , j22) because both pairs are mapped
to (h1 , h3).

Define M({J i}) by

M({J i}) =
⎛
⎜
⎝

1 L23 L24
L32 1 L34
L42 L43 1

⎞
⎟
⎠

.(6.5)

The upper-right entries in this matrix are defined in the previous display. The lower-
left entries are their complex conjugates. If there is an H, then this matrix will equal
KOS(H, 1).

Because {J i}4i=2 ⊂ CPP, we know from Theorem 3.1 that each ∣L i j ∣ ≤ 1. Hence,
Lemma 6.1 can be applied and that gives several conditions equivalent to M({J i}) ≽ 0
including detM({J i}) ≥ 0 and the analog of (6.2). We can now translate Theorem 6.2
to this context.

Theorem 6.4 Given {J i}4i=2 ⊂ CPP and {J i}4i=1 ⇉ ??, there is a four-dimensional H ∈
CPP with {J i}4i=2 ⇉ H if and only if M({J i}) ≽ 0, or, equivalently detM({J i}) ≥ 0,
or, equivalently, the numbers{L i j}i , j=2,3,4 satisfy the analog of (6.2).

(If we only knew that {J i}4i=2 ⊂ RK, then deriving M({J i}) ≽ 0 from
detM({J i}) ≥ 0 requires the additional assumption that the ∣L i j ∣ ≤ 1. However,
this is not actually a different formulation. By Theorem 3.1, adding the assumptions
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that ∣L i j ∣ ≤ 1 is equivalent to passing from the assumption that {J i}4i=2 ⊂ RK to the
assumption that {J i}4i=2 ⊂ CPP.)

6.3 Quiggin’s example

There is a simple criterion for determining if a three-dimensional H ∈ RK is in CPP.
From Theorem 3.1, we see that H ∈ CPP if and only if ∣kos1(2, 3)∣ ≤ 1. The analogous
question for four-dimensional H is more complicated. It is clearly necessary that each
regular three-dimensional subspace of H be in CPP, but knowing if that condition is
sufficient is essentially Question 2 of the introduction. The first example showing the
condition is not sufficient is due to Quiggin [Q], [AM, p. 94]. He constructed a family
Hx , 0 < x < 1 of spaces Hx in RK each having the Pick property, a weaker statement
than the CPP and which we will not detail here, and showed that H1/4 ∉ CPP. Here,
we will use the results of the previous sections to read off directly the facts that for
each 0 < x < 1 the regular subspaces of Hx have the CPP but Hx does not.

Following Quiggin, we introduce a family {Hx ∶ 0 < x < 1} ⊂ RK of four-
dimensional spaces by specifying their Gram matrices, Gr(Hx). For 0 < x < 1 and
s = (1 − x)

√
x, set

Gr(Hx) =
⎛
⎜⎜⎜
⎝

1 x x x + is
x 1 x − is x
x x + is 1 x

x − is x x 1

⎞
⎟⎟⎟
⎠

.

To show this is the Gram matrix of an RK, we need to show that Gr(Hx) ≻ 0. By
Lemma 5.5, we can do that by checking the signs of the leading principal minors.
They are

(1 + x)2 (1 − x)4 , (1 + x) (1 − x)2 , (1 + x) (1 − x) , 1

and, by inspection, are all positive for 0 < x < 1. (Those computations and the deter-
minant computations below were done using computer algebra.)

Earlier we used the matrices KOS(Gr(Hx), 1) from (6.5). Here, for ease in com-
puting, we use the matrices MQ(Hx , 1) = (δ1i δ1 j kos1(i , j))4i , j=2 mentioned in (2.16).
The two have determinants of the same sign as do their square submatrices.

From the definitions, we have

MQ(Hx , 1) =
⎛
⎜⎜
⎝

1 − x2 1 − x2

x−i s 1 − x − is
1 − x2

x+i s 1 − x2 1 − x − is
1 − x + is 1 − x + is (1 − x) (1 + x2)

⎞
⎟⎟
⎠

.

Fix x . We want to know that {Jx i}41 , the regular three-dimensional subspaces of
Hx , have the CPP. By (5) of Theorem 3.1, we know that Jx2 ∈ CPP if the matrix J2
obtained by deleting the first row and first column of MQ(Hx , 1) satisfies J2 ≽ 0. That
will follow if we show detJ2 ≥ 0. Similarly for Jx3 and Jx4. For Jx1, we follow the same
path but starting with MQ(Hx , 2) rather than MQ(Hx , 1). To show that Hx ∉ CPP,
we will show that det MQ(Hx , 1) < 0 and hence MQ(Hx , 1) ≽ 0 fails. All these things
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can be seen in the explicit formulas for the determinants. Note that for 0 < x < 1, we
have x2 − x + 1 > 0. We have

detJ1 = detJ2 = detJ3 = x2 (x + 1) (x − 1)2 ,

detJ4 =
x3 (x + 1) (x − 1)2

x2 − x + 1
,

det MQ(Hx , 1) =
( 2s4x2 − s2x7 + s2x6 + s2x5 + 3s2x4

−4s2x3 − x9 + x8 + 2x7 − 2x6 − x5 + x4 )

s2 + x2

= −x3 (x + 1)2 (x − 1)4

x2 − x + 1
.

This shows that the matching distances property together with the cocycle property
are not sufficient to insure that a set of four three-dimensional spaces with the CPP can
be assembled into a four-dimensional space with the CPP. For x = 1/4, the following
result is due to Quiggin [Q], [AM].

Proposition 6.5 Fix x, 0 < x < 1, and let {Jx i}4i=1 be the three-dimensional regular
subspaces of Hx . Then:

(1) The {J i}4i=1 ⊂ CPP and {J i}4i=1 ⇉ ??.
(2) There is an H ∈ RK with {J i}4i=1 ⇉ H.
(3) There is no H ∈ CPP with {J i}4i=1 ⇉ H.

Proof We verified above that the {J i} all have the CPP. The coherence is automatic
because the {J i} are the three-dimensional regular subspaces of a four-dimensional
RK. The second statement is automatic; H = Hx will suffice. It is included to empha-
size that there is no obstruction to assembling the {J i} into an H ∈ RK, just not an
H ∈ CPP. ∎

6.4 Tetrahedra in RH
k

6.4.1 Preliminaries

In this section, we specialize the previous results to real hyperbolic triangles and
tetrahedra, those sitting in some RH

k , or, equivalently, inside a copy of RHk inside
some CH

n . The study of polyhedra in RH
k is an active research topic with a rich

history; references include the books [An, F, Go], surveys [J, MP], and research papers
[Di, HR, W]. Also, there is some study of the relation between RKHSs and sets in
RH

k ([BIM, Ro, Sec. 7]). Some of the results below are in those references or can be
developed efficiently using those techniques. Our goal here is to show how results
for real hyperbolic tetrahedra can be seen as specialization of results for complex
hyperbolic tetrahedra.

The following simple consequence of Lemma 2.1 of [BI] lets us tell when X ⊂ CHn

is actually in a copy of RHn .
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Proposition 6.6 X = {x i}si=1 ⊂ CH
n is inside a copy of RHs−1 ⊂ CHn if and only if all

the numbers kosi(p, q) are real, or, equivalently, if and only if the entries of the Gram
matrix of DA(X) are real.

Hence, the results in this section also apply to Hilbert spaces H ∈ CPP which are
rescalings of spaces with real Gram matrices. Those spaces are the finite-dimensional
regular subspaces of the diameter spaces discussed in [ARS].

Given {x1 , x2 , x3} ⊂ RHk , we denote the vertex angle between geodesics x1x2 and
x1x3 . by va23 .

Corollary 6.7 The triangle T = {x1 , x2 , x3} ⊂ CHn is in a copy of RH2 if and only if
kos1(2, 3) is real. In that case, kos1(2, 3) = cos va23.

Proof Using the model triangle Γ in (3.1), it is easy to check that if kos1(2, 3) is
real, then the coordinates of the points of Γ are real and hence also so are the other
values of kos . It then follows from the previous proposition that T is in a copy of
RH

k . Because Γ only has three points, we can take k = 2. Using (2.14), we see that
kos1(2, 3) = ⟨⟨x̂2 , x̂3⟩⟩ . That inner product equals the cosine of the Euclidean angle at
the origin of R2 between the segments 0x̂2 and 0x̂3. On T, the Euclidean metric on R

2

is conformal with the hyperbolic metric, and hence the Euclidean angle whose cosine
we found is also the hyperbolic angle. ∎

If triangles can be assembled into a real hyperbolic tetrahedron, then it can be done
in RH

3 . The model we will use for RH3 is the unit ball in R
3 with the Poincare metric.

We write S2 for the unit sphere in R
3 .

Because the Poincare ball model for RH3 is conformal with Euclidean space, some
of our results here also apply to structures in Euclidean space. For instance, the
condition of vertex angles on the bivalent vertices that are necessary to form a trivalent
vertex is the same in both cases.

If we start with four real hyperbolic triangles which satisfy the matching side
conditions necessary for assembly into a tetrahedron X, then Theorem 6.2 gives
conditions for there to be an X in terms of a matrix M(X)whose entries are values of
kos . Because we are in real hyperbolic space, those values are cosines of vertex angles.
To emphasize this, we introduce name and notation for that type of M(X) ∶

MCVA(X) =
⎛
⎜
⎝

1 cos va23 cos va24
cos va32 1 cos va34
cos va42 cos va43 1

⎞
⎟
⎠

(6.6)

with the subscript CVA referring to the fact the entries are cosines of vertex angles.
Theorem 6.2 specializes as the following.

Theorem 6.8 Given triangles {Ti}4i=1 inRH
n with {Ti}4i=2 ⇉ ??, there is a tetrahedron

X in RH
n such that {Ti}4i=2 ⇉ X if and only if detMCVA({Ti}4i=2) ≥ 0.

6.4.2 The triangle inequality for angles

We saw conditions for three bivalent vertices in CH
n to be assembled into a trivalent

vertex. Those conditions specialize to vertices in RH
n and, because the geometry of
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our model of RHn is conformal with Euclidean geometry, the same conditions apply
to vertices in Euclidean space. The question of when three bivalent vertices in R

3 can
be assembled into a trivalent vertex is a straightforward question in Euclidean solid
geometry and it is not surprising that it has a simple answer. We now look at that
briefly.

Corollary 6.9 (The triangle inequality for angles) The numbers 0 ≤ α, β, γ ≤ π are
the (real hyperbolic or Euclidean) angles of a trivalent vertex in (real hyperbolic or
Euclidean) space if and only if α ≤ β + γ.

Proof There is such a vertex if and only if the vertex can be realized as part of a real
hyperbolic tetrahedron X . By the previous theorem, that can happen if and only if the
matrix MCVA(X) of (6.6) has a positive determinant. We use Lemma 6.1 to rewrite
that determinant condition, and then we compute

(cos α − cos β cos γ)2 ≤ (1 − cos2 β)(1 − cos2 γ),(6.7)
∣cos α − cos β cos γ∣ ≤ sin β sin γ,

− sin β sin γ + cos β cos γ ≤ cos α ≤ sin β sin γ + cos β cos γ,

cos (β + γ) ≤ cos α ≤ cos (β − γ)(6.8)

If γ + β < π, then the three angles in the previous line are in the range (0, π) where
the cosine is monotone decreasing. In that case, the first inequality gives α ≤ β + γ. In
the other case, we have α ≤ π ≤ β + γ. In both cases, we have the desired inequality.
The argument is reversible. ∎

In Section 6.4, we will present the triangle for which the previous corollary is a
“triangle inequality.”

There is an interesting identity that can be used to give an alternate proof of the
corollary. Set s = (α + β + γ)/2. By trigonometric analysis [Co, J] or, as Roeder notes
in [Roe], by computation with complex exponentials, we have

detMCVA(X) = 4 sin (s) sin(s − α) sin(s − β) sin(s − γ).

If we know detMCVA(X) ≥ 0, then an analysis of cases shows that all the factors on
the right side are nonnegative. Knowing that gives the conclusion of the corollary.

Finally, we have taken a long route to what is a rather obvious fact of solid geometry.
Consider the task of building a model of a trivalent vertex from three wedges of paper.
Certainly the job is impossible if one wedge is wider than the other two combined.

6.4.3 Dihedral angles

In real hyperbolic space, any three points sit in a totally geodesically embedded
hyperbolic plane and hence each edge is in the intersection of two such planes. We
define the dihedral angle at that edge to be the angle of intersection of the two planes.
Thus, at each trivalent vertex, we have three vertex angles and three dihedral angles.

In fact, the dihedral angles are used more commonly than vertex angles in
describing real hyperbolic polyhedra (see, for instance, [FG, HR, Roe, W] and the
references therein). In this section and the next, we look briefly at the relation between
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the two types of angles and at how our earlier results translate to results involving
dihedral angles. Some of the results we obtain are classical facts from solid geometry
or spherical trigonometry. The work in this section is influenced by the work of Roeder
in [Roe] and there are overlaps. We will be sketchy.

For the moment, we will use indices r, s, t to denote three different indices from the
set {2, 3, 4} . Given the tetrahedron X = {x1 , x2 , x3 , x3} ⊂ RH3 with x1 at the origin,
denote the triangular face with vertices {x1 , x i , x j} by Fi j . The dihedral angle along
edge s, s = 2, 3, 4, is the angle dar t between the faces Frs and Fst .

As we mentioned, the angles in our ball model of RH3 agree with the Euclidean
angles, and hence it suffices to do the Euclidean computation of the da. To find dar t ,
we first find the inward pointing unit normals, nrs for the face Frs , and similarly
nst , and then use the fact that − cos dar t = ⟨nrs , nst⟩ . The requirement that nrs be
inward pointing is the requirement that ⟨nrs , xt⟩ ≥ 0. However, the formula for dar t
is unchanged if the normals are replaced by their negatives, and hence it is enough
to construct the normals so that the inner products ⟨nrs , xt⟩ all have the same sign.
Taking note of the fact that ⟨a, b × c⟩ = ⟨b, c × a⟩ for vectors in R

3, we see that the
choices ⟨nrs , xt⟩

nrs =
xr × xs

∥xr × xs∥
= x̂r × x̂s

∥x̂r × x̂s∥
(6.9)

satisfy that requirement. Using these normals, we compute

cos das = − ⟨⟨nrs , nst⟩⟩(6.10)

= −⟨⟨ x̂r × x̂s

∥x̂r × x̂s∥
, x̂s × x̂t

∥x̂s × x̂t∥
⟩⟩

= −⟨⟨x̂r , x̂s⟩⟩ ⟨⟨x̂s , x̂t⟩⟩ − ⟨⟨x̂r , x̂t⟩⟩ ⟨⟨x̂s , x̂s⟩⟩
∥x̂r × x̂s∥ ∥x̂s × x̂t∥

= cos var t − cos vars cos vast

sin vars sin vast
.

(Note that if the vertices are ordered, and hence the angles are signed, the cosine
terms are independent of the ordering, but the sine factors are not. However, that
product of sines is unchanged by reordering the vertices. The same comments apply
to the expressions below.)

Definition 6.10 Suppose that for 2 ≤ i , j ≤ 4, we are given angles {va i j} and {da i j} .
For all i, we suppose va i i = 0, da i i = π and set VA i i = 0, DA i i = π. For r ≠ s, we define

DArs =
cos vars − cos vatr cos vats

sin vatr sin vats
,(6.11)

VArs =
cos dars + cos datr cos dats

sin datr sin dats
.(6.12)

Lemma 6.11 (Hyperbolic law of cosines) If at the vertex point x1 the tetrahedron X =
{x1}4i=1 ⊂ RH

n has vertex angles {va i j}
4
i , j=2 and dihedral angles {da i j}

4
i , j=2 , then, with

https://doi.org/10.4153/S0008414X23000469 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000469


Pick spaces and polyhedra 37

the notation (6.11) and (6.12),

cos da i j = DA i j , cos va i j = VA i j , 2 ≤ i , j ≤ 4.

We separated the definition from the lemma because we can use the definitions
even if the va i j are not known to be data from a tetrahedron. If we have a set of
triangles {Ti}4i=2 in RH

k which satisfy the coherence conditions for assembly into
a tetrahedron, {Ti}4i=2 ⇉ ??, then we can construct the matrix MCVA({Ti}4i=2). Using
that data in (6.11), we can compute imputed values of the DA i j ; the values cos da i j

would have if assembly were possible. If {Ti}4i=2 ⇉ X for a tetrahedron X, then those
values will be cosines of dihedral angles and satisfy ∣D i j ∣ ≤ 1.

Corollary 6.12 If {Ti}4i=2 ⇉ ?? and DA i j is computed using the va i j values from
MCVA({Ti}4i=2) and (6.11), then there is a tetrahedron X with {Ti}4i=2 ⇉ X if and only
if for some i , j ∣DA i j ∣ ≤ 1.

Proof From the formula (6.11), we see that ∣DA i j ∣ ≤ 1 holds if and only if (6.7)
holds. That last condition is equivalent to knowing detMCVA({Ti}4i=2) ≥ 0, which,
by Theorem 6.8, is equivalent to their being an X . ∎

Informally, a value ∣DA i j ∣ > 1 is not possible for any dihedral angle; hence, in that
case, there is no tetrahedron.

6.4.4 Spherical geometry

We can also use spherical geometry to relate the vertex angles and dihedral angles.
Consider the tetrahedron X = {0, x2 , x3 .x4} in RH

3 and the set X̂ = {x̂2 , x̂3 , x̂4} in
the boundary sphere S2 . We regard X̂ as the set of vertices of a spherical triangle, also
called X̂ .

A fundamental relation between X and X̂ is that the side lengths and angle
measures of X̂ are the sizes of the vertex angles and dihedral angles, respectively, of the
trivalent vertex of X at the origin. (The analog for the Euclidean tetrahedron is perhaps
visually clear.) Hence, in particular, the “Triangle Inequality for Angles,” Corollary 6.9,
is literally the triangle inequality for the side lengths of the triangle X̂ .

Associated with a spherical triangle with vertices X̂ = {x̂2 , x̂3 , x̂4} is its polar
dual X̂# . We forego the description of X̂# using spherical geometry and just note
that it is the triangle with vertices {n34 , n24 , n23} given by the formula (6.9). It is
straightforward to see that this is an actual duality; X̂## = X̂ .

The following is a fundamental relation between the geometries of a triangle and
its polar dual.

Theorem 6.13 Suppose X̂ has angles {a i}i=1,2,3 and side lengths {�i}i=1,2,3 and X̂#

has angles {a#
i }i=1,2,3 and side lengths {�#

i }i=1,2,3 with all the lengths and angles selected
between 0 and π; then, for i = 1, 2, 3,

α#
i = π − �i ,
�#

i = π − α i .
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We saw in Theorem 6.8 that angles {va i}i=1,2,3 are the vertex angles of a trivalent
vertex if and only if the matrix of their cosines, MCVA(X) given by (6.6), satisfies
detMCVA(X) ≥ 0. Using Lemma 6.11, we can form the analogous result using nega-
tives of cosines of dihedral angles. Set

M−CDA(X) =
⎛
⎜
⎝

1 − cos da23 − cos da24
− cos da32 1 − cos da34
− cos da42 − cos da43 1

⎞
⎟
⎠

.(6.13)

If we are given angles {da i j} that are candidates for being the dihedral angles of a
tetrahedron in RH

3, then we write M−CDA(?) for the matrix on the right-hand side
of (6.13). Here is the analog of Theorem 6.2 for dihedral angles.

Theorem 6.14 Given a tetrahedron X ⊂ RH3, we have detM−CDA(X) ≥ 0. Con-
versely, if angles {da i j} produce a matrixM−CDA(?)with detM−CDA(?) ≥ 0, then there
is a tetrahedron X ⊂ RH3 with those dihedral angles.

Proof First, suppose we are given X ⊂ RH3 . We then have the triangle with vertices
X̂ . Let X̂# be the polar dual of X̂, and let X# be any tetrahedron in RH

3 with X̂# = X̂# .
Consider the matrixMCVA(X#). Its nondiagonal entries are of the form cos va#

i where
va#

i is a vertex angle of X# . That vertex angle is also the length �#
i of the triangle X̂# . By

Theorem 6.13, that length is given by �#
i = π − a i where a i is an angle in the polar dual

triangle (X̂#)# = X̂## = X̂ . For any θ, we have cos θ = − cos(π − θ). Collecting these
facts and comparing matrix entries, we see that MCVA(X#) =M−CDA(X), Hence,
detM−CDA(X) ≥ 0 is equivalent to detMCVA(X#) ≥ 0. To see that that condition
holds, recall that we are in real hyperbolic space and hence MCVA(X#) =M(X#).
By Theorem 6.2, that last matrix is positive semidefinite and hence has a positive
determinant.

The argument in the other direction is similar. Suppose we are given angles
da i j which produce M−CDA(?)with detM−CDA(?) ≥ 0. Consider the supplementary
angles va#

i j = π − da i j . By Theorem 5.1, the cosines of those angles can be used to
form a matrix M(X) associated with a tetrahedron X. We now pass successively to
X̂ , the spherical triangle associated with X , then to X̂# , its polar dual, and finally Y , a
tetrahedron whose associated spherical triangle Ŷ equals X̂# . Tracking the changes, we
see that we have passed to supplementary angles twice and hence the dihedral angles
of Y are the da i j and Y is the desired tetrahedron. ∎

7 Final comments

7.1 Cayley equations

If we replace the trigonometric variables in the expansion of detMCVA({Ti}4i=2)with
algebraic variables, we obtain

p(x , y, z) = 1 + 2x yz − x2 − y2 − z2 .
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This polynomial was studied by Cayley in his classic study of cubic equations and
sometimes carries his name [H]. For us, the region in R

3 where the variables have
absolute value at most one and p(x , y, z) > 0 parameterizes nondegenerate tetrahedra
in RH

3 . The boundary surface Ω, where p(x , y, z) = 0, corresponds to degenerate
tetrahedra. The smooth points of Ω correspond to simple degenerations, degenerate
tetrahedra that become nondegenerate when a single vertex is moved a small amount.
The singular points of Ω correspond to more complicated, nongeneric, degeneracies.
For instance, let T be a triangle {w , y, z} in the ball model ofRH3 which is in the plane
RH

2 specified by the vanishing of the third coordinate and which has the origin of that
plane in its interior. Form tetrahedra Xε by adjoining a fourth vertex, which will be
the distinguished vertex x1 , with Euclidean coordinates (0, 0, ε) for a small positive ε.
The Xε are proper tetrahedra, but the limiting X0 whose vertices are the three starting
points together with the origin as the distinguished vertex is degenerate. For X0, the
values of kos1 are the cosines of the angles formed by connecting the origin to the other
vertices. We are in a plane, so those angles sum to 2π. Thus, the corresponding (x , y, z)
values are Λ = (cos α, cos β, cos (2π − α − β)) for some angles α and β. Taking note
of the fact that

cos (2π − α − β) = cos α cos β − sin α sin β,

it is straightforward to check that Λ is a point in the surface Ω. It is a smooth point,
and the degeneracy of X0 can be removed by moving the vertex at the origin slightly
to obtain an Xε .

The singular points of Ω are the points (±1,±1,±1) with an even number of minus
signs. The corresponding tetrahedra have four points on a single real geodesic. Those
tetrahedra have nongeneric degeneracy, they remain degenerate if any one of the
points is moved slightly.

Some related discussion is in [H].

7.2 Vertices at infinity

The study of tetrahedra in hyperbolic space, real or complex, is not restricted to
classical bounded tetrahedra but also includes consideration of ideal tetrahedra,
tetrahedra with one or more vertices in the ideal boundary (i.e., the “sphere at infinity,”
∂Bn). Although some of the previous discussion extends to those contexts, it is not
clear if there are objects similar to the DA(X) associated with these ideal tetrahedra.
There is analysis of congruence of finite sets in the closure, CHn , in several places
including [CG, G, Go, HS].

7.3 The physics literature

The question of characterizing triples of triangles in RH
3 which can be assembled

as part of a tetrahedron is also studied in the physics literature, sometimes with the
name “closure questions,” for instance, [BDGL, CL, HHR]. In contrast to the work
here, those papers make substantial use of the descriptive and analytical properties of
the automorphism group of hyperbolic space.
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7.4 Other Hilbert spaces and other geometries

We have worked with the Drury–Arveson kernel kz(w) = k(w , z) = (1 − ⟨⟨w , z⟩⟩)−1 .
Similar questions can be considered for the Hilbert spaces generated by kernel func-
tions (1 − ⟨⟨w , z⟩⟩)−t for t > 0. Those functions are the reproducing kernels for various
Besov–Sobolev spaces [ARSW2] and also arise in other contexts [M]. In [OS], it is
shown that analogs of parts of Theorem 3.2 hold for those spaces if t ≤ 2 but not t > 2.

We have focused on the relationship between DA(X) spaces and hyperbolic
geometry. There are similar relationships between other classes of Hilbert spaces and
other geometries, for instance, between the Segal–Bargmann–Fock spaces and the
Hermitian geometry of C

n [ARSW, Ro], and between the Hilbert spaces of spin
coherent states, and the geometry of complex spheres and projective spaces [BZ].

More general relations between geometry and spaces such as DA(X) for X in RH
n

and CH
n are suggested by the work in [M].

References

[AM] J. Agler and M. C. J. Pick, Interpolation and Hilbert function spaces, Graduate Studies in
Mathematics, 44, American Mathematical Society, Providence, RI, 2002.

[An] J. Anderson, Hyperbolic geometry. 2nd ed., Springer Undergraduate Mathematics Series,
Springer, London, 2005.

[ARS] N. Arcozzi, R. Rochberg, and E. Sawyer, The diameter space—a restriction of the
Drury–Arveson–Hardy space. In: K. Jarosz (ed)., Function spaces: fifth conference on
function spaces, Contemporary Mathematics, 435, American Mathematical Society,
Providence, RI, 2007, pp. 21–42.

[ARSW] N. Arcozzi, R. Rochberg, E. Sawyer, and B. D. Wick, Distance functions for reproducing
kernel Hilbert spaces. In: K. Jarosz (ed)., Function spaces in modern analysis, Contemporary
Mathematics, 547, American Mathematical Society, Providence, RI, 2011, pp. 25–53.

[ARSW2] N. Arcozzi, R. Rochberg, E. Sawyer, and B. D. Wick, The Dirichlet space and related
function spaces, Mathematical Surveys and Monographs, 239, American Mathematical
Society, Providence, RI, 2019.

[Ar] W. Arveson, Subalgebras of C*-algebras. III. Multivariable operator theory. Acta Math.
181(1998), no. 2, 159–228.

[BZ] I. Bengtsson and K. Z̈yczkowski, Geometry of quantum states: an introduction to quantum
entanglement. 2nd ed., Cambridge University Press, Cambridge, 2017.

[BDGL] V. Bonzom, M. Dupuis, F. Girelli, and E. Livine, Deformed phase space for 3dloop gravity
and hyperbolic discrete geometries. Preprint, 2014. arXiv:1402.2323

[Br] U. Brehm, The shape invariant of triangles and trigonometry in two-point homogenous
spaces. Geom. Dedicata. 33(1990), 59–76.

[BE] U. Brehm and B. Et-Taoui, Congruence criteria for finite subsets of complex projective and
complex hyperbolic spaces. Manuscripta Math. 96(1998), 81–95.

[BIM] M. Burger, A. Iozzi, and N. Monod, Equivariant embeddings of trees into hyperbolic spaces.
Int. Math. Res. Not. IMRN 2005(2005), no. 22, 1331–1369.

[BI] M. Burger and A. Izzo, Bounded cholmology and totally real subspaces in complex
hyperbolic geometry. Ergod. Th. & Dynam. Syst. 32(2012), 467–478.

[CL] C. Christoph and E. Livine, Closure constraints for hyperbolic tetrahedra. Classical
Quantum Gravity 32(2015), no. 13, 135003.

[C] J.-L. Clerc, An invariant for triples in the Shilov boundary of a bounded symmetric domain.
Comm. in Anal. and Geom. 15(2007), 147–174.

[CO] J. L. Clerc and B. Ørsted, The Maslov index revisited. Transform. Groups 6(2001), no. 4,
303–320.

[CG] H. Cunha and N. Gusevskii, The moduli space of points in the boundary of complex
hyperbolic space. J. Geom. Anal. 22(2012), no. 1, 1–11.

[Di] R. Díaz, A characterization of gram matrices of polytopes. Discrete Comput. Geom.
21(1999), 581–601.

https://doi.org/10.4153/S0008414X23000469 Published online by Cambridge University Press

https://arxiv.org/abs/1402.2323
https://doi.org/10.4153/S0008414X23000469


Pick spaces and polyhedra 41

[DW] P. Duren and R. Weir, The pseudohyperbolic metric and the Bergman spaces in the ball.
Trans. Amer. Math. Soc. 358(2007), 63–76.

[F] W. Fenchel, Elementary geometry in hyperbolic space, De Gruyter Studies in Mathematics,
11, Walter de Gruyter, Berlin, 1989.

[FG] D. Futer and F. Guéritaud, From angled triangulations to hyperbolic structures. In:
Interactions between hyperbolic geometry, quantum topology and number theory,
Contemporary Mathematics, 541, American Mathematical Society, Providence, RI, 2011, pp.
159–182.

[Go] W. Goldman, Complex hyperbolic geometry, Oxford Mathematical Monographs, Oxford
University, Oxford, 1999.

[G] N. Gusevskii, The invariants of finite configuration in complex hyperbolic geometry. In:
Advanced school and workshop on discrete groups in complex geometry, Abdas Salem
Institute of Theoretical Physics, 2010.

[HHR] H. Haggard, M. Han, and H. Riello, Encoding curved tetrahedra in face holonomies: phase
space of shapes from group-valued moment maps. Ann. Henri Poincaré 17(2016), no. 8,
2001–2048.

[HS] J. Hakim and H. Sandler, The moduli of n + 1points in complex hyperbolic n-space. Geom.
Dedicata 97(2003), 3–15.

[H] M. Hampton, Cosines and Cayley, triangles and tetrahedra. Amer. Math. Monthly
121(2014), no. 10, 937–941.

[HM] T. Hangan and G. Masala, A geometric interpretation of the shape invariant for geodesic
triangles in complex projective spaces. Geom. Dedicata 49(1994), 129–134.

[Ha] M. Hartz, Every complete Pick space satisfies the column–row property. Acta Math., to
appear.

[HR] C. Hodgson and I. Rivin, A characterization of compact convex polyhedra in hyperbolic
3-space. Invent. Math. 111(1993), no. 1, 77–111.

[J] S. Janson, Euclidean, spherical and hyperbolic trigonometry, 2015, 53 pp.
http://www2.math.uu.se/~svante/papers/.

[MP] A. D. Mednykh and M. G. Pashkevich, Elementary formulas for a hyperbolic tetrahedron.
Sibirsk. Mat. Zh. 47(2006), no. 4, 831–841 (in Russian); translation in Siberian Math. J.
47(2006), no. 4, 687–695.

[M] N. Monod, Notes on functions of hyperbolic type. Preprint, 2018. arXiv:1807.04157
[OS] D. Ofek and G. Sofer, Three classification results in the theory of weighted hardy spaces on

the ball. Complex Anal. Oper. Theory 15(2021), 65.
https://doi.org/10.1007/s11785-021-01114-6

[Q] P. Quiggin, Generalisations of Pick’s theorem to reproducing kernel Hilbert spaces, Ph.D.
thesis, Lancaster University, 1994. https://core.ac.uk/download/pdf/9665988.pdf.

[PR] M. Raghupathi and V. I. Paulsen, An introduction to the theory of reproducing kernel
Hilbert spaces, Cambridge University Press, Cambridge, 2016.

[Ro3] R. Rochberg, Is the Dirichlet space a quotient of DAn? In: Functional analysis, harmonic
analysis, and image processing: a collection of papers in honor of Björn Jawerth,
Contemporary Mathematics, 693, American Mathematical Society, Providence, RI, 2017,
pp. 301–307.

[Ro] R. Rochberg, Complex hyperbolic geometry and Hilbert spaces with complete Pick kernels. J.
Funct. Anal. 276(2019), no. 5, 1622–1679.

[Ro2] R. Rochberg, Characterizing model spaces among the finite dimensional RKHS with pick
kernels. Preprint, 2021. arXiv:2110.07680

[Roe] R. Roeder, Compact hyperbolic tetrahedra with non-obtuse dihedral angles. Publ. Mat.
50(2006), no. 1, 211–227.

[Ru] W. Rudin, Function theory in the unit ball ofCn , Springer, Berlin–Heidelberg, 1980.
[Sh] O. Shalit, Operator theory and function theory in Drury–Arveson space and its quotients. In:

D. Alpay (ed.), Operator theory, Springer, Basel, 2014, pp. 1–50.
[W] J. Weeks, Computation of hyperbolic structures in knot theory. In: Handbook of knot theory,

Elsevier, Amsterdam, 2005, pp. 461–480.
[WD] K. Wirth and A. Dreiding, Edge lengths determining tetrahedrons. Elem. Math. 64(2009),

no. 4, 160–170.

Department of Mathematics, Washington University in St. Louis, Campus Box 1146, One Brookings Drive,
Saint Louis, MO 63130-4899, USA
e-mail: Richard.Rochberg@gmail.com

https://doi.org/10.4153/S0008414X23000469 Published online by Cambridge University Press

http://www2.math.uu.se/~{}svante/papers/
https://arxiv.org/abs/1807.04157
https://doi.org/10.1007/s11785-021-01114-6
https://core.ac.uk/download/pdf/9665988.pdf.
https://arxiv.org/abs/2110.07680
mailto:Richard.Rochberg@gmail.com
https://doi.org/10.4153/S0008414X23000469

	1 Introduction and summary
	1.1 Prelude
	1.2 Introduction
	1.3 Contents

	2 Background
	2.1 Hyperbolic geometry
	2.2 Hilbert spaces with reproducing kernels
	2.2.1 Rescaling
	2.2.2 Assuming irreducibility
	2.2.3 The complete Pick property

	2.3 Invariants
	2.3.1 Distance
	2.3.2 Angular invariant
	2.3.3 kos

	2.4 Matrix notation

	3 The CPP and point sets in CHn
	3.1 Assembly and coherence
	3.2 Equivalence of the two questions

	4 Geometry and Kos
	4.1 Evaluating Kos
	4.2 Kos and other invariants
	4.3 Kos and the geometry of vertices
	4.4 Kos and area

	5 Finite sets in CHn
	5.1 Describing sets by their triangles
	5.2 Comparison with the McCullough–Quiggin theorem
	5.3 Assembly questions
	5.3.1 Variation 1
	5.3.2 Variation 2
	5.3.3 Variation 3


	6 Tetrahedra
	6.1 Question 1
	6.2 Question 2
	6.3 Quiggin's example
	6.4 Tetrahedra in RHk
	6.4.1 Preliminaries
	6.4.2 The triangle inequality for angles
	6.4.3 Dihedral angles
	6.4.4 Spherical geometry


	7 Final comments
	7.1 Cayley equations
	7.2 Vertices at infinity
	7.3 The physics literature
	7.4 Other Hilbert spaces and other geometries


