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This study examined the impact of coherent structures on the aerodynamic forces exerted
on a NACA0012 aerofoil with angles of attack 7.5◦ and 10◦, and a chord-based Reynolds
number 50 000. The study utilized the spectral proper orthogonal decomposition (SPOD)
algorithm to identify the coherent structures, and vorticity force analysis to quantify their
impact on lift and drag forces. Results showed that at 10◦, the zeroth frequency of the
first SPOD mode had a significant impact on drag and lift forces due to a large vortex
structure that caused a strong flow along the suction side of the aerofoil. The first and
second frequencies of the first SPOD mode represented asymmetric vortex pairs and a
series of vortex pairs that determined the leading-edge separation, respectively. At 7.5◦,
the zeroth frequency of the first mode corresponded to an oscillating near-wall stream
that followed the reattachment flow pattern, while the first frequency corresponded to a
counter-rotating vortex pair that originated where the flow reattaches. Finally, the second
frequency of the first mode corresponded to smaller counter-rotating vortex pairs at the
shear layer originated near the reattachment point. These findings suggest that coherent
structures have a significant impact on aerodynamic forces exerted on aerofoils, and can be
identified and quantified using the SPOD algorithm and vorticity force analysis.

Key words: turbulence simulation, wakes

1. Introduction

Recently, low-Reynolds-number flow operating at Re ∼ O(104) has drawn much attention
due to a variety of engineering and industrial applications. Examples include small-
to medium-scale wind turbines (Tangler & Somers 1995), unmanned aerial vehicles
(Carmichael 1981; Mueller & DeLaurier 2003), and recently, the Mars explorer (Kojima
et al. 2012; Anyoji et al. 2014). A very important feature in this flow regime is laminar
separation and the transition to turbulence, leading to various flow patterns that can pose
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direct impact on drag and lift. It has been studied extensively that at flow conditions that
are sufficiently turbulent and with low angle of attack, flow can recover sufficient energy
through entrainment to reattach to the aerofoil surface, forming a recirculation bubble in
the time-averaged flow, namely the laminar separation bubble (LSB). Recently, large-eddy
simulations (LES) and direct numerical simulations (DNS) have been used extensively
to study detailed turbulent flow structures on aerofoils. In the low-Reynolds-number
cases, considerable research effort has been put into the separation, detachment and
LSB in low angle of attack cases (e.g. Shan, Jiang & Liu 2005; Jones, Sandberg &
Sandham 2008). Moreover, to optimize the design of the aircraft-like device operated in
the thin Mars atmosphere, a series of LES were conducted by Kojima et al. (2012) and
Anyoji et al. (2014) to examine the performance of different types of aerofoil sections
in different angles of attack. Taking advantage of modern computational power, these
high-fidelity numerical studies revealed spectacular details of flows in transition and
turbulent regimes, providing valuable information on the fine-scale flow structures around
aerofoils at low-Reynolds-number flows. However, direct and quantitative measures of the
connection of these flow structures and the resulting force contribution are still lacking.
Such quantitative measures may also have great benefit for flow control on aerofoils.

Studying the force acting on a submerged body has been a crucial area of research in
fluid mechanics. Past studies aimed to break down the resultant forces into components
associated with different aspects of fluid flow. In earlier days, circulation theory was
utilized to establish a relationship between forces and inviscid models (e.g. Howarth 1935;
Sears 1956, 1976), while later studies focused on providing exact means or theories for the
relationship between hydrodynamic forces and surrounding flow fields through rigorous
analyses of the equation for viscous flow (e.g. Kambe 1986; Howe 1995; Wells 1996;
Howe, Lauchle & Wang 2001). In this study, the force representation theory proposed
by Chang (1992) is employed to obtain force resultants due to the flow field. Based
on the d’Alembert paradox, Quartapelle & Napolitano (1983) first derived alternative
expressions for force and moment by projecting the momentum equations onto the gradient
of the auxiliary velocity potential. Chang (1992) further related the force on the moving,
accelerating or oscillating body to different aspects of the flow field. This theory states
that any real fluid element with non-zero vorticity can be considered a source of the
hydrodynamic force, and has been applied to understand forces exerted on various objects
in low-Reynolds-number flows (Re ∼ O(10–100)), such as flow passing multiple bluff
bodies (Chang, Yang & Chu 2008; Wang et al. 2022), hovering flights (Hsieh, Chang
& Chu 2009; Hsieh et al. 2010), impulsively started finite plates (Lee et al. 2012),
and the heaving aerofoil (Martín-Alcántara, Fernandez-Feria & Sanmiguel-Rojas 2015;
Moriche, Flores & García-Villalba 2017). As the Reynolds number increases to a level
where turbulence becomes a significant factor (Re ∼ O(104)), we become curious about
how the irregularities of turbulence impact the forces acting on an object. Although force
representation theory had been extended to study the hydrodynamic forces on aerofoils in
cavitation flows using the Reynolds-averaged Navier–Stokes equations (Shen et al. 2021),
they have examined only the large-scale motions due to the smearing of small eddies by the
averaged flow field. Therefore, there is still a lack of research in the scientific community
on the contributions of small-scale turbulent structures to drag and lift forces.

In order to identify the characteristic eddies in turbulent flows, various techniques
are available. These include proper orthogonal decomposition (POD) proposed by
Lumley (1967, 1970), dynamic mode decomposition introduced by Schmid (2010), and
resolvent analysis by McKeon & Sharma (2010). Among these, the most commonly used
approach is POD, where the main objective is to identify the most effective approach
974 A52-2
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for capturing the dominant components of an infinite-dimensional stochastic process. An
inexpensive implementation developed by Sirovich (1987) involves the decomposition of
the autocorrelation function of flow variables, resulting in spatially orthogonal modes that
are modulated temporally by expansion coefficients. This approach, known as space-only
POD, has found extensive application in addressing turbulence-related issues such as
turbulence channel flow (Moin & Moser 1989), turbulence jets (Freund & Colonius
2009), and acoustic effects on aerofoils (Ribeiro & Wolf 2017). However, it is well
known that typically, characteristic eddies contain coherence in both space and time
(Pope 2000), while the space-only POD simply provides modes that are correlated with
space. To address this issue, Towne, Schmidt & Colonius (2018) adopted the mathematical
framework proposed by Lumley (1967, 1970) and developed a novel algorithm to deal
with the spectral eigenvalue problem of cross-spectral density. This particular variant of
POD is referred to as spectral POD (SPOD) (Picard & Delville 2000), which guarantees
that modes oscillating at a single frequency are mutually orthogonal. This property
makes SPOD particularly suitable for identifying coherent structures that are physically
significant in problems such as those mentioned above, e.g. channel flow (Tissot, Cavalieri
& Mémin 2021), jet (Schmidt et al. 2018) and acoustic Abreu et al. 2021).

In this work, we investigate the fundamental physics behind flow over the NACA0012
aerofoil with different angles of attack (AoA = 7.5◦ and 10◦). Numerical simulations are
conducted using LES of incompressible flow at a chord Reynolds number Re = 50 000,
and the snapshots of simulation results are dealt with by SPOD to obtain the coherent
structures in the frequency domain. We then apply a reconstruction technique proposed
by Nekkanti & Schmidt (2021) to convert these coherent structures back into the time
domain. The novelty of this study is that contributions of each SPOD mode to drag and lift
forces can be quantified by force representation theory. This brings us an insight to verify
the importance of the associated coherent structures and to reduce the complexity of the
original flow fields. Since a SPOD mode involves motions with various frequencies, the
proposed method can further decompose the effect of SPOD modes oscillating at certain
frequencies on drag and lift forces. With these simplified flow fields, variations of both
drag and lift forces caused by the vorticity within the domain can be identified clearly. To
the best of our knowledge, this is the first research to provide quantitative analysis of the
coherent structures in turbulence flows, and the basic understanding of SPOD modes is
helpful for the design of aircraft and flow control.

The rest of the paper is organized as follows. Section 2 presents the details of
force representation theory. In § 3, we introduce the implementations of SPOD and
the SPOD-based flow field reconstruction. Section 4 shows the numerical methods and
validations. The simulation results are demonstrated in § 5. The effects of SPOD modes
on aerodynamic forces and their vorticity forces are presented in §§ 6 and 7. Finally,
concluding remarks are summarized in § 8.

2. Vorticity force representation

In the framework of LES, the flow is governed by the spatial-filtered incompressible
Navier–Stokes equation, which is written in dimensionless form as

∇ · ū = 0,
∂ū
∂t

+ ∇ · (ū ⊗ ū) = −∇p̄ + 1
Re

∇2ū − ∇ · τ SGS, (2.1a,b)

where ū and p̄ denote the spatial-filtered quantities of flow velocity and pressure, Re =
U∞L/ν is the Reynolds number (in which U∞ is the free stream velocity, L is the chord
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Figure 1. Schematic showing the configuration of vorticity force analysis, where VR is the control volume,
Sw is the surface of the aerofoil, SR is the cuboid surface of the control volume, U∞ is the free stream velocity,
n is the normal vector of the aerofoil, and i, j are the unit vectors in the drag and lift directions, respectively.

length of the aerofoil, and ν is the kinematic viscosity), and τ SGS is the subgrid-scale
(SGS) stress that needs to be reconstructed. Typically, the drag and lift forces exerted on
the aerofoil are comprised of the pressure force and skin friction:

FD =
∫

Sw

p̄(n · i) dA + 1
Re

∫
Sw

(n × ω̄) · i dA, (2.2)

FL =
∫

Sw

p̄(n · j) dA + 1
Re

∫
Sw

(n × ω̄) · j dA, (2.3)

where FD and FL are lift and drag forces, Sw is the surface of the aerofoil, n is the normal
vector pointing inwards from the aerofoil, i and j represent the unit vectors in the drag and
lift directions, and ω̄ = ∇ × ū is the vorticity of the flow field. In this study, an alternative
way to obtain the drag force in (2.2) is vorticity force analysis derived by Chang (1992).
In his derivation, an auxiliary potential function φ1 is introduced to satisfy the Laplace
equation and the boundary conditions:

∇2φ1 = 0, (2.4)

∇φ1 · n = −i · n, x on Sw, (2.5)

φ1 = 0, x → ±∞. (2.6)

Equations (2.4)–(2.6) reveal that φ1 is the potential flow induced by a translational motion
of the aerofoil at unit speed in the drag direction, and ∇φ1 denotes the velocity field
corresponding to such a flow condition. In the present study, we solved (2.4) numerically
within the domain shown in figure 1. Here, we assumed that the outer boundary SR is far
enough from the aerofoil such that (2.6) can be approximated as

φ1 = 0, x on SR. (2.7)

Figures 2(a,c) show φ1 zoomed in at the aerofoil used in the present cases with
AoA = 7.5◦ and 10◦. Now we rewrite the advection and viscous terms in (2.1a,b) using
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Figure 2. Auxiliary potentials φ1 and φ2 zoomed in at the aerofoils in the present cases for (a) drag φ1 with
AoA = 7.5◦, (b) lift φ2 with AoA = 7.5◦, (c) drag φ1 with AoA = 10◦, and (d) lift φ2 with AoA = 10◦.

the following two vector identities:

ū · ∇ū = 1
2 ∇|ū|2 − ū × ω̄, (2.8)

∇2ū = ∇(∇ · ū) − ∇ × ω̄ = −∇ × ω̄, (2.9)

and the resulting momentum equation becomes

−∇p̄ = ∂ū
∂t

+ 1
2

∇|ū|2 − ū × ω̄ + 1
Re

(∇ × ω̄) + ∇ · τ SGS. (2.10)

Taking an inner product with ∇φ1 on both sides of (2.10) within control volume VR
(see figure 1), and substituting (2.1a,b) and (2.4)–(2.6), along with the Gauss divergence
theorem, yields ∫

Sw

p̄(n · i) dA =
∫

Sw

φ1
∂ū
∂t

· n dA − 1
2

∫
Sw

|ū|2n · i dA

−
∫

VR

ū × ω̄ · ∇φ1 dV + 1
Re

∫
Sw

n × ω̄ · ∇φ1 dA +
∫

VR

∇ · τ SGS · ∇φ1 dV, (2.11)

where SR is the cuboid surface of the control volume. It should be noticed that since
∇φ1 = 0 at x → ±∞ (Chang 1992; Lee et al. 2012), both

∫
SR

p̄(n · ∇φ1) dA and∫
SR

|ū|2n · ∇φ1 dA equal 0 in the above derivation. Equation (2.11) demonstrates that the
pressure force, depicted as the first term on the right-hand side of (2.2), is now expressed
as a combination of multiple terms that incorporate information from the flow field. If the
friction force (1/Re)

∫
Sw

n × ω̄ · i dA is added to both sides of the above equation, then we
can rewrite the drag force (see (2.2)) as∫

Sw

p̄(n · i) dA + 1
Re

∫
Sw

(n × ω̄) · i dA =
∫

Sw

φ1
∂ū
∂t

· n dA − 1
2

∫
Sw

|ū|2n · i dA

−
∫

VR

ū × ω̄ · ∇φ1 dV + 1
Re

∫
Sw

n × ω̄ · (∇φ1 + i) dA +
∫

VR

∇ · τ SGS · ∇φ1 dV.

(2.12)
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Because we examine flow over a static aerofoil in the current study, the first two terms on
the right-hand side of (2.12) are zero. Omitting the first two terms of the right-hand side
and dividing each term in (2.12) by 1

2 U2∞Aw, in which Aw is the projection area of the
aerofoil (i.e. chord length × aerofoil span), we can obtain the drag coefficients CD as

CD = CD,V + CD,S + CD,SGS. (2.13)

Based on the terminology used in Chang (1992), ū × ω̄ · ∇φ1 is called the volume drag
element, n × ω̄ · (∇φ1 + i) is the surface drag element, and ∇ · τ SGS · ∇φ1 is the SGS
contribution to drag. On the other hand, one can apply an auxiliary potential function φ2
that satisfies ∇2φ2 = 0 with ∇φ2 · n = −j · n at x on Sw, and φ2 vanishes as x → ±∞.
Figures 2(b,d) show φ2 zoomed in at the aerofoils used in the present cases, with AoA =
7.5◦ and 10◦, respectively. Through the same procedure as used for (2.12), one obtains∫

Sw

p̄(n · j) dA + 1
Re

∫
Sw

(n × ω̄) · j dA

= −
∫

VR

ū × ω̄ · ∇φ2 dV + 1
Re

∫
Sw

n × ω̄ · (∇φ2 + j) dA +
∫

VR

∇ · τ SGS · ∇φ2 dV

(2.14)

for the analysis of the contributions to the lift force. Using the same analogy as in (2.13),
(2.14) leads to the equation for the instantaneous contributions to the total lift coefficient
CL, expressed as

CL = CL,V + CL,S + CL,SGS, (2.15)

where ū × ω̄ · ∇φ2 are the volume lift elements, n × ω̄ · (∇φ2 + j) are the surface lift
elements, and ∇ · τ SGS · ∇φ2 is the SGS contribution to lift.

3. Proper orthogonal decomposition

In this section, we outline the algorithm for computing the SPOD, and the data
reconstruction using these SPOD modes. More detailed derivations and mathematical
properties of SPOD can be found in Towne et al. (2018), and the practical implementation
of this method is provided by Schmidt & Towne (2019) and Schmidt & Colonius (2020).

3.1. Spectral proper orthogonal decomposition
We first consider the instantaneous flow field q(x, t) = (ū, v̄, w̄)T, which can be
decomposed as

q(x, t) = q̃(x) + q′(x, t), (3.1)

where q̃(x) is the temporal average of q(x, t), and q′(x, t) is its fluctuation. Let q′
k ∈ R

Nx

represent the fluctuating velocity vector at the kth time step, where Nx is the number of
discrete grid points times the number of variables (three in this study). Collecting all q′

k
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into a data matrix, we have

Q =
⎡⎣ | | | | |

q′
1 q′

2 q′
3 · · · q′

Nt| | | | |

⎤⎦ , Q ∈ R
Nx×Nt , (3.2)

where Nt is the total step (total snapshots) of the numerical simulation. The aim of SPOD
is to seek modes that are orthogonal in space–time inner product, which can be defined as

〈U, V 〉x,t =
∫ ∞

−∞

∫
Ω

U∗(x, t) W (x) V (x, t) dx dt, (3.3)

where U and V are two arbitrary vectors, the asterisk denotes the conjugate transpose,
Ω is the spatial domain of interest, and W is a positive-definite Hermitian matrix. For
statistically stationary data, the SPOD modes are obtained by solving the eigenvalue
problem for the Fourier transformed two-point space–time correlation matrix (i.e.
cross-spectral density):

S(x, x′, f ) =
∫ ∞

−∞
C(x, x′, τ ) e−i2πf τ dτ, (3.4)

where τ = t − t′, and C(x, x′, τ ) is the two-point space–time correlation tensor. Towne
et al. (2018) developed an algorithm to estimate S(x, x′, f ) in (3.4) based on Welch’s
method (Welch 1967). The data matrix Q in (3.2) is divided into Nblk overlapping blocks
with Nfft snapshots in each of them, that is,

Q(k) =
⎡⎣ | | | |

q′(k)
1 q′(k)

2 · · · q′(k)
Nfft

| | | |

⎤⎦ , k = 1, 2, . . . , Nblk, (3.5)

where superscript (k) denotes the kth block. Since blocks are overlapped by novlp

snapshots, the jth column vector in the kth block q′(k)
j corresponds to the mth column

vector q′
m in the Q matrix (see (3.2)), where

m = j + (k − 1) × (Nfft − novlp) + 1. (3.6)

The discrete Fourier transform (DFT) is then applied to (3.5) to give

Q̂(k) =
⎡⎣ | | | |

q̂′(k)
1 q̂′(k)

2 · · · q̂′(k)
Nfft

| | | |

⎤⎦ , (3.7)

where

q̂′(k)
j = F

{
w( j) q′(k)

j

}
, (3.8)

in which F{ · } is DFT operator, and w( j) is the window function to reduce spectral
leakage. Here, we use the symmetric Hamming window function

w( j + 1) = 0.54 − 0.46 cos
(

2πj
Nfft − 1

)
, for j = 0, 1, 2, . . . , Nfft − 1. (3.9)
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The next step is to construct matrix Q̂i containing the ith frequency (i.e. ith column) of
each Q̂(k), such that

Q̂i =
⎡⎣ | | | |

q̂′(1)

i q̂′(2)

i · · · q̂′(Nblk)
i| | | |

⎤⎦ , Q̂i ∈ R
Nx×Nblk , (3.10)

and the cross spectral density Si at the ith frequency is given by

Si = 1
Nblk

Q̂iQ̂
∗
i , Si ∈ R

Nx×Nx, (3.11)

which leads to the eigenvalue problem

SiWΦ i = Φ iΛi, (3.12)

where Φ i = [φ(1)
i , φ

(2)
i , . . . , φ

(Nblk)
i ] are the SPOD modes (eigenvectors) at the ith

frequency, and Λi = diag(λ
(1)
i , λ

(2)
i , . . . , λ

(Nblk)
i ) is the eigenvalue corresponding to the

SPOD mode energy, where by convention, λ(1)
i ≥ λ(2)

i ≥ · · · ≥ λ(Nblk)
i . It should be noted

that different choices of W affect the coherent structures obtained from (3.12) (Schmidt &
Colonius 2020). In this study, we specified the weighted matrix W as

W =
∫

VR

⎡⎣1
1

1

⎤⎦ dV, (3.13)

to extract the turbulence kinematic energy from the current dataset Q. However, in
practice, the total number of data points Nx is typically much larger than the number of
blocks Nblk. Hence, instead of using (3.12), it is more economical to obtain SPOD modes
Φ i by the analogous eigenvalue problem (Sirovich 1987)

1
Nblk

Q̂∗
i W Q̂iΨ i = Ψ iΛi, Q̂∗

i W Q̂i ∈ R
Nblk×Nblk , (3.14)

and the SPOD modes Φ i can be evaluated in terms of Ψ i as

Φ i = 1√
Nblk

Q̂iΨ iΛ
−1/2
i . (3.15)

3.2. Low-rank data reconstruction
Due to the optimality of SPOD modes, the best approximation to the current data matrix
Q is truncated expansion with the first n set of the SPOD basis (Schmidt & Colonius
2020). The objective of this study is to examine the actual impact of coherent structures on
aerodynamic forces at a specific moment in time. To achieve this, it is crucial to determine
the precise values of drag and lift forces induced by each SPOD mode at that particular
time instant. While applying the vorticity force representation to each SPOD mode
captures the drag/lift coefficients oscillating at a single frequency, the actual magnitude
in time remains unknown. Consequently, we are unable to determine which coherent
structure predominantly influences the overall behaviours of the original CD/L,V . In this
regard, the present method involves accurately converting the flow quantities associated
with SPOD modes Φ i, including their magnitudes represented by expansion coefficients,
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from the frequency domain to the time domain using a reconstruction technique. Here,
we adopted the low-rank data reconstruction technique proposed by Nekkanti & Schmidt
(2021), referred to as ‘frequency domain reconstruction’. By inverting the SPOD process
in the previous subsection, we have the original realizations of the Fourier transform at
each frequency:

Q̂i = Φ iAi, (3.16)

where Ai is the expansion coefficient of the ith frequency,

Ai =
√

Nblk Λ
1/2
i Ψ ∗

i = Φ∗
i W Q̂i, Ai =

⎡⎢⎢⎣
a11 a12 · · · a1Nblk
a21 a22 · · · a2Nblk
...

...
. . .

...

aNblk1 aNblk2 · · · aNblkNblk

⎤⎥⎥⎦
i

. (3.17)

The Fourier-transformed data of the kth block can be reassembled by

Q̂(k) =
⎡⎣(∑

m

amkφ
(m)

)
i=1

,

(∑
m

amkφ
(m)

)
i=2

, . . . ,

(∑
m

amkφ
(m)

)
i=Nfft

⎤⎦ , (3.18)

where m denotes the first m SPOD modes summation. Applying the inverse Fourier
transform, the data matrix in the time domain is expressed as

q′(k)
i = 1

w(i)
F−1

{(∑
m

amkφ
(m)

)
i

}
. (3.19)

Finally, the window-weighted average is adopted to the ith step, which is overlapped in
two adjacent blocks (k and k + 1):

q′
i =

q′(k)
j w( j) + q′(k+1)

j−novlp
w
(∣∣ j − novlp

∣∣)
w( j) + w

(∣∣ j − novlp
∣∣) , (3.20)

where j = i − (k − 1)(Nfft − novlp). Although Nekkanti & Schmidt (2021) have proposed
another technique called ‘time domain reconstruction’ and demonstrated superior
performance compared to the aforementioned method, we find the frequency domain
reconstruction to be a more straightforward approach for implementing the complete
algorithm. Hence, in the present study, all of the reconstructed results in the following
sections are conducted by the above procedures.

Based on the above procedures, we can expand the flow velocity as

ū = ū(0) +
Nblk∑
m=1

ū′(m), (3.21)

where ū(0) is the zeroth mode obtained from temporal average of ū, and ū′(m) denotes
the mth mode velocity reconstructed by SPOD basis. This allows us to reduce the
complexity and identify the coherent structures within turbulent flows. Moreover, the effect
of these coherent structures on drag and lift coefficients can be quantified using vorticity
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force analysis (see (2.12) and (2.14)). For example, substituting (3.21) into the first term
(volumetric vorticity force) of (2.13), we have

CD,V = C(0)
D,V +

Nblk∑
m=1

C(m)
D,V , (3.22)

where
C(0)

D,V = C00
D,V ,

C(1)
D,V = C10

D,V + C11
D,V ,

C(2)
D,V = C20

D,V + C21
D,V + C22

D,V ,

C(3)
D,V = C30

D,V + C31
D,V + C32

D,V + C33
D,V ,

...

C(m)
D,V = Cm0

D,V + Cm1
D,V + Cm2

D,V + · · · + Cmm−1
D,V + Cmm

D,V ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.23)

is the mth mode contribution to the total CD,V , and

Cmn
D,V =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

VR

ū′(m) × ω̄′(n) · ∇φ1 dV for m = n,∫
VR

(
ū′(m) × ω̄′(n) + ū′(n) × ω̄′(m)

)
· ∇φ1 dV for m /= n,

(3.24)

is the volumetric vorticity force caused by the interaction between the mth and nth modes.
As shown in (3.23) and (3.24), C(m)

D,V includes effects of zeroth mode/mth mode, mth
mode/kth mode (k = 1, 2, . . . , m − 1) and mth mode/mth mode interactions, respectively.
With these, the importance of each coherent structure can be evaluated quantitatively and
provide insight into the physical interpretation of the complex turbulent flows via mode
interaction. Similarly, CL,V can be decomposed into

CL,V = C(0)
L,V +

Nblk∑
m=1

C(m)
L,V , (3.25)

using the same definition of (3.23) and (3.24).

4. Numerical modelling

Solutions of the Navier–Stokes equations are obtained by the commercial software
ANSYS FLUENT (Fluent 2013), which discretizes the governing equations using the
finite-volume method, and uses a pressure implicit splitting operator (Issa 1986) to solve
the incompressible flow field. The spatial discretization is second-order accurate, while the
time marching scheme is second-order implicit. Transport of momentum is solved using
QUICK (Leonard 1979). Here, we use LES, in which the dynamic Smagorinsky–Lilly
model (Lilly 1992) is used to obtain the SGS stresses.

As shown in figure 3, an NACA0012 aerofoil with length L is placed at the central
region of the domain, in which C-type grids are used. In the literature, a constant
trade-off exists when selecting the domain size, balancing the need to accurately capture
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Aerofoil 

L

y

z

x

Figure 3. Schematic showing the domain configuration of the present simulations (AoA = 7.5◦), where
L = 0.1 m is the chord length of the aerofoil.

flow phenomena with the goal of minimizing computational costs. To this end, Jones
et al. (2008) carried out systematic investigations to determine the optimal domain size
and grid resolutions for DNS of LSB on an NACA0012 aerofoil at Re = 50 000 and
AoA = 5◦. Based on their findings, they suggested that a domain length in the x-direction
ranging from approximately 11.3L to 13.3L, and a domain height in the y-direction of
approximately 10L, are suitable for accurately simulating such flow conditions. In addition,
they also demonstrated that domain width 0.2L in the z-direction is sufficient to capture
the movements of small-scale eddies in the spanwise direction. Therefore, in this study the
domain dimension is 21L in the x-direction, 20L in the y-direction – which is slightly larger
than that suggested by Jones et al. (2008) – and 0.2L in the z-direction. This choice also
aligns with recommendations from Liu & Xiao (2020), Kojima et al. (2012) and Yeh &
Taira (2019) for cases involving Re ∼ O(104) and low AoA, as well as with guidance from
Turner & Kim (2022) and Rodriguez et al. (2013) in scenarios with full-stall conditions,
where domain size 0.1L was utilized. However, we observed that in the present case
with the larger AoA (10◦), the two-point correlation of the streamwise velocity does not
approach zero at the half-width of the domain. It is worth noting that due to computational
resource limitations, we restricted the spanwise dimension to 0.2L, but a larger dimension
may be required for future studies. With 96 grid cells in the z-direction, the total number
of grid cells is around 7 200 000, which varies slightly between cases depending on
the configuration (i.e. different angles of attack). Figure 4 presents a two-dimensional
view of the total grid configuration on the xy-plane (figure 4a) and a zoom-in figure to
show the compressed grid cells on the surface of the aerofoil (figure 4b). Simulations
begin with a background uniform velocity U∞ in the x-direction such that the Reynolds
number is Re = U∞L/ν = 50 000, where L = 0.1 m is the chord length of the aerofoil,
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(b)(a)

Figure 4. (a) Computational grid on the xy-plane in the case with AoA = 7.5◦, and (b) its zoomed-in image
around the aerofoil.

0 0.2 0.4 0.6
x

y+

0.8 1.0

0.5
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1.5
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3.5
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4.5
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AoA = 7.5°

AoA = 10°

Figure 5. An example of instantaneous distributions of the values of y+ of the bottom-most grid cells at a
time instant in cases with AoA = 7.5◦ (red) and AoA = 10◦ (blue).

and ν = 1.23 × 10−5 m2 s−1 is the kinematic viscosity. In the present simulations, grids
are always compressed on the near-wall region of the aerofoil such that y+ = y/δν ≈ 1
at the bottom-most grid point on the aerofoil. This can be confirmed by outputting the
distribution of y+ at the bottom-most grid points on the aerofoil calculated based on the
instantaneous wall shear stress, as shown in figure 5, where we show that typical values at
a representative instant of time range mostly from 0.5 to 2, while values greater than 3 are
found at just few points. Additionally, we find that 13 ≤ x+ ≤ 22 and 8 ≤ z+ ≤ 14. While
these values slightly exceed the DNS mesh size recommendations proposed by Georgiadis,
Rizzetta & Fureby (2010) (10 ≤ x+ ≤ 20 and 5 ≤ z+ ≤ 10), they remain suitable for
achieving the resolution necessary for the LES.

To examine the dependence of the numerical results on grid resolutions, we also
performed simulations using coarser (5 400 000 cells) and finer (9 600 000 cells) grid
resolutions than that of the present study (referred to as the medium grid resolution). While
progressing from a coarser to a medium mesh, we first enhanced the resolution along the
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0 0.2 0.4 0.6

x

–Cp

0.8 1.0
–1.5

–1.0
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1.5

2.0

2.5

Coarse
Medium (present study)
Fine
LES by Lehmkuhl et al. (2013) (AoA = 8°)

Figure 6. Distributions of the pressure coefficient (Cp) on the surface of the NACA0012 aerofoil in the case
with AoA = 7.5◦ obtained from the present simulation with coarse (black dash-dotted line), medium (black
solid line) and fine (black dashed line) grid resolutions, and the LES by Lehmkuhl et al. (2013) using the QR
eddy-viscosity model (grey solid line).

streamwise direction on the aerofoil’s surface. Subsequently, we refined the resolution
vertically at the same position, exceeding the medium mesh resolution by one and a
half times. Figure 6 presents the mean pressure coefficient Cp obtained from the present
numerical simulations (AoA = 7.5◦) along with the LES results in Lehmkuhl et al. (2013)
using the QR eddy viscosity model in the case with AoA = 8◦. Lehmkuhl et al. (2013)
show that the pressure drops at two locations (see the grey solid line in figure 6): one at the
leading edge (x ≈ 0), and the other at a point close to the centre of the chord (x ≈ 0.3). It
is apparent that the coarse grid (see the black dash-dotted line) fails to capture the second
point of pressure drop. On the other hand, the medium resolution (see the black solid line)
shows that at both of these points, the profile of Cp slightly underestimates/overestimates
the sudden decrease of the pressure. Despite this, fair agreement between the present
result and results from the LES by Lehmkuhl et al. (2013) can be seen. In contrast to the
variations observed between cases of coarse and medium grid resolutions, the distinction
between cases of medium and fine grid resolutions (see the black dashed line) appears to
be insignificant. Thus we can affirm confidently that minor deviations in outcomes do not
stem solely from variations in mesh configurations, indicating that grid convergence can
be achieved at the medium grid resolution. Therefore, in this study, we use the medium
grid resolution to obtain the numerical results.

As for the SPOD procedure, LES data consist of 1000 snapshots in each angle of attack
case, and the SPOD modes are computed for blocks containing Nfft = 64 snapshots with
50 % overlap (to minimize the variance of the spectral estimate), resulting in a total number
of blocks Nblk = 30. It should be noted that selecting appropriate values for Nfft and Nblk is
considered state of the art in SPOD research. During our simulation period, we discovered
that applying SPOD with Nfft = 64 and Nfft = 128 per block yielded nearly identical
results for the first two modes, and the first three frequencies obtained from the Nfft = 64
case are enough to capture the fundamental frequency of the wake in our simulations,
which will be discussed later. Consequently, to retain simplicity, we used Nfft = 64 per
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Figure 7. The mean streamwise velocity along with the streamlines of the mean flow field in cases with
(a) AoA = 7.5◦, and (b) AoA = 10◦.

block to construct the SPOD modes for the subsequent analyses. Furthermore, the SPOD
mode convergence for the current set-up is also checked by using the method proposed by
Abreu, Cavalieri & Wolf (2017), and the details are shown in Appendix A.

5. Flow fields and total vorticity forces

Figure 7 presents the mean streamwise velocity ˜̄u, along with the streamlines in two cases
of different AoA. Here, the mean velocity is obtained by applying the spatial and temporal
averages to the velocity field. Flow separation behind the leading edge can be found in both
cases, but in the case with AoA = 7.5◦, figure 7(a) shows that the separated flow reattaches
to the aerofoil surface at x ≈ 0.3, forming a bubble-like flow structure in the mean field,
which is known as the laminar separation bubble (LSB). When AoA increases, as shown
in figure 7(b), the separated flow no longer reattaches. In the cases with the larger AoA, as
shown in figure 7(b), the extension of the separation region to the trailing edge results in a
strong shear layer behind the trailing edge. This leads to the formation of the trailing-edge
vortex (TEV), which is absent in the low-AoA cases. In the present study, under the same
Re, the reattachment, detachment and TEV characterize three distinct flow regimes from
low to high values of AoA.

In addition to the mean flow field, root-mean-square (r.m.s.) of fluctuating streamwise
velocity r.m.s.(u′) at the central slice in the z-direction in cases with AoA = 7.5◦ and
AoA = 10◦ are plotted in figure 8. It can be seen from figure 8(a) that at AoA = 7.5◦,
r.m.s.(u′) is concentrated within the LSB (see figure 7a). On the other hand, without
flow reattachment, values of r.m.s.(u′) in the case with AoA = 10◦ are higher along the
shear layer and near the trailing edge, as shown in figure 8(b). Next, fluctuation quantities
associated with vortex shedding frequency (Roshko 1961; Huang & Lin 2000) are further
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Figure 8. Root-mean-square (r.m.s.) of fluctuating streamwise velocity u′ = ū − ˜̄u at the central slice in the
z-direction in cases with (a) AoA = 7.5◦, and (b) AoA = 10◦.

examined via the power spectra of vertical velocity. At AoA = 7.5◦, vertical velocity
fluctuation is measured at five points (P1–P5) positioned at distances 5–8 grid units from
the upper surface. Furthermore, the last point, P6, is probed in the wake region. In the
case with AoA = 10◦, points P1–P5 are chosen specifically along the shear layer depicted
in figure 7(b), while P6 is located at the wake region. Figures 9(a,b) present the power
spectra of the vertical velocity sampled at six points along the upper side of the aerofoil,
as shown by P1–P5 in figures 9(c,d), in cases with AoA = 7.5◦ and 10◦, respectively. In
general, the spectra with slope −5/3 (marked by the dashed line), i.e. the inertial subrange,
can be found for both AoA values, particularly near the trailing edge, i.e. points P5 and P6.
At the point closest to the leading edge (i.e. P1), a high-frequency peak (St ≈ 11) can be
found in both AoA cases. These peaks correspond to shear instabilities, which disappear
as the flow moves downstream and transforms to turbulence. Another important feature is
in the large AoA case is the presence of a low-energy peak at St ≈ 11 at the station P6,
as shown in figure 9(b). This is the fundamental frequency that corresponds to the wake,
which plays a crucial role in aerodynamic forces exerted on the aerofoil, as discussed
in the following sections. It is worthwhile mentioning that the power spectra shown in
figure 9(b) are very similar to those obtained from the DNS results with slightly smaller
AoA (= 9.25◦) in Rodriguez et al. (2013). Because the flow reattachment suppresses the
wake, the fundamental frequency is not found in the smaller AoA case (see figure 9a).

Figure 10 presents time series of the total drag and lift coefficients, and all the
contributions from the vorticity force analysis according to (2.13) and (2.15), for the
present cases, where we also indicate the averaged values C̃D and C̃L. As summarized
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Figure 9. Power spectra of the vertical velocity in the cases with (a) AoA = 7.5◦, and (b) AoA = 10◦. From
top to bottom, spectra in (a,b) correspond to points P6, P5, P4, P3, P2 and P1 in (c,d), respectively. The dashed
lines represent slope −5/3. The grey areas highlight the low-frequency range of the zeroth mode, while the
dash-dotted lines in each case indicate the first (left-hand line) and second (right-hand line) frequencies in the
present SPOD analysis.

in table 1, values of C̃D and C̃L with different AoA in the present study are close to those
predicted by Musial & Cromack (1988) based on the experimental data of Sheldahl &
Klimas (1981) and Miley (1982). The magnitudes of the surface contribution (CD,S or
CL,S) in all cases are similar, while the total drag and lift are increasingly dominated by
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Figure 10. Time series of (a,c) drag and (b,d) lift coefficients, with their mean values, denoted with tildes,
and the volumetric (CD,V and CL,V ) and surface (CD,S and CL,S) vorticity force contributions in cases with
(a,b) AoA = 7.5◦, and (c,d) AoA = 10◦.

Present Musial & Cromack (1988)

AoA = 7.5◦ C̃D 0.05 0.06
C̃L 0.63 0.68

AoA = 10◦ C̃D 0.15 0.12
C̃L 0.61 0.68

Table 1. Comparisons of temporal average of drag (C̃D) and lift (C̃L) coefficients between existing data and
the present cases.

the volumetric term (CD,V or CL,V ), with increasing AoA. Except for the drag in the case
with AoA = 7.5◦, where CD,S is about one-fifth of the volume contribution (CD,V ), CD,V
is typically greater than all the other terms by more than one order of magnitude. Also,
because the small grid size in the near field results in small values of the eddy viscosity
in the present SGS model (i.e. eddy viscosity < 0.1ν), the SGS contributions (CD,SGS and
CL,SGS) are negligible (< 1 % CD,V or < 1 % CL,V ) compared with the others in all of the
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Figure 11. Snapshots of (a) volume drag element −(ū × ω̄) · ∇φ1, (b) one of its components ū × ω̄z ×
∂φ1/∂y, (c) ū (d) ω̄z and (e) ∂φ1/∂y, at the central slice in the z-direction at t = 3.83 in the case with
AoA = 10◦.

present cases, and are not plotted in figure 10. The dominance of the volumetric terms
indicates that in such flow regimes, the coherent structures, particularly the vortices, play
crucial roles in forces exerted on the aerofoil. In what follows, our discussion is on only the
volumetric terms. Figure 11 is utilized to demonstrate visually how the generation of drag
force occurs through the interaction between velocity and vorticity fields in the case with
AoA = 10◦. The dominant contributing factor to the volume drag element can be observed
from figures 11(a,b), where it is typically the outcome of multiplying the streamwise
velocity with the spanwise vorticity. Figure 11(c) illustrates that the streamwise vorticity
maintains a positive value within the shear layer, while negative values are concentrated
beneath it. This leads to a negative distribution of vorticity across the shear layer, as
depicted in figure 11(d). Upon combining ū, ω̄z and ∂φ1/∂y, which are negative within
the region of interest (see figure 11e), it can be concluded that the drag force is attributed
primarily to the positive distribution of the shear layer, as demonstrated in figure 11(b).

6. Effect of SPOD modes on aerodynamic forces

Figure 12 displays the eigenvalues of the SPOD modes as a function of the Strouhal
number (St = fU∞/L) for different AoA. It can be seen that the relative importance in
terms of energy decreases with increasing mode.

To examine the convergence to the total drag of the mode cumulation from C00
D,V to CMN

D,V ,
we introduce a force convergence index. Taking drag as an example, the force convergence
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Figure 12. Eigenvalues λm of the mth SPOD mode as a function of Strouhal number (St) in the cases with
(a) AoA = 7.5◦, and (b) AoA = 10◦.
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Figure 13. The force convergence indices against the cumulation of mode M to show the convergence of the
force contribution of mode cumulation to drag (black) and lift (grey) for the first thirty modes in cases with
(a) AoA = 7.5◦, and (b) AoA = 10◦.

index is defined as

RM
D =

NT∑
j=1

∣∣∣∣∣
M∑

m=0

C(m)
D,V − C(0)

D,V

∣∣∣∣∣ + NTC(0)
D,V

NT∑
j=1

∣∣∣CD,V − C(0)
D,V

∣∣∣ + NTC(0)
D,V

× 100 %. (6.1)

Based on the vorticity force theory, (6.1) indicates how well the the drag/lift of the bulk
flow can be approximated by the mode cumulation covered by the Mth mode. In the same
analogy, we define the force convergence index for lift, denoted as RM

L . Figure 13 shows
RM

D,V and RM
D,L against M in cases with AoA = 7.5◦ and 10◦. Because of the relatively small
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MN = 00 MN = 10 MN = 11 MN = 20 MN = 21 MN = 22

AoA = 7.5◦ R̃MN
D (%) 89.9 92.5 93.1 94.0 94.2 94.2

R̃MN
L (%) 95.6 97.0 97.1 97.6 97.6 97.6

AoA = 10◦ R̃MN
D (%) 84.2 89.3 89.9 97.1 97.8 98.4

R̃MN
L (%) 81.6 95.0 94.4 99.9 100.0 101.0

Table 2. Values of the force convergence indices R̃MN
D and R̃MN

L in cases with AoA = 7.5◦ and 10◦ for 0 ≤ M,
N ≤ 2.

time variations of both CD,V and CL,V in the low AoA case due to the flow reattachment,
the magnitude of total force can be well approximated by considering only the mean flow
field (i.e. zeroth mode) for both drag (R00

D = 89.9 %) and lift (R00
L = 95.6 %). As shown

in figure 13(a), convergence for drag and lift coefficients becomes fairly slow after the
second mode is added. Different from those with AoA = 7.5◦, the zeroth mode in the
case with AoA = 10◦ has relative lower percentage of the total drag and lift contributions.
The rapid convergence is reached (97 % for drag and 99 % for lift) after taking C(2)

D,V and

C(2)
L,V into account. Next, to examine the force convergence due to the contribution arising

from the interactions between modes, we introduce force convergence indices that consider
mode–mode interactions. For drag, this is expressed as

R̃MN
D =

NT∑
j=1

∣∣∣∣∣
M−1∑
m=0

C(m)
D,V +

N≤M∑
n=0

CMn
D,V − C(0)

D,V

∣∣∣∣∣ + NTC(0)
D,V

NT∑
j=1

∣∣∣CD,V − C(0)
D,V

∣∣∣ + NTC(0)
D,V

× 100 %, (6.2)

and R̃MN
L is defined for lift by analogy. Both RMN

D,V and RMN
D,L for the first two non-zero

modes (0 < M, N ≤ 2) along with the zeroth mode (M, N = 0) are summarized in table 2.
Overall, this shows that for non-zero modes, only their interactions with the zeroth
mode (i.e. MN = 10 and 20) dominate the force contribution, while the contributions
of mode–mode interactions are typically negligible, as R̃MN

D/L − R̃MN−1
D/L < 1 %. Moreover,

while the effect of the second mode is relatively minor in the small AoA case, it becomes
much more important in the large AoA case. To make the discussion more concise, in what
follows, we consider only the mode contributions that are greater than 1 %. That is, we
examine the force contribution due to the interactions of the zeroth mode and mode 1 in
the case with AoA = 7.5◦, while in the case with AoA = 10◦, we consider the interactions
of the zeroth mode and the first two non-zero modes.

From the previous results, we can conclude that the time variation of the total drag
and lift is attributed mainly to the interaction between the zeroth mode and SPOD modes
(i.e. C10

D/L,V and C20
D/L,V ), whereas the mode–mode interaction (e.g. C11

D/L,V and C22
D/L,V )

provides only fluctuation, which is fairly insignificant to aerodynamic forces. However, it is
still difficult to determine the importance of each coherent structure since ū′(m) consists of
coherent structures with different time scales/frequencies (Towne et al. 2018). Therefore,
in what follows, we further decompose the flow fields resulting from the first and second
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SPOD modes (ū′(1) and ū′(2)) into the summation of coherent structures oscillating at a
single frequency, that is,

ū′(m) =
Nfft/2∑
k=0

ū′(m,k), m = 1, 2, (6.3)

where ū′(m,k) is the velocity of the mth SPOD mode oscillating at the kth frequency (i.e.
Fourier series expansion of mth mode). In this study, the evaluation of ū′(m,k) involves
nullifying the kth column vector in (3.18) (kth frequency in SPOD), followed by the
application of (3.19) and (3.20) to convert it to the time domain. Then C10

D,V and C20
D,V

in (3.24) can be rewritten as

C10
D,V = C100

D,V + C101
D,V + C102

D,V + · · · + C10K
D,V ,

C20
D,V = C200

D,V + C201
D,V + C202

D,V + · · · + C20K
D,V , for k = Nfft/2,

}
(6.4)

where

C10K
D,V =

∫
VR

(
ū(0) × ω̄′(1,K) + ū′(1,K) × ω̄(0)

)
· ∇φ1 dV,

C20K
D,V =

∫
VR

(
ū(0) × ω̄′(2,K) + ū′(2,K) × ω̄(0)

)
· ∇φ1 dV,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.5)

are the vorticity force contributions of C10
D,V and C20

D,V at the Kth frequency. In the
following discussions, we refer to K = 0 as the ‘zeroth’ frequency, K = 1 as the ‘first’
frequency, and K = 2 as the ‘second’ frequency. It is worth noting that while C10

D/L,V

(C20
D/L,V ) comprises the interaction between the velocity of the zeroth mode and the

vorticity of the first (second) mode, as well as the velocity of the first (second) mode
and the vorticity of the zeroth mode (see (3.24)), our analysis of the present cases reveals
that both components make nearly equal contributions to the drag/lift force. Therefore, our
focus lies on the combined effect of these two components.

The procedure of the analysis in the present study is summarized in the flow chart shown
in figure 14. We first apply SPOD to the time series of the flow field generated by LES.
Subsequently, we reconstruct the flow field for each individual mode and frequency by flow
field using the obtained SPOD modes. We then conduct the vorticity force analysis, which
enables us to identify force contributions from the mean flow field and coherent structures
with various features and frequency. The sum of these contributions is equivalent to the
total force obtained from the conventional force analysis.

Figure 15 displays the spectra of the vorticity force contributions to drag and lift for
various cases. Specifically, we examine the total force, the zeroth mode, and the cumulation
of the first three frequencies of the first mode for cases with AoA = 7.5◦ (figures 15a,b)
and AoA = 10◦ (figures 15c,d), as well as the second mode for the case with AoA = 10◦
(figures 15e, f ). It is important to mention that multiple frequency peaks are observed
in figure 15, despite these representing the forces resulting from the SPOD mode at a
single frequency. This is due to the fact that we perform SPOD to velocity field rather
than C10K/20K

D/L,V . Nonlinear interaction between ū′(m,k) and ω̄′(m,k) in (6.5) will generate
frequency peaks different from that generated from SPOD. Another possibility is that the
number of sample points (total time step) used in fast Fourier transforms for evaluating
spectra of C10K/20K

D/L,V differs from that utilized in the SPOD procedure (i.e. Nfft in each
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Figure 14. Flow chart summarizing the procedure of the present vorticity force analysis using SPOD. Here,
f 1, f 2 and f 3 represent the first, second and third frequencies, respectively.

block). As a result, multiple frequency peaks are observed in figure 15 due to spectral
leakage. Figures 15(a,b) reveal that while there is a gap between the total force and mode
cumulation until the second frequency of the first mode (the green line in figures 15a,b),
the latter captures a few dominant frequencies corresponding to the large force peak.
Although the zeroth and first modes somewhat capture the low-frequency force oscillation,
the highest contribution to both drag and lift oscillation cannot be captured until the second
mode is added. In contrast to the case with AoA = 7.5◦, where higher frequencies are
dominant, the time variations of forces in the case with AoA = 10◦ are dominated by
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Figure 15. Spectra of the vorticity force contributions to (a,c,e) drag and (b,d, f ) lift for the total force,
the zeroth mode, and the cumulation of the first three frequencies of the first mode in the cases with
(a,b) AoA = 7.5◦ and (c,d) AoA = 10◦, and (e, f ) the cumulation of the first three frequencies of the second
mode in the cases with AoA = 10◦.

low-frequency oscillations, as shown in figures 15(c– f ). These low-frequency oscillations
are captured by flow at the zeroth and first frequencies, while flow at the third frequency
is responsible for higher-frequency oscillations, which are insignificant in this case.
Additionally, the zeroth frequency of the second mode becomes a relatively important
contribution to drag, as shown in figure 15(e). Although adding more frequencies in both
cases of AoA may be desired, for conciseness, the following discussion focuses on the
flows at the first three frequencies.

7. Vorticity forces of coherent structures in dominant modes and frequencies

7.1. AoA = 10◦

Figure 16 shows the time histories of the normalized force contribution to drag and lift for
the first three frequencies of the first mode in the case with AoA = 10◦. It is worthwhile
mentioning that in the first mode, the contributions of the zeroth frequency to drag and
lift have an opposite trend, and the latter is associated with a greater magnitude. This
is explained in the next subsubsection. For the first and second frequencies, patterns of
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Figure 16. Time histories of the vorticity force contributions to (a) drag and (b) lift, for the first three
frequencies of the first mode normalized by the zeroth mode in the case with AoA = 10◦. Diamonds in
(a) indicate the time points corresponding to local maximum and minimum values of the force contribution.
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Figure 17. Time histories of the vorticity force contributions to (a) drag and (b) lift, for the first three
frequencies of the second mode normalized by the zeroth mode in the case with AoA = 10◦. Diamonds in
(a) indicate the time points corresponding to local maximum and minimum values of the force contribution.

the force contributions to drag and lift are similar. Figure 17 shows results analogous to
figure 16 for the second mode. In this mode, the zeroth frequency has a much greater
amplitude than the others, and the contribution of the first frequency to drag becomes
insignificant. In fact, as shown in figure 9, the first three frequencies in the case with
AoA = 10◦ characterize the three important regimes in the velocity spectrum. It should be
noted that in the present SPOD, there exists a broadband spectrum at the zeroth frequency,
with frequency ranging from St = 0 to St = 0.45. As shown in figure 9, this covers a wide
range in the energy containing range of the spectra. This is due to the fact that while SPOD
divides the discrete LES data into Nblk blocks and applies a Fourier transform to each of
them (as seen in (3.5) and (3.7)), the highly fluctuated flow pattern does not guarantee
that both drag and lift coefficients obtained from the blockwise-averaged flow fields (i.e.
zeroth frequency) remain the same in each block. Therefore, there is a low-frequency
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oscillation (i.e. frequency < Nblk/Ttot, where Ttot is the total simulation time) in the time
series of zeroth frequency (see orange line). Variations between blocks will be smoothed
after the window-weighted average in frequency domain reconstruction shown in (3.20).
Moreover, as documented by Nekkanti & Schmidt (2021), it has been indicated that
potentially, the Hamming window (see (3.9)) approach could exhibit abrupt transitions
between adjacent blocks, contributing an additional factor of unintended variability in
our outcomes. There are two ways to compensate this issue; one is to utilize a greater
number of snapshots within a single block, while the other is to extend the duration of the
simulation itself. Nevertheless, the effectiveness of both strategies is constrained due to
the highly fluctuating characteristics of CD/L,V in the current study. Furthermore, utilizing
these strategies during the SPOD procedure required massive computational costs. This
makes it inefficient to apply them in our study. In summary, the zeroth frequency represents
a low-frequency oscillation that results in flapping of the shear layer while the aerofoil is
close to stall (Rodriguez et al. 2013). The first and second frequencies (St = 0.86 and
1.7) are close to the fundamental frequency induced by wakes, while the latter may also
indicate a lower bound of the higher-frequency oscillation resulting from shear instability.

To examine force contributions of each frequency, we analyse the flow structures
resulting from each frequency at the local minimum and maximum, as indicated by
diamonds in figures 16(a) and 17(a). Discussion is given in an incremental order in
frequency for each mode in a cumulative manner, i.e. discussing the effect of the nth
frequency of the mth mode by adding it to the flow field composed of the zeroth mode and
zeroth to (n − 1)th frequencies of the mth mode. The time points (i.e. local minimum and
maximum) taken for the following discussion for a specific mode allows us to minimize
the effect of the previous (lower) frequency.

7.1.1. Zeroth frequency of the first mode
Figure 18 presents snapshots of volume drag elements of C100

D,V along with the velocity
field at the central slice in the z-direction and the combination with the zeroth mode at two
representative time instants. It should be noted that for better visualization, we use different
velocity scales when plotting the flow field for the single frequency (figures 18b,c) and for
its combination with its previous mode and frequency (figures 18d,e), as indicated by the
arrows at the top right of figures 18(c,e), respectively. All the following figures presenting
the analogous physical quantities are plotted in the same manner. As shown in figure 18(a),
the positive force contribution at the zeroth mode comes from the strong velocity shear
associated with the leading edge separation. It can be seen from figures 18(b,c) that the
zeroth frequency of the first mode corresponds to a large vortex structure at the end of the
shear layer above the trailing edge. The vortical structure results in a significant stream
along the suction side, which interacts with the shear layer, resulting in the low-frequency
time variation of drag. At t = 1.37, the vorticity associated with the clockwise rotation is
relatively weak, so that the addition of the C100

D,V to the zeroth mode (see figure 18d) at
t = 1.37 does not differ much from the original zeroth mode C00

D,V shown in figure 18(a).
At t = 7.30, the large vortex structure at the same position turns to anticlockwise and
becomes stronger, resulting in a significant horizontal stream on the suction side of the
aerofoil. As shown in figure 18(e), when combined with the flow of the zeroth mode,
the clockwise vortex structure pulls up the shear layer to a higher level and enhances the
recirculation near the trailing edge. This results in a leading-edge vortex (LEV) that has a
negative force contribution in the region beneath the separated shear layer, which in turn
cancels out certain positive contributions in the shear layer. In fact, it is the thin shear layer
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Figure 18. In the case with AoA = 10◦, snapshots of: (a) instantaneous volume drag elements at the central
slice in the z-direction for the zeroth mode superimposed with arrows of ū(0); (b) volume drag elements of
C100

D,V superimposed with arrows of ū′(1,0) at t = 1.37; (c) as (b) but for t = 7.30; (d) volume drag elements of
C00

D,V + C100
D,V superimposed with arrows of ū(0) + ū′(1,0) at t = 1.37; and (e) as (d) but for t = 7.30. The insets

in (b,c) indicate the time points on the history of the force contribution of C100
D,V . The arrow at the top right of

(c) indicates the velocity scale in (b,c), while the arrow at the top right of (e) indicates the velocity scale in
(a,d,e).

developed at x = 0.6–1.8 on the wall due to the re-entrant jet on the suction side that has
a net positive contribution to drag, as shown in figures 18(c,e).

In comparison to drag, the volume lift element at the zeroth frequency of the first mode
(C100

L,V ) has a significantly greater magnitude and different sign, as shown in figure 16. To
examine this further, figure 19 presents analogous results for C100

L,V . A comparison of the
zeroth mode between figures 19(a) and 18(a) shows that the spatial distribution patterns of
the volume lift elements are almost identical except near the tip of the leading edge (x <

0.08), where C00
D,V turns to the different sign while C00

L,V remains positive. This different
behaviour between drag and lift near the tip of the leading edge is due to the geometric
effect, as shown in the auxiliary potential, φ1 and φ2, in figures 2(c,d), respectively. It can
be seen from figure 2(c) that when one moves from right to left along the suction side, the
positive auxiliary potential for drag (φ1) gradually vanishes and turns negative at the tip
of the leading edge, while the auxiliary potential for lift retains a positive sign, as shown
in figure 2(d). The non-vanishing of φ2 preserves the positive contribution near the tip of
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Figure 19. In the case with AoA = 10◦, snapshots of: (a) instantaneous volume lift elements at the central
slice in the z-direction for the zeroth mode superimposed with arrows of ū(0); (b) volume lift elements of
C100

L,V superimposed with arrows of ū′(1,0) at t = 1.37; (c) as (b) but for t = 7.30; (d) volume lift elements of
C00

L,V + C100
L,V superimposed with arrows of ū(0) + ū′(1,0) at t = 1.37; and (e) as (d) but for t = 7.30. The insets

in (b,c) indicate the time points on the history of the force contribution of C100
L,V . The arrow at the top right of

(c) indicates the velocity scale in (b,c), while the arrow at the top right of (e) indicates the velocity scale in
(a,d,e).

the leading edge at t = 1.37, as shown in figure 19(b), and the negative contribution at
t = 7.30, as shown in figure 19(c). As a result, contributions to lift have a different sign
with greater magnitude when compared to those for drag. This study found that typically,
the sign difference feature between contributions to drag and lift is associated with the
large vortical structures locating at the shear layer, which induces a significant near-wall
stream. This phenomenon is also found in the first frequency of the second mode in the
present case with AoA = 10◦, as provided in § 7.1.5.

7.1.2. First frequency of the first mode
Figure 20 shows snapshots of volume drag elements of C101

D,V at the central slice in the
z-direction and its combination with C00

D,V and C100
D,V at two representative time instants.

The first frequency corresponds to an asymmetric vortex pair, with one vortex located
ahead of and the other behind the trailing edge. As shown in figures 20(a,b), the strong
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Figure 20. In the case with AoA = 10◦, snapshots of: the instantaneous volume drag elements at the
central slice in the z-direction for volume drag elements of C101

D,V superimposed with arrows of ū′(1,1) at

(a) t = 2.28, and (b) t = 3.38; and volume drag elements of C00
D,V + ∑1

K=0 C10K
D,V superimposed with arrows of

ū(0) + ∑1
K=0 ū′(1,K) at (c) t = 2.28, and (d) t = 3.38. The insets in (a,b) indicate the time points on the history

of the force contribution of C101
D,V . The arrow at the top right of (b) indicates the velocity scale in (a,b), while

the arrow at the top right of (d) indicates the velocity scale in (c,d).

flow pointing to the top left at t = 2.28 leads to the negative contribution to drag, while
the flow pointing to the bottom right at t = 3.38 provides a positive contribution to drag.
When combined with the previous mode and frequency, at t = 2.28, the anticlockwise
vortex suppresses the shear layer in the zeroth mode (see figure 20c). When the vortex turns
clockwise, similar to that in C100

D,V (see figure 18e), an LEV is formed ahead of the trailing
edge, which slightly enhances the positive contribution to drag, as shown in figure 20(d).
Both the zeroth and first frequencies of the first mode correspond to the LEV, but the latter
is more localized, such that its major influence is limited into the second half of the chord
(x = 0.6–1.0).

7.1.3. Second frequency of the first mode
Figure 21 presents snapshots of volume drag elements of C102

D,V superimposed with the
corresponding velocity field at the central slice in the z-direction, at two representative
time instants. The flow field of the second frequency of the first mode consists of a
series of vortex pairs at the separated shear layer, namely shear-layer vortices (SLV).
These high-frequency, low-wavelength wakes arise due to instability at the separated shear
layer. As we can use vorticity force analysis to evaluate forces generated by vortices, it is
worth noting that a single vortex has zero net force contribution without background flow;
it is the combination of a vortex and background stream that generates a net vorticity
force. Therefore, the upper half-regions of these vortices, located in the shear layer, are
associated with a stronger drag contribution. Figure 21 also shows that the clockwise
vortical structure, which supports the shear layer, provides a positive drag contribution,
while the anticlockwise vortical structure, which somewhat disrupts the shear layer, has a
negative drag contribution.
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Figure 21. Snapshots of the instantaneous volume drag elements at the central slice
in the z-direction for C102

D,V superimposed with arrows of ū′(1,2) at (a) t = 4.20, and
(b) t = 4.47, in the case with AoA = 10◦. The insets indicate the time points on the history of the
force contribution of C102

D,V . The arrow at the top right of (b) indicates the velocity scale in (a,b).

To examine further the contribution of these high-frequency wakes, figure 22 presents
snapshots of volume drag elements due to the combination of the first three frequencies
of the first mode and the zeroth mode at the central slice in the z-direction superimposed
with the associated velocity field. The figure also presents the corresponding iso-surfaces
of the Q-criterion (Hunt, Wray & Moin 1988) of the original flow field (Q = 5 × 105)
superimposed with volume drag elements of CD,V at four representative time instants.
It can be seen that the clockwise vortical structure at the middle of the chord (x ∼ 0.6)
in figure 21 corresponds to an enlarged area of positive contribution in the shear layer
in figure 22(a). In the original flow field, as shown in figure 22(b), it represents an
expanding spanwise vortex originating from the leading-edge separation due to shear
instability, as indicated by the triangle in figure 22(b). The downstream movement of this
vortical structure along the separated shear layer farther from the wall (see figure 22c)
represents a roll-up of the spanwise vortex, accompanied by three-dimensional vortical
structures (e.g. distortion and streamwise vortices), as shown in figure 22(d). At this
moment, the flow at the second frequency of the first mode approaches a local maximum
of the force contribution to drag, as shown in the inset of figure 22(c). The distortion of
the two-dimensional vortex core leads to a horseshoe-like vortical structure, as shown in
figures 22(d, f ). The further roll-up of the vortical structure towards the downstream, as
shown in figures 22(e,g), leads to the irregularity of the vortical structure, followed by the
break-up and movement away from the aerofoil’s surface, as shown in figure 22(h), which
reduces its drag contribution (see figure 22g).

7.1.4. Zeroth frequency of the second mode
Here, we conduct the same analyses as in §§ 7.1.1–7.1.3, and focus on the contributions
of the first three frequencies of the second mode. Figure 23 shows snapshots of volume
drag elements of C200

D,V at the central slice in the z-direction and its combination with the
zeroth mode at two representative time instants (see figure 17a). Similar to volume drag
elements of C100

D,V (see figure 18), we observe a clockwise primary LEV near the trailing
edge of the aerofoil, and a strong, thin layer on the surface of the aerofoil is observed at t =
3.83, resulting in a maximum value of drag (see figure 23a). In contrast, at t = 7.85, the
anticlockwise LEV provides a negative contribution to drag on the surface of the aerofoil,
as shown in figure 23(b). Furthermore, when adding volume drag elements of C200

D,V to the
zeroth mode, we observe that the clockwise LEV causes a downstream extension of the
shear layer and creates a circulation zone near the trailing edge, as shown in figure 23(c).
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Figure 22. Snapshots of (a,c,e,g) the instantaneous volume drag elements due to the zeroth mode and the
first three frequencies of the first mode at the central slice in the z-direction superimposed with the associated
velocity field, and (b,d, f ,h) the corresponding iso-surfaces of the Q-criterion (Q = 5 × 105), coloured with
volume drag elements at (a,b) t = 4.20, (c,d) t = 4.38, (e, f ) t = 4.47, and (g,h) t = 4.67, in the case with
AoA = 10◦. The insets in (a,c,e,g) indicate the corresponding points on the time history of the force contribution
of the second frequency of the first mode. The arrow at the top right of (g) indicates the velocity scale in
(a,c,e,g). The red triangles indicate the downstream evolution of a vortical structure in (a,c,e,g) the reduced
flow field, and (b,d, f,h) the original flow field.

On the other hand, the anticlockwise LEV destroys the shear layer of the zeroth mode, as
shown in figure 23(d).

7.1.5. First frequency of the second mode
Figure 24 shows snapshots of volume drag elements of C201

D,V at the central slice in the
z-direction, superimposed with the flow field at two representative time instants, for
combination with the volume drag elements of C00

D,V and C200
D,V . From figures 24(a,b), it can

be observed that the flow at the first frequency of the second mode corresponds to a vortex
located at the shear layer at x = 0.6–0.8, and a vortex near the tip of the trailing edge,
known as the trailing-edge vortex (TEV). The former is similar to those found in the zeroth
frequency of the first mode, but has a smaller size and is closer to the middle of the chord.
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Figure 23. In the case with AoA = 10◦, snapshots of: the instantaneous volume drag elements at the central
slice in the z-direction for volume drag elements of C200

D,V superimposed with arrows of ū′(2,0) at (a) t = 3.83,
and (b) t = 7.85; and volume drag elements of C00

D,V + C200
D,V superimposed with arrows of ū(0) + ū′(2,0) at

(c) t = 3.83, and (d) t = 7.85. The insets in (a,b) indicate the time points on the history of the force contribution
of C200

D,V . The arrow at the top right of (b) indicates the velocity scale in (a,b), while the arrow at the top right
of (d) indicates the velocity scale in (c,d).
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Figure 24. Snapshots of the instantaneous volume drag elements at the central slice in the z-direction
superimposed with the associated flow field for the first frequency of the second mode at (a) t = 3.10 and
(b) t = 3.65, and the cumulation of the first frequency of the first mode combined with the zeroth mode at
(c) t = 3.10 and (d) t = 3.65, in the case with AoA = 7.5◦. The insets in (a,b) indicate the time points on the
history of the force contribution of C201

D,V . The arrow at the top right of (b) indicates the velocity scale in (a,b),
while the arrow at the top right of (d) indicates the velocity scale in (c,d).
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Figure 25. Snapshots of the instantaneous volume vorticity drag elements at the central slice in the z-direction
for C202

D,V superimposed with arrows of ū′(2,2) at (a) t = 5.39, and (b) t = 5.84, and volume drag elements of

C00
D,V + ∑2

K=0 C20K
D,V superimposed with arrows of ū(0) + ∑2

K=0 ū′(2,K) at (c) t = 5.39, and (d) t = 5.84, in the
case with AoA = 10◦. The arrow at the top right of (b) indicates the velocity scale in (a,b), while the arrow at
the top right of (d) indicates the velocity scale in (c,d).

As shown in figure 21, drag is enhanced due to clockwise rotation and suppressed due
to anticlockwise rotation. In this case, the TEV does not contribute significantly to drag
when combined with the zeroth mode and zeroth frequency. However, its contribution to
drag is explained when examining the second frequency in § 7.1.6. It is worth noting that in
figure 17, contributions to drag and lift have different signs, whereas the latter is associated
with a significantly smaller magnitude. This is similar to the zeroth frequency of the first
mode, which is due to the geometric effect near the tip of the leading edge (see § 7.1.1).

7.1.6. Second frequency of the second mode
Figure 25 shows snapshots of volume drag elements of C202

D,V at the central slice in the
z-direction, in combination with the volume drag elements of C00

D,V , C200
D,V and C201

D,V ,
with the flow field at two representative time instants superimposed. Although there are
insignificant vortical structures along the shear layer similar to the second frequency of
the first mode (see § 7.1.3), the most notable flow feature is the presence of the TEV, as
shown in figures 25(a,b). When combined with the flow field of the zeroth mode and the
previous two frequencies, as shown in figures 25(c,d), the structure of the TEV becomes
less apparent. However, it can be observed that the TEV with anticlockwise rotation (see
figure 25a) slightly enhances drag at the tip of the trailing edge (figure 25c), while its
clockwise rotation (figure 25b) suppresses drag (figure 25d).

7.2. AoA = 7.5◦

Figure 26 displays the time histories of the normalized force contribution to drag and lift
for the first three frequencies of the first mode in the case with AoA = 7.5◦. Owing to flow
reattachment, fluctuations in force contributions to both drag and lift are lower compared
to the larger AoA cases depicted in figures 16 and 17. Despite the negligible contribution of
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Figure 26. Time histories of the vorticity force contributions to (a) drag and (b) lift, for the first three
frequencies of the first mode normalized by the zeroth mode in the case with AoA = 7.5◦. Diamonds in
(a) indicate the time points corresponding to local maximum and minimum values of the force contribution,
which are used for further analysis in § 7.2.

the zeroth mode to lift, the fluctuation patterns are fairly similar between drag and lift. To
examine the force contribution of each dominant frequency, we analyse the resulting flow
structures resulting from each frequency at the local minimum and maximum, as indicated
by the diamonds in figure 26(a).

7.2.1. Zeroth frequency of the first mode
Figure 27 presents snapshots of volume drag elements of C00

D,V and C100
D,V (i.e. the zeroth

frequency of the first mode) at the central slice in the z-direction for combination with the
volume drag elements of C00

D,V superimposed with the flow field at two representative
time instants in the case with AoA = 7.5◦. As shown in figure 27(a), the shear layer
associated with the leading-edge separation dominates the drag contribution. The drag
contribution vanishes near the reattachment point at x ∼ 0.5, indicating that the flow
reattachment suppresses drag. As shown in figures 27(b,c), the zeroth frequency of the
first mode corresponds to an oscillating near-wall stream that follows the pattern of
the reattachment flow. The positive stream of the zeroth frequency slightly hinders the
downstream development of the separated shear layer such that the drag decreases, as
shown in figure 27(b). In contrast, as shown in figure 27(c), the near-wall backflow at
the zeroth frequency enhances the development of the shear layer, thus increasing its drag
contribution. That is, when AoA = 7.5◦, the zeroth frequency of the first mode corresponds
to a periodic motion of back-and-forth movement of the reattachment point, for which the
early reattachment can result in a decrease in drag, and vice versa.

7.2.2. First frequency of the first mode
Figure 28 displays snapshots of volume drag elements of C101

D,V along with the velocity
field at the central slice in the z-direction for combination with the zeroth mode and the
first frequency at two representative time instants in the case with AoA = 7.5◦. As shown
in figures 28(a,b), the first frequency corresponds to a counter-rotating vortex pair that
generates the near-wall stream. The vortex pair originates at the point where the flow
reattaches (x ≈ 0.5). Due to the weakened shear caused by flow reattachment, the influence
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Figure 27. Snapshots of the instantaneous volume drag elements at the central slice in the z-direction
superimposed with the associated flow field for (a) the zeroth mode, (b) the zeroth frequency of the first mode
at t = 2.56, and (c) the same as (b) but for t = 8.49, and its combination with the zeroth mode at (d) t = 2.56,
and (e) 8.49, in the case with AoA = 7.5◦. The insets in (b,c) indicate the time points on the history of the force
contribution of C200

D,V . The arrow at the top right of (c) indicates the velocity scale in (b,c), while the arrow at
the top right of (e) indicates the velocity scale in (a,d,e).

of the vorticity on drag is reduced significantly. In fact, the drag contribution of these
large-scale vortex structures is similar to that in the zeroth mode, which corresponds to the
back-and-forth motion of the reattachment resulting from the near-wall stream, as shown
in figures 28(c,d).

7.2.3. Second frequency of the first mode
Figure 29 shows snapshots of volume drag elements of C102

D,V , along with the velocity
field at the central slice in the z-direction for the combination of the zeroth mode and
the previous frequencies at two representative time instants in the case with AoA = 7.5◦.
Similar to AoA = 10◦, the second frequency of the first mode in this case corresponds
to a series of smaller counter-rotating vortex pairs at the shear layer originated near the
point of flow reattachment, as shown in figures 29(a,b). The clockwise vortex provides a
positive drag contribution, while the anticlockwise vortex provides a negative contribution.
It is found that only those vortices located near the reattachment point provide relatively
significant effect on drag, as shown in figures 29(c,d), due to flow reattachment.

It can be observed that in the case with AoA = 7.5◦, the separated shear layer resulting
from flow reattachment vanishes, and vorticity forces in the non-zero mode are effective
only near the reattachment point, rapidly becoming negligible as one moves further

974 A52-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

81
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.815


Vorticity forces of coherent structures

0.3

0.2

0.1

–0.1

–0.2

0
y

0.3

0.2

0.1

–0.1

–0.2

0

0.3

0.2

0.1

–0.1

–0.2

0

0.3

0.2

0.1

–0.1

–0.2

0
y

0 0.2 0.4 0.6 0.8 1.0 1.2

x
0 0.2 0.4 0.6 0.8 1.0 1.2

0 0.2 0.4 0.6 0.8 1.0 1.2 0 0.2 0.4 0.6 0.8 1.0 1.2

x

2

1

0

–1

–2

(×10–7)

2

1

0

–1

–2

(×10–6)

0.1

1.0

2.0 3.3 2.0 3.3

(a) (b)

(c) (d )

Figure 28. Snapshots of the instantaneous volume drag elements at the central slice in the z-direction
superimposed with the associated flow field for the first frequency of the first mode at (a) t = 2.47 and
(b) t = 2.92, and the cumulation of the first frequency of the first mode combined with the zeroth mode at
(c) t = 2.56, and (d) t = 2.47, in the case with AoA = 7.5◦. The insets in (a,b) indicate the time points on
the history of the force contribution of C201

D,V . The arrow at the top right of (b) indicates the velocity scale in
(a,b), while the arrow at the top right of (d) indicates the velocity scale in (c,d).
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Figure 29. Snapshots of the instantaneous volume drag elements at the central slice in the z-direction
superimposed with the associated flow field for the second frequency of the first mode at (a) t = 7.85, and
(b) t = 8.13, and the cumulation of the second frequency of the first mode combined with the zeroth mode at
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Figure 30. Snapshots of the iso-surfaces of the vertical velocity component for the zeroth to second
frequencies (from top to bottom) of (a,d,g) the first mode in the case with AoA = 7.5◦, and (b,e,h) the first
and (c, f,i) the second modes in the case with AoA = 10◦, at t = 4.29 where the local maximum of drag occurs.
The red and blue iso-surfaces represent positive and negative values, which are (a) 0.01 and −0.03, (b) 0.1 and
−0.05, (c) 0.04 and −0.1, (d) 0.01 and −0.03, (e) 0.003 and −0.015, ( f ) 0.05 and −0.03, (g) 0.01 and −0.01,
(h) 0.15 and −0.15, and (i) 0.02 and −0.02.

downstream from the reattachment point. This limits the major source of drag and lift only
at the reattachment point, resulting in the force fluctuations being significantly suppressed
compared to the large AoA case.

7.3. Quantitative comparison of SPOD modes and force contribution
Figure 30 displays representative snapshots of the iso-surfaces of the reconstructed vertical
velocity of the first three frequencies (including the zeroth frequency) of the first mode (i.e.
v′(1,m)) for AoA = 7.5◦, and first and second modes for AoA = 10◦ (i.e. v′(1,m) and v′(2,m)),
at t = 4.29 where the local maximum of drag is observed (see figure 10). As is typical
in mode decomposition, the wavelength of flow fluctuations decreases with increasing
frequency. The wavelengths, which are obtained by applying the fast Fourier transform
to the flow field, along with the type description for each frequency and mode, are
summarized in table 3. Generally, the zeroth and first frequencies correspond to changes
of LEV, while the second frequency corresponds to SLV. In the case of larger AoA, a
TEV can be found in the first and second frequencies of the second mode. A quantitative
measure of these representative frequencies and modes is conducted by examining their
r.m.s. values shown in figures 16, 17 and 26 with respect to the zeroth mode. The obtained
values are also summarized in table 3. One interesting point is that although the first SPOD
mode captures most of the turbulent kinetic energy (see figure 12), the resulting vorticity
forces do not follow the same trend. That is, the highest energy mode does not necessarily
correspond to the greatest vorticity force fluctuation. As shown in table 3, the r.m.s. of
C200

D,V (15.6 %) is much larger than that of each frequency in the first SPOD mode. However,
due to the geometry effect discussed in § 7.1.1, the r.m.s. of C100

L,V is slightly larger than that
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AoA Mode Wavelength Frequency (St) r.m.s.(Cm0n
D,V )/C00

D,V r.m.s.(Cm0n
L,V )/C00

L,V Feature

10◦ 1 1.40 0.11–0.35 2.9 % 17.7 %
1 0.70 0.86 7.1 % 12.2 % Wake
1 0.48 1.71 2.3 % 3.4 % Wake
2 1.40 0.11–0.35 15.6 % 16.5 %
2 0.70 0.86 3.7 % 0.3 % Wake
2 0.28 1.71 2.3 % 3.6 % TEV

7.5◦ 1 0.70 0.11–0.44 2.7 % 0.4 % LSB
1 0.70 0.86 1.4 % 0.9 % LSB
1 0.35 1.71 1.7 % 1.4 % Wake

Table 3. Wavelengths, normalized r.m.s. vorticity force contributions, and flow features in representative
frequencies and modes in the cases with AoA = 7.5◦ and 10◦. In the fifth and sixth columns, the superscript m
represents the mode number, and n is the frequency number.

of C200
L,V . According to the present theory, in addition to the flow strength, the contribution

of each SPOD mode also depends on the location relative to the aerofoil.
In the case of small AoA, differences in the force contribution between different

frequencies are not significant, and it is difficult to ascertain the relative importance of each
mode from table 3. When AoA becomes larger, the dominant role of the zeroth frequency in
vorticity forcing can be found in the first mode in lift, and the second mode in both lift and
drag. Moreover, forces are typically dominated by a TEV (i.e. a combination of the zeroth
and first frequencies), while SLV and TEVs are responsible for high-frequency fluctuations
with lower strength. The reduction in the force contribution of the zeroth frequency in the
case with AoA = 7.5◦ compared with AoA = 10◦ demonstrates a significant suppression
of force fluctuations due to flow reattachment.

8. Concluding remarks

In the present study, a series of analyses focused on the aerodynamic forces exerted by
coherent structures on the NACA0012 aerofoil. These analyses were conducted at two
different angles of attack, specifically AoA = 7.5◦ and 10◦, with a chord-based Reynolds
number Re = 50 000. To identify the coherent structures in turbulent flows, the SPOD
algorithm was employed. This involved analysing a considerable amount of LES data, and
the resulting SPOD modes in the frequency domain were transformed back into the time
domain. The vorticity force analysis (Chang 1992) was utilized to quantify the impact of
coherent structures on drag and lift forces. This allowed us to calculate the drag and lift
coefficients by adding up the effects of the interactions between the zeroth mode flow field
and the SPOD modes, as well as the interactions between different modes. It has been
noted that the former is responsible for the overall variation of the drag and lift forces,
whereas the latter contributes only to the small fluctuations in the time variation.

At an angle of attack AoA = 10◦, we examined the distribution of volume vorticity force
(i.e. CD,V ) for the zeroth, first and second frequencies of the first two SPOD modes. The
zeroth frequency of the first SPOD mode corresponds to a large vortex structure at the end
of the shear layer above the trailing edge. This structure causes a strong flow along the
suction side of the aerofoil, resulting in a significant impact on the drag and lift forces
based on the rotation directions of the vortex. Additionally, the combination with the
zeroth mode confirms that the shear layer is pulled up by the clockwise vortex, and a
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leading-edge vortex (LEV) is formed. Due to the geometry effect of φ2, contributions to
lift have different sign with greater magnitude when compared to those for drag, even
though both share the same coherent structure. The first frequency of the first SPOD
mode represents an asymmetric vortex pair. The interaction between this vortex pair
generates a top left stream that destroys the shear layer and causes a negative contribution
to drag, while the bottom right stream creates a localized LEV and provides a positive
contribution. As for the second frequency of the first SPOD mode, we found a series of
vortex pairs present at the shear layer (SLV). Following the downstream movement of SLV,
we concluded that the leading-edge separation results in the drag enhancement since the
clockwise vortical structure provides a positive drag contribution. Moreover, these vortical
structures represent a roll-up of the spanwise vortex, which leads to an irregularity of the
vortical structure followed by its break-up and movement away from the aerofoil’s surface.

The same analyses are conducted for the zeroth frequency of the second SPOD modes.
A clockwise primary LEV near the trailing edge of the aerofoil provides a positive
contribution to drag, while an anticlockwise LEV provides a negative contribution. When
the second SPOD mode is added to the zeroth mode, the clockwise LEV causes a
downstream extension of the shear layer and creates a circulation zone near the trailing
edge, while the anticlockwise LEV destroys the shear layer of the zeroth mode. The
flow at the first frequency of the second SPOD mode consists of a vortex located at the
shear layer and a vortex near the trailing-edge tip. The drag is enhanced due to clockwise
rotation and suppressed due to anticlockwise rotation. The significant flow feature of the
second frequency of the second SPOD mode is the trailing-edge vortex (TEV), which
enhances drag with anticlockwise rotation and suppresses drag with clockwise rotation.
When combined with other modes, the structure of the TEV becomes less apparent. There
are insignificant vortical structures along the shear layer similar to the second frequency
of the first mode.

In the case with AoA = 7.5◦, the zeroth frequency of the first mode corresponds to
an oscillating near-wall stream that follows the reattachment flow pattern. The positive
stream slightly hinders the separated shear layer development, decreasing drag, while
the near-wall backflow enhances the development of the shear layer, increasing the drag
contribution. The first frequency corresponds to a counter-rotating vortex pair originating
where the flow reattaches. The weakened shear due to flow reattachment reduces the
drag contribution of these large-scale vortex structures, making them similar to the
back-and-forth motion of the reattachment resulting from the near-wall stream in the
zeroth mode. Finally, the second frequency of the first mode corresponds to smaller
counter-rotating vortex pairs at the shear layer originated near the reattachment point.
The vorticity forces in the non-zero mode are effective only near the reattachment point,
and flow reattachment in the smaller AoA case significantly suppresses force fluctuations
compared to the large AoA case.
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Figure 31. Convergence index βi,M of the SPOD modes in the cases with (a,c,e) AoA = 7.5◦ and (b,d, f )
AoA = 10◦. Here, only the zeroth, first and second frequencies are analysed due to their importance to the drag
and lift coefficients stated in the main text.

Appendix A. Convergence of SPOD modes

Following Sano et al. (2019) and Abreu et al. (2021), in order to assess the convergence
of the SPOD modes generated with the current set-up, we partitioned the original dataset
into two blocks. Each block consisted of 75 % of the original dataset, equivalent to 750
snapshots. The procedures outlined in § 3.1 were then applied independently to each block,
resulting in corresponding SPOD modes denoted by φi,M . Here, the subscript i indicates
the index of the sub-dataset, while M denotes the mode index. A convergence index βi,M
is defined by normalizing the inner product between φM (original SPOD mode) and φi,M:

βi,M = 〈φM, φi,M〉√||φM|| × ||φi,M|| , (A1)
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where 〈 · 〉 is the inner product, and || · || represents the L2 norm of the vector. Equation
(A1) quantifies the degree of similarity between the original dataset’s mode φM and the
mode obtained from the sub-dataset, φi,M . A value of βi,M close to 1 indicates that φi,M
and φM are highly similar, hence the current set-up achieves mode convergence.

The convergence index βi,M for the zeroth, first, and second frequencies is shown in
figure 31 for the cases with AoA = 7.5◦ and AoA = 10◦. It is evident that βi,M is highly
dependent on the number of snapshots used in the analysis, especially for higher modes, as
it is sensitive to the limited number of snapshots (i.e. 1000) used in this study. Despite this,
the first two modes of each frequency were found to be well converged with βi,M ≥ 0.8. As
a result, we can conclude that the analysis carried out in the present study was meaningful
despite the limited number of snapshots.
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