ON CERTAIN CLASSES OF BOUNDED LINEAR OPERATORS

BY
C-S LIN

1. Let $T-c$ be a Fredholm operator, where T is a bounded linear operator on a complex Banach space and c is a scalar, the set of all such scalars is called the Φ-set of T [2] and was studied by many authors. In this connection, the purpose of the present paper is to investigate some classes $\Phi(V)$ of all such operators for any subset V of the complex plane.
2. Let X be a Banach space over the field C of complex numbers with $\operatorname{dim} X=\infty$, unless otherwise stated, $B(X)$ the Banach algebra of all bounded linear operators and $K(X)$ the closed two-sided ideal of all compact operators on X. As usual, $T \in B(X)$ is said to be a Fredholm operator if both the dimension of the null space of T and the codimension of the range of T are finite, and is said to be a Riesz operator if $T-c$ is a Fredholm operator for every nonzero scalar c [1]. We shall write $\Phi(V)=\{T \in B(X): T-c$ is a Fredholm operator, $\forall c \in V\}$, where V is a proper subset of C. Thus the set of all Fredholm operators is $\Phi(\{0\})$, and $\Phi(C \backslash\{0\})$ the set of all Riesz operators. Clearly every nonzero scalar is a Fredholm operator, and if $c \in C, c \notin V$ iff $c \in \Phi(V)$. We shall write $\Phi(\phi)=B(X)$, where ϕ is the empty set and this expression is justifiable by

Theorem 1. If V and W are proper subsets of $C, V \subseteq W$ iff $\Phi(W) \subseteq \Phi(V)$.
Proof. Let $V \subseteq W$ and $T \in \Phi(W)$, then $T-c \in \Phi(\{0\})$ for every $c \in W$, and hence for every $c \in V, T \in \Phi(V)$. Conversely, if $V \nsubseteq W$, then there is a $c \in V$ with $c \notin W$. Thus $c \notin \Phi(V)$ and $c \in \Phi(W), \Phi(W) \nsubseteq \Phi(V)$.

Let $T \in B(X)$, we shall denote by π the canonical homomorphism of $B(X)$ onto the (quotient) Banach algebra $B(X) / K(X), \sigma(T)$ and $\rho(T)$ (resp. $\sigma(\pi(T)$) and $\rho(\pi(T)))$ the spectrum and the resolvent set of $T($ resp. $\pi(T))$. A characterization of the Fredholm operators due to F. V. Atkinson says that $T \in \Phi(\{0\})$ iff $\pi(T)$ is invertible in $B(X) / K(X)$. In this case, let $\pi(\bar{T})$ be its inverse.

Lemma 1. Let W be a proper subset of $C, S \in B(X), T \in \Phi(\{0\})$ and \bar{T} as stated above. Then $S-c T \in \Phi(\{0\})$ for every $c \in W$, iff $S \bar{T} \in \Phi(W)$.
Proof. Let $c \in W . S-c T \in \Phi(\{0\})$, iff $\pi(S-c T)$ is invertible, iff $\pi((S-c T) \bar{T})$ $=\pi(S-c T) \pi(\bar{T})$ is invertible, iff $\pi(S \bar{T}-c)$ is invertible, iff $S \bar{T} \in \Phi(\{c\})$.

Remark 1. Notation as in Lemma 1, we see that $S \bar{T} \in \Phi(W)$ iff $\bar{T} S \in \Phi(W)$. Also $S-c \bar{T} \in \Phi(\{0\})$ for every $c \in W$, iff $S T \in \Phi(W)$. In order to see what the set

Received by the editors January 5, 1970.
$\Phi(C)$ is, we shall give a simple proof of Theorem 3.2 [2] and of its converse as well.
Lemma 2. (Theorem 3.2 [2]): $\Phi(C) \neq \phi$ iff $\operatorname{dim} X<\infty$.
Proof. $T \in \Phi(C)$, iff $\pi(T-c)=\pi(T)-c$ is invertible for every $c \in C$, iff $\sigma(\pi(T))=\phi$, iff $K(X)=B(X)$, iff the identity operator on X is compact, iff $\operatorname{dim} X<\infty$.

Remark 2. S and $T \in \Phi(W)$ iff $W \subseteq \rho(\pi(S)) \cap \rho(\pi(T))$. The so-called GelfandMazur theorem says that if in a complex Banach algebra with unit element A every nonzero element is invertible, then A is one dimensional. In the case of $B(X)$, we have the following more general statement.

Theorem 2. $B(X)=C$, iff $B(X) \backslash\{c\} \subseteq \Phi(\{c\})$ for any $c \in C$.
Proof. The "only if," part is clear. To show the "if" part, let $T \in B(X)$, then there exists $b \in C$ such that $T \notin \Phi(\{b\})$ by Lemma 2. Thus $T-b+c \notin \Phi(\{c\}), T-b+c=c$ by assumption, $T=b$ and hence $B(X)=C$.

Lemma 3. If V and W are any subsets of C, then
(1) $\Phi(V) \cap \Phi(W)=\Phi(V \cup W)$.
(2) $\Phi(V) \cup \Phi(W) \subseteq \Phi(V \cap W)$. Equality holds if either $V \subseteq W$ or $W \subseteq V$.

The proof follows easily and may be omitted. The opposite inclusion relation in (2) is not valid in general. In order to show this it suffices to take a linear bounded operator $T \notin \Phi(\{0\})$ with finite dimensional null space and such that its range be closed and of infinite codimension. By Theorem 7.1 [2] then there exists a number $b>0$ such that for every $S \in B(X)$ with $\|S\|<b, T+S \notin \Phi(\{0\})$. Thus, for $c_{0} \neq 0$ with $\left|c_{0}\right|<b$, one obtains $T \notin \Phi\left(\left\{c_{0}\right\}\right)$. Accordingly

$$
\Phi(\{0\}) \cup \Phi\left(\left\{c_{0}\right\}\right) \varsubsetneqq \Phi\left(\{0\} \cap\left\{c_{0}\right\}\right)=\Phi(\phi)=B(X) .
$$

Remark 3. Since $\Phi(C \backslash\{0\}) \cap \Phi(\{0\})=\Phi(C)$, a Riesz (resp. a Fredholm) operator is a Fredholm (resp. a Riesz) operator iff X is of finite dimension.

Corollary 1. If X is of infinite dimension and $L=\{\Phi(V): V \subseteq C\}$, then the system $\{L, \cap, \subseteq\}$ is a complete and complemented lower semilattice with respect to the set intersection and inclusion relation, and $\Phi(C)=\phi$ is the smallest element in L. Moreover, X is of finite dimension iff the system $\{L, \cap, \cup, \subseteq\}$ is the lattice with only two elements, $B(X)$ and ϕ.

The proof follows easily and may be omitted. The lower semilattice is atomic, since each element $\Phi(C \backslash\{c\})$ covers $\Phi(C)$.

Theorem 3 (1). If W is a nonempty subset of C and $T \in \Phi(C \backslash W)$, then there is a nonempty subset $V \subseteq W$ such that $V \subseteq \sigma(\pi(T)) \subseteq \sigma(T)$.
(2) If W is a subset of C with $W \supseteq \sigma(T)$, then $T \in \Phi(C \backslash W)$.

Proof. (1) $T \notin \Phi(W)$, since otherwise $\operatorname{dim} X<\infty$. Hence there is a nonempty
subset $V \subseteq W$ such that $\pi(T-c)=\pi(T)-c$ is not invertible for every $c \in V$, $V \subseteq \sigma(\pi(T)) . \rho(T) \subseteq \rho(\pi(T))$, since π carries an invertible element into an invertible element. (2) By the last argument, $T \in \Phi(\rho(T))$ and $T \notin \Phi(\sigma(T))$ for any $T \in B(X)$.

Remark 4. If $c \in \rho(T)$, then $T-c$ and $(T-c)^{-1} \in \Phi(\{0\})$. Thus if either $T-b$ or $(T-d)^{-1}$ is a Riesz operator for some b or d in $\rho(T)$, then $\operatorname{dim} X<\infty$.

Remark 5. Some direct consequences of Theorem 3 are: the spectrum of a Riesz operator contains the zero, $\sigma(T) \neq \phi$ for any $T \in B(X)$, and every quasinilpotent operator is a Riesz operator.

Remark 6. By Lemma 3 and Theorem 3, if $\Phi(W) \subseteq \Phi(V), T \in \Phi(V)$ and $C \backslash(W \backslash V)$ $\geq \sigma(T)$, then $T \in \Phi(W)$.
3. Let $T \in B(X)$ and $r(T)$ be its lower bound [3]. It is known that the range of T is closed iff $r(T)>0 . T \in \Phi(\{0\})$ implies $r(T)>0$. Also if $T \in \Phi(\{0\}), S \in B(X)$ and $\|S\|<r(T)$, then $T+S \in \Phi(\{0\})$.

Remark 7. Clearly $T \in \Phi(\{c\})$ if $\|T\|<|c|=r(c)$. This condition may be weakened by that $\|\pi(T)\|<|c|$, because in this case T can be written as $T=S+A$, where $S \in B(X),\|S\|<|c|$ and $A \in K(X)$, and since $\pi(T-c)=\pi(S+A-c)=\pi(S-c)$ is invertible, $T \in \Phi(\{c\})$.

Lemma 4. If W is a finite subset of C, then $\Phi(W)$ is an open subset of $B(X)$.
Proof. Let $T \in \Phi(W)$ and $r(T-b)=\min \{r(T-c): c \in W\} \neq 0$. if $S \in B(X)$ is such that $\|\pi(S-T)\|<r(T-b)$, then $S-b=(S-T)+(T-b) \in \Phi(\{0\})$ and hence $S \in \Phi(W)$.

Lemma 5. If b and c are nonzero scalars and d is any scalar, then

$$
b \Phi(\{c\})=c \Phi(\{b\}) \quad \text { and } \quad b \Phi(\{d\})=\Phi(\{b d\}) .
$$

In particular, $d \Phi(C \mid\{0\})=\Phi(C \mid\{0\})$.
Proof. $T \in b \Phi(\{c\})$, iff $T / b-c \in \Phi(\{0\})$, iff $T / c-b \in \Phi(\{0\})$, iff $T \in c \Phi(\{b\})$, and hence $b \Phi(\{c\})=c \Phi(\{b\})$. The remainder of the proof follows similarly.

Lemma 6. Let $W \varsubsetneqq C, T \in \Phi(C \backslash\{0\}), S \in \Phi(W)$ and $T S-S T \in K(X)$, then $T+S \in \Phi(W)$. Moreover, $T S$ and $S T \in \Phi(V)$ for any subset $V \subseteq C \backslash\{0\}$.

Proof. Let $c \in W, T(S-c)-(S-c) T=T S-S T \in K(X)$, then $T+S-c \in \Phi(\{0\})$ [4, Theorem 9]. But $c \in W$ was arbitrary, $T+S \in \Phi(W) . T S$ and $S T \in \Phi(C \backslash\{0\})$ [4, Lemma 5].

Let $W \varsubsetneqq C$ and $Y(W)=\{T \in \Phi(C \backslash\{0\}): T S-S T \in K(X), \forall S \in \Phi(W)\}$, then, $W_{0} \subseteq W_{1}$ implies $Y\left(W_{0}\right) \subseteq Y\left(W_{1}\right)$, and $Y(\{c\})=Y(\{0\})$ due to a simple fact that $\Phi(\{0\})=\{T-c: \forall T \in \Phi(\{c\})\}$ and $\Phi(\{c\})=\{T+c: \forall T \in \Phi(\{0\})\}$.

Lemma 7. If $W \subsetneq C$, then $Y(W)$ is a linear manifold of $B(X)$ such that $K(X)$ $\subseteq Y(W)$. Moreover, $Y(W)$ is closed under multiplication.

Proof. Clearly $K(X) \subseteq Y(W)$. To show the closedness under addition, let T and $T^{\prime} \in Y(W)$ and $S \in \Phi(W)$, then $T+S \in \Phi(W) . T^{\prime}(T+S)-(T+S) T^{\prime} \in K(X)$, i.e. $\left(T^{\prime} T-T T^{\prime}\right)+\left(T^{\prime} S-S T^{\prime}\right) \in K(X)$ and hence $T^{\prime} T-T T^{\prime} \in K(X)$. Thus

$$
T+T^{\prime} \in \Phi(C \mid\{0\}), \quad\left(T+T^{\prime}\right) S-S\left(T+T^{\prime}\right)=(T S-S T)+\left(T^{\prime} S-S T^{\prime}\right) \in K(X)
$$

for every $S \in \Phi(W), T+T^{\prime} \in Y(W)$. Now since $T^{\prime} T-T T^{\prime} \in K(X), T T^{\prime}$ and $T^{\prime} T$ $\in \Phi(C \backslash\{0\}) . T T^{\prime} S-S T T^{\prime}=T\left(T^{\prime} S-S T^{\prime}\right)-(S T-T S) T^{\prime} \in K(X)$ for every $S \in \Phi(W)$. Hence $T T^{\prime} \in Y(W)$, and $T^{\prime} T \in Y(W)$ follows similarly.

It was proved in [1] that if $\left\{T_{n}\right\}$ is a sequence in $\Phi(C \backslash\{0\})$ and $T_{n} \rightarrow T$ in $B(X)$, where $T_{n} T=T T_{n}$ for all sufficiently large n, then $T \in \Phi(C \backslash\{0\})$. The next theorem extends this result.
Remark 8. $T \in \Phi(C \backslash\{d\})$ iff $T-d \in \Phi(C \backslash\{0\})$.
Theorem 4. Let $\left\{T_{n}\right\}$ be a sequence in $\Phi(C \backslash\{d\})$ and $T_{n} \rightarrow T$ convergence in norm with $T \in B(X)$. If $T T_{n}-T_{n} T \in K(X)$ for all sufficiently large n, then $T \in \Phi(C \backslash\{d\})$.

Proof. For a nonzero scalar c there is a sufficiently large n such that $\left\|T-T_{n}\right\|$ $<r(c)$. Hence $T-T_{n} \in \Phi(\{c\})$. But $T_{n}-d \in \Phi(C \backslash\{0\})$ for every n, and

$$
\begin{gathered}
\left(T-T_{n}\right)\left(T_{n}-d\right)-\left(T_{n}-d\right)\left(T-T_{n}\right)=T T_{n}-T_{n} T \in K(X), \\
T-d=\left(T-T_{n}\right)+\left(T_{n}-d\right) \in \Phi(\{c\})
\end{gathered}
$$

by Lemma 6. But $c \neq 0$ was arbitrary, $T-d \in \Phi(C \backslash\{0\})$ and hence $T \in \Phi(C \backslash\{d\})$.
We may apply the same method to prove
Corollary 2. Let $\left\{T_{n}\right\}$ be a sequence in $B(X)$ and $T \in B(X)$ with $T \in \Phi(C \backslash\{d\})$. If $T_{n} \rightarrow T$ convergence in norm and $T T_{n}-T_{n} T \in K(X)$ for all sufficiently large n, then $T_{n} \in \Phi(C \backslash\{d\})$ for all such n.

Theorem 5. $Y(\phi)$ and $Y(\{c\})$ are Banach algebras.
Proof. In virtue of Theorem 4 and the fact that $T_{n} S-S T_{n} \rightarrow T S-S T$ for every $S \in \Phi(\phi)$ provided $T_{n} \rightarrow T, Y(\phi)$ is closed. By Lemma 7, $Y(\phi)$ is a Banach algebra with the same norm as in $B(X)$. To show the second part, let $T_{n} \rightarrow T$ in $B(X)$, then $T-b=T^{\prime} \in \Phi(\{0\})$ for some $b \neq 0$ by Remark 7 .

$$
\begin{aligned}
T_{n} T-T T_{n} & =T_{n}\left(T^{\prime}+b\right)-\left(T^{\prime}+b\right) T_{n}=T_{n} T^{\prime}-T^{\prime} T_{n} \\
& =T_{n}\left(T^{\prime}+c\right)-\left(T^{\prime}+c\right) T_{n} \in K(X) .
\end{aligned}
$$

Hence $T \in \Phi(C \backslash\{0\})$ by Theorem 4. The remainder of the proof follows as above.
Remark 9. T is a Fredholm operator, iff the adjoint T^{*} of T is a Fredholm operator [3]. Hence if $V \subseteq C$, and since $(T-c)^{*}=T^{*}-c$ is the Banach space adjoint of $T-c$, we have $T \in \Phi(V)$ iff $T^{*} \in \Phi(V)$. Thus all above statements and proofs are true if we are dealing with the adjoint space and adjoint operators.

References

1. S. R. Caradus, Operator of Riesz type, Pacific J. Math. 18 (1966), 61-71.
2. I. C. Gohberg and M. G. Krein, The basic propositions on defect numbers, root numbers and indices of linear operators, Trans. Amer. Math. Soc. (2) 13 (1960), 185-265.
3. T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322.
4. M. Schechter, Riesz operators and Fredholm perturbations, Bull. Amer. Math. Soc. (6) 74 (1968), 1139-1144.

Queen's University,
Kingston, Ontario

