ON CERTAIN CLASSES OF BOUNDED LINEAR OPERATORS

by C-S LIN

1. Let T-c be a Fredholm operator, where T is a bounded linear operator on a complex Banach space and c is a scalar, the set of all such scalars is called the Φ -set of T [2] and was studied by many authors. In this connection, the purpose of the present paper is to investigate some classes $\Phi(V)$ of all such operators for any subset V of the complex plane.

2. Let X be a Banach space over the field C of complex numbers with dim $X=\infty$, unless otherwise stated, B(X) the Banach algebra of all bounded linear operators and K(X) the closed two-sided ideal of all compact operators on X. As usual, $T \in B(X)$ is said to be a Fredholm operator if both the dimension of the null space of T and the codimension of the range of T are finite, and is said to be a Riesz operator if T-c is a Fredholm operator for every nonzero scalar c [1]. We shall write $\Phi(V) = \{T \in B(X): T-c \text{ is a Fredholm operator, } \forall c \in V\}$, where V is a proper subset of C. Thus the set of all Fredholm operators is $\Phi(\{0\})$, and $\Phi(C \setminus \{0\})$ the set of all Riesz operators. Clearly every nonzero scalar is a Fredholm operator, and if $c \in C$, $c \notin V$ iff $c \in \Phi(V)$. We shall write $\Phi(\phi) = B(X)$, where ϕ is the empty set and this expression is justifiable by

THEOREM 1. If V and W are proper subsets of C, $V \subseteq W$ iff $\Phi(W) \subseteq \Phi(V)$.

Proof. Let $V \subseteq W$ and $T \in \Phi(W)$, then $T - c \in \Phi(\{0\})$ for every $c \in W$, and hence for every $c \in V$, $T \in \Phi(V)$. Conversely, if $V \notin W$, then there is a $c \in V$ with $c \notin W$. Thus $c \notin \Phi(V)$ and $c \in \Phi(W)$, $\Phi(W) \notin \Phi(V)$.

Let $T \in B(X)$, we shall denote by π the canonical homomorphism of B(X) onto the (quotient) Banach algebra B(X)/K(X), $\sigma(T)$ and $\rho(T)$ (resp. $\sigma(\pi(T))$) and $\rho(\pi(T))$) the spectrum and the resolvent set of T (resp. $\pi(T)$). A characterization of the Fredholm operators due to F. V. Atkinson says that $T \in \Phi(\{0\})$ iff $\pi(T)$ is invertible in B(X)/K(X). In this case, let $\pi(\overline{T})$ be its inverse.

LEMMA 1. Let W be a proper subset of C, $S \in B(X)$, $T \in \Phi(\{0\})$ and \overline{T} as stated above. Then $S - cT \in \Phi(\{0\})$ for every $c \in W$, iff $S\overline{T} \in \Phi(W)$.

Proof. Let $c \in W$. $S - cT \in \Phi(\{0\})$, iff $\pi(S - cT)$ is invertible, iff $\pi((S - cT)\overline{T}) = \pi(S - cT)\pi(\overline{T})$ is invertible, iff $\pi(S\overline{T} - c)$ is invertible, iff $S\overline{T} \in \Phi(\{c\})$.

REMARK 1. Notation as in Lemma 1, we see that $S\overline{T} \in \Phi(W)$ iff $\overline{T}S \in \Phi(W)$. Also $S - c\overline{T} \in \Phi(\{0\})$ for every $c \in W$, iff $ST \in \Phi(W)$. In order to see what the set

Received by the editors January 5, 1970.

 $\Phi(C)$ is, we shall give a simple proof of Theorem 3.2 [2] and of its converse as well.

LEMMA 2. (Theorem 3.2 [2]): $\Phi(C) \neq \phi$ iff dim $X < \infty$.

Proof. $T \in \Phi(C)$, iff $\pi(T-c) = \pi(T) - c$ is invertible for every $c \in C$, iff $\sigma(\pi(T)) = \phi$, iff K(X) = B(X), iff the identity operator on X is compact, iff dim $X < \infty$.

REMARK 2. S and $T \in \Phi(W)$ iff $W \subseteq \rho(\pi(S)) \cap \rho(\pi(T))$. The so-called Gelfand-Mazur theorem says that if in a complex Banach algebra with unit element A every nonzero element is invertible, then A is one dimensional. In the case of B(X), we have the following more general statement.

THEOREM 2. B(X) = C, iff $B(X) \setminus \{c\} \subseteq \Phi(\{c\})$ for any $c \in C$.

Proof. The "only if," part is clear. To show the "if" part, let $T \in B(X)$, then there exists $b \in C$ such that $T \notin \Phi(\{b\})$ by Lemma 2. Thus $T-b+c \notin \Phi(\{c\})$, T-b+c=c by assumption, T=b and hence B(X)=C.

LEMMA 3. If V and W are any subsets of C, then (1) $\Phi(V) \cap \Phi(W) = \Phi(V \cup W)$. (2) $\Phi(V) \cup \Phi(W) \subseteq \Phi(V \cap W)$. Equality holds if either $V \subseteq W$ or $W \subseteq V$.

The proof follows easily and may be omitted. The opposite inclusion relation in (2) is not valid in general. In order to show this it suffices to take a linear bounded operator $T \notin \Phi$ ({0}) with finite dimensional null space and such that its range be closed and of infinite codimension. By Theorem 7.1 [2] then there exists a number b>0 such that for every $S \in B(X)$ with ||S|| < b, $T+S \notin \Phi(\{0\})$. Thus, for $c_0 \neq 0$ with $|c_0| < b$, one obtains $T \notin \Phi(\{c_0\})$. Accordingly

$$\Phi(\{0\}) \cup \Phi(\{c_0\}) \subsetneq \Phi(\{0\} \cap \{c_0\}) = \Phi(\phi) = B(X).$$

REMARK 3. Since $\Phi(C \setminus \{0\}) \cap \Phi(\{0\}) = \Phi(C)$, a Riesz (resp. a Fredholm) operator is a Fredholm (resp. a Riesz) operator iff X is of finite dimension.

COROLLARY 1. If X is of infinite dimension and $L = \{\Phi(V) : V \subseteq C\}$, then the system $\{L, \cap, \subseteq\}$ is a complete and complemented lower semilattice with respect to the set intersection and inclusion relation, and $\Phi(C) = \phi$ is the smallest element in L. Moreover, X is of finite dimension iff the system $\{L, \cap, \cup, \subseteq\}$ is the lattice with only two elements, B(X) and ϕ .

The proof follows easily and may be omitted. The lower semilattice is atomic, since each element $\Phi(C \setminus \{c\})$ covers $\Phi(C)$.

THEOREM 3 (1). If W is a nonempty subset of C and $T \in \Phi(C \setminus W)$, then there is a nonempty subset $V \subseteq W$ such that $V \subseteq \sigma(\pi(T)) \subseteq \sigma(T)$.

(2) If W is a subset of C with $W \supseteq \sigma(T)$, then $T \in \Phi(C \setminus W)$.

Proof. (1) $T \notin \Phi(W)$, since otherwise dim $X < \infty$. Hence there is a nonempty

470

subset $V \subseteq W$ such that $\pi(T-c) = \pi(T) - c$ is not invertible for every $c \in V$, $V \subseteq \sigma(\pi(T))$. $\rho(T) \subseteq \rho(\pi(T))$, since π carries an invertible element into an invertible element. (2) By the last argument, $T \in \Phi(\rho(T))$ and $T \notin \Phi(\sigma(T))$ for any $T \in B(X)$.

REMARK 4. If $c \in \rho(T)$, then T-c and $(T-c)^{-1} \in \Phi(\{0\})$. Thus if either T-b or $(T-d)^{-1}$ is a Riesz operator for some b or d in $\rho(T)$, then dim $X < \infty$.

REMARK 5. Some direct consequences of Theorem 3 are: the spectrum of a Riesz operator contains the zero, $\sigma(T) \neq \phi$ for any $T \in B(X)$, and every quasi-nilpotent operator is a Riesz operator.

REMARK 6. By Lemma 3 and Theorem 3, if $\Phi(W) \subseteq \Phi(V)$, $T \in \Phi(V)$ and $C \setminus (W \setminus V) \supseteq \sigma(T)$, then $T \in \Phi(W)$.

3. Let $T \in B(X)$ and r(T) be its lower bound [3]. It is known that the range of T is closed iff r(T) > 0. $T \in \Phi(\{0\})$ implies r(T) > 0. Also if $T \in \Phi(\{0\})$, $S \in B(X)$ and ||S|| < r(T), then $T + S \in \Phi(\{0\})$.

REMARK 7. Clearly $T \in \Phi(\{c\})$ if ||T|| < |c| = r(c). This condition may be weakened by that $||\pi(T)|| < |c|$, because in this case T can be written as T=S+A, where $S \in B(X)$, ||S|| < |c| and $A \in K(X)$, and since $\pi(T-c) = \pi(S+A-c) = \pi(S-c)$ is invertible, $T \in \Phi(\{c\})$.

LEMMA 4. If W is a finite subset of C, then $\Phi(W)$ is an open subset of B(X).

Proof. Let $T \in \Phi(W)$ and $r(T-b) = \min \{r(T-c) : c \in W\} \neq 0$. if $S \in B(X)$ is such that $||\pi(S-T)|| < r(T-b)$, then $S-b = (S-T) + (T-b) \in \Phi(\{0\})$ and hence $S \in \Phi(W)$.

LEMMA 5. If b and c are nonzero scalars and d is any scalar, then

 $b\Phi(\{c\}) = c\Phi(\{b\})$ and $b\Phi(\{d\}) = \Phi(\{bd\})$.

In particular, $d\Phi(C | \{0\}) = \Phi(C | \{0\})$.

Proof. $T \in b\Phi(\{c\})$, iff $T/b - c \in \Phi(\{0\})$, iff $T/c - b \in \Phi(\{0\})$, iff $T \in c\Phi(\{b\})$, and hence $b\Phi(\{c\}) = c\Phi(\{b\})$. The remainder of the proof follows similarly.

LEMMA 6. Let $W \subsetneq C$, $T \in \Phi(C \setminus \{0\})$, $S \in \Phi(W)$ and $TS - ST \in K(X)$, then $T + S \in \Phi(W)$. Moreover, TS and $ST \in \Phi(V)$ for any subset $V \subseteq C \setminus \{0\}$.

Proof. Let $c \in W$, $T(S-c)-(S-c)T=TS-ST \in K(X)$, then $T+S-c \in \Phi(\{0\})$ [4, Theorem 9]. But $c \in W$ was arbitrary, $T+S \in \Phi(W)$. TS and $ST \in \Phi(C\setminus\{0\})$ [4, Lemma 5].

Let $W \subsetneq C$ and $Y(W) = \{T \in \Phi(C \setminus \{0\}): TS - ST \in K(X), \forall S \in \Phi(W)\}$, then, $W_0 \subseteq W_1$ implies $Y(W_0) \subseteq Y(W_1)$, and $Y(\{c\}) = Y(\{0\})$ due to a simple fact that $\Phi(\{0\}) = \{T - c: \forall T \in \Phi(\{c\})\}$ and $\Phi(\{c\}) = \{T + c: \forall T \in \Phi(\{0\})\}.$

LEMMA 7. If $W \subseteq C$, then Y(W) is a linear manifold of B(X) such that $K(X) \subseteq Y(W)$. Moreover, Y(W) is closed under multiplication.

Proof. Clearly $K(X) \subseteq Y(W)$. To show the closedness under addition, let T and $T' \in Y(W)$ and $S \in \Phi(W)$, then $T+S \in \Phi(W)$. $T'(T+S)-(T+S)T' \in K(X)$, i.e. $(T'T-TT')+(T'S-ST') \in K(X)$ and hence $T'T-TT' \in K(X)$. Thus

$$T+T' \in \Phi(C | \{0\}), \quad (T+T')S - S(T+T') = (TS - ST) + (T'S - ST') \in K(X)$$

for every $S \in \Phi(W)$, $T+T' \in Y(W)$. Now since $T'T-TT' \in K(X)$, TT' and $T'T \in \Phi(C \setminus \{0\})$. $TT'S-STT' = T(T'S-ST') - (ST-TS)T' \in K(X)$ for every $S \in \Phi(W)$. Hence $TT' \in Y(W)$, and $T'T \in Y(W)$ follows similarly.

It was proved in [1] that if $\{T_n\}$ is a sequence in $\Phi(C \setminus \{0\})$ and $T_n \to T$ in B(X), where $T_nT = TT_n$ for all sufficiently large *n*, then $T \in \Phi(C \setminus \{0\})$. The next theorem extends this result.

Remark 8. $T \in \Phi(C \setminus \{d\})$ iff $T - d \in \Phi(C \setminus \{0\})$.

THEOREM 4. Let $\{T_n\}$ be a sequence in $\Phi(C \setminus \{d\})$ and $T_n \to T$ convergence in norm with $T \in B(X)$. If $TT_n - T_nT \in K(X)$ for all sufficiently large n, then $T \in \Phi(C \setminus \{d\})$.

Proof. For a nonzero scalar c there is a sufficiently large n such that $||T-T_n|| < r(c)$. Hence $T-T_n \in \Phi(\{c\})$. But $T_n - d \in \Phi(C \setminus \{0\})$ for every n, and

$$(T-T_n)(T_n-d) - (T_n-d)(T-T_n) = TT_n - T_n T \in K(X),$$

$$T-d = (T-T_n) + (T_n-d) \in \Phi(\{c\})$$

by Lemma 6. But $c \neq 0$ was arbitrary, $T - d \in \Phi(C \setminus \{0\})$ and hence $T \in \Phi(C \setminus \{d\})$. We may apply the same method to prove

COROLLARY 2. Let $\{T_n\}$ be a sequence in B(X) and $T \in B(X)$ with $T \in \Phi(C \setminus \{d\})$. If $T_n \to T$ convergence in norm and $TT_n - T_nT \in K(X)$ for all sufficiently large n, then $T_n \in \Phi(C \setminus \{d\})$ for all such n.

THEOREM 5. $Y(\phi)$ and $Y(\{c\})$ are Banach algebras.

Proof. In virtue of Theorem 4 and the fact that $T_n S - ST_n \rightarrow TS - ST$ for every $S \in \Phi(\phi)$ provided $T_n \rightarrow T$, $Y(\phi)$ is closed. By Lemma 7, $Y(\phi)$ is a Banach algebra with the same norm as in B(X). To show the second part, let $T_n \rightarrow T$ in B(X), then $T-b=T' \in \Phi(\{0\})$ for some $b \neq 0$ by Remark 7.

$$T_n T - TT_n = T_n (T'+b) - (T'+b)T_n = T_n T' - T'T_n$$

= $T_n (T'+c) - (T'+c)T_n \in K(X).$

Hence $T \in \Phi(C \setminus \{0\})$ by Theorem 4. The remainder of the proof follows as above.

REMARK 9. *T* is a Fredholm operator, iff the adjoint T^* of *T* is a Fredholm operator [3]. Hence if $V \subseteq C$, and since $(T-c)^* = T^* - c$ is the Banach space adjoint of T-c, we have $T \in \Phi(V)$ iff $T^* \in \Phi(V)$. Thus all above statements and proofs are true if we are dealing with the adjoint space and adjoint operators.

1970]

BOUNDED LINEAR OPERATORS

References

1. S. R. Caradus, Operator of Riesz type, Pacific J. Math. 18 (1966), 61-71.

2. I. C. Gohberg and M. G. Krein, *The basic propositions on defect numbers, root numbers and indices of linear operators,* Trans. Amer. Math. Soc. (2) **13** (1960), 185–265.

3. T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322.

4. M. Schechter, *Riesz operators and Fredholm perturbations*, Bull. Amer. Math. Soc. (6) 74 (1968), 1139–1144.

QUEEN'S UNIVERSITY, KINGSTON, ONTARIO