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ON CERTAIN CLASSES OF BOUNDED 
LINEAR OPERATORS 

BY 

C-S LIN 

1. Let T—c be a Fredholm operator, where J is a bounded linear operator on a 
complex Banach space and c is a scalar, the set of all such scalars is called the 
O-set of T [2] and was studied by many authors. In this connection, the purpose of 
the present paper is to investigate some classes 0(F) of all such operators for any 
subset V of the complex plane. 

2. Let Xbe a Banach space over the field C of complex numbers with dim Z=oo, 
unless otherwise stated, B(X) the Banach algebra of all bounded linear operators 
and K(X) the closed two-sided ideal of all compact operators on X. As usual, 
TeB(X) is said to be a Fredholm operator if both the dimension of the null space 
of T and the codimension of the range of T are finite, and is said to be a Riesz 
operator if T—c is a Fredholm operator for every nonzero scalar c [1]. We shall 
write 0 (F )={Te B(X): T—c is a Fredholm operator, Vc e V}, where Fis a proper 
subset of C. Thus the set of all Fredholm operators is O({0}), and O(C\{0}) the set 
of all Riesz operators. Clearly every nonzero scalar is a Fredholm operator, and 
if c e C, c <£ V iff c e 0(F) . We shall write 0(<£) = £(Z), where <£ is the empty set 
and this expression is justifiable by 

THEOREM I. If V and W are proper subsets of C, F g W iff 0(JF)c 0(F) . 

Proof. Let F ç Wand Te O(PF), then T-ce O({0}) for every ceW, and hence 
for every ce V,Te 0(F) . Conversely, if V$ W, then there is a ce V with c$W. 
Thus c $ 0(F) and c e 0(W), 0(PF)<£0(F). 

Let TeB(X), we shall denote by rr the canonical homomorphism of B(X) onto 
the (quotient) Banach algebra B(X)/K(X), o(T) and p(T) (resp. G(<TT(T)) and 
P(TT(T))) the spectrum and the resolvent set of T (resp. TT(T)). A characterization of 
the Fredholm operators due to F. V. Atkinson says that Te O({0}) iff TT(T) is in-
vertible in B(X)/K(X). In this case, let TT(T) be its inverse. 

LEMMA 1. Let W be a proper subset of C, Se B(X), Te O({0}) and T as stated 
above. Then S-cTe ®({0})for every ceW, iff ST e O(JF). 

Proof. Let ce W. S-cTe®({0}), iff TT(S-CT) is invertible, iff TT((S~CT)T) 

=TT(S-CT)TT(T) is invertible, iff TT(ST-C) is invertible, iff ST e 0({c}). 

REMARK 1. Notation as in Lemma 1, we see that ST e O(JF) iff TSe O(PF). 
Also S-cTe O({0}) for every c e W, iff STe O(JF). In order to see what the set 
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0(C) is, we shall give a simple proof of Theorem 3.2 [2] and of its converse as well. 

LEMMA 2. (Theorem 3.2 [2]): 0(C) ^<f> iff Aim X<oo. 

Proof. T e 0(C), iff TT(T- c)=TT(T) - c is invertible for every c e C, iff a(7r(r)) = <£, 
iff#(X) = .5(Jf), iff the identity operator on Z i s compact, iff dim X<oo. 

REMARK 2. S and Te <b(W) iff ^ Ç p W S ) ) n pOrÇT)). The so-called Gelfand-
Mazur theorem says that if in a complex Banach algebra with unit element A 
every nonzero element is invertible, then A is one dimensional. In the case of B(X), 
we have the following more general statement. 

THEOREM 2. B(X) = C, iff B(X)\{c}^^({c}) for any ceC. 

Proof. The " only if, " part is clear. To show the "if" part, let T e B(X\ then there 
exists beC such that T$ 0({è}) by Lemma 2. Thus T-b + c£ 0({c}), T-b + c=c 
by assumption, T—b and hence B(X) = C. 

LEMMA 3.I/V and W are any subsets of C, then 
(1) 0(F) n d>(W) = 0 ( F u PF). 
(2) O(F) u «(FF) s 0(V n »0- Equality holds if either F g W or W ^ V. 

The proof follows easily and may be omitted. The opposite inclusion relation 
in (2) is not valid in general. In order to show this it suffices to take a linear bounded 
operator T <£ O ({0}) with finite dimensional null space and such that its range be 
closed and of infinite codimension. By Theorem 7.1 [2] then there exists a number 
b > 0 such that for every S e B(X) with || S\\ < b, T+ S $ O({0}). Thus, for c0 ̂  0 with 
|c01 < b, one obtains T<£ 0({c0}). Accordingly 

O({0}) u O({c0}) g O({0} n {c0}) = *(fl = B(X). 

REMARK 3. Since O(C\{0}) n O({0}) = 0(C), a Riesz (resp. a Fredholm) operator 
is a Fredholm (resp. a Riesz) operator iff X is of finite dimension. 

COROLLARY 1. If X is of infinite dimension and L={0(F) : V^ C}, then the system 
{L, n, ^} is a complete and complemented lower semilattice with respect to the set 
intersection and inclusion relation, and 0(C) = cf> is the smallest element in L. More
over, X is of finite dimension iff the system {L, n , u , ^ } is the lattice with only 
two elements, B(X) and </>. 

The proof follows easily and may be omitted. The lower semilattice is atomic, 
since each element 0(C\{c}) covers 0(C). 

THEOREM 3 (1). If W is a nonempty subset of C and Te 0(C\W), then there is a 
nonempty subset V^W such that V^G(TT(T))^O(T). 

(2) If Wis a subset of C with W^>o(T), then Te ®(C\W). 

Proof. (1) T$ O(PK), since otherwise dim X<oo. Hence there is a nonempty 
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subset V^W such that TT(T-C) = TT(T)-C is not invertible for every ceV, 
V^G(TT(T)). p(T)^p(n(T)), since TT carries an invertible element into an invertible 
element. (2) By the last argument, Te <S>(P(T)) and T$ <&{o(T)) for any Te B{X). 

REMARK 4. If c e 9{T), then T-c and (T-c)'1 e <P({0}). Thus if either T-b or 
(T—d)'1 is a Riesz operator for some b or d in p(T), then dim Z<oo. 

REMARK 5. Some direct consequences of Theorem 3 are: the spectrum of a 
Riesz operator contains the zero, a(T)^cf> for any TeB(X), and every quasi-
nilpotent operator is a Riesz operator. 

REMARK 6. By Lemma 3 and Theorem 3, if 0(W)^ *(K), Te 0 (F) mdC\(W\V) 
2(7(70, thenre<D(fiT). 

3. Let TeB(X) and r(T) be its lower bound [3]. It is known that the range of 
T is closed iff r(T) > 0. T e 0>({0}) implies r(T) > 0. Also if T e O({0}), 5 e B(X) and 
|| S'il < r(T), then T+Se O({0}). 

REMARK 7. Clearly T e ®({c}) if ||r|| < |c| =r(c). This condition may be weakened 
by that ||7r(70||<|c|, because in this case T can be written as T=S+A, where 
SeB(X), | |S| |<|c| and AeK(X), and since 7T(T-C) = 7T(S+A-C) = TT(S-C) is 
invertible, Te®({c}). 

LEMMA 4. If W is a finite subset of C, then <&(W) is an open subset ofB(X). 

Proof. Let Te <S>(W) and r(T-b) = mm {r(T-c): c e W}^0. if S e B(X) is such 
that \\TT(S-T) II < r(T- b), then S-b = (S- T) + ( r - f t ) e O({0}) and hence S e <S>(W). 

LEMMA 5. Ifb and c are nonzero scalar s and d is any scalar, then 

bd>({c}) = c®({b}) and b®({d}) = ®({bd}). 

In particular, </O(C\{0}) = O(C\{0}). 

Proof. Teb®({c}), iff T/b - c e *({0}), iff T/c-b e $({()}), iff r e c<D({Z>}), and 
hence 60({c}) = cO({6}). The remainder of the proof follows similarly. 

LEMMA 6. Le* J ^ g C, T e *(C\{0}), 5 G 0 ( ^ ) owrf TS-STeK(X), then 
T+Se<b(W). Moreover, TS and STe <b(V)for any subset V^C\{0}. 

Proof. Let ceW, T(S-c)-(S-c)T=TS-STe K(X), then r + S - c e O({0}) 
[4, Theorem 9]. But c e W was arbitrary, T+S e <b(W). TS and STe O(C\{0}) [4, 
Lemma 5]. 

Let WgC and Y(W)={Te <D(C\{0}): TS-STeK(X), VSe®(W)}, then, 
JFo<=^i implies 7(*F0)^ *Wi) , and 7({c}) = 7({0}) due to a simple fact that 
<D({0})={r-c: V r e 0({c})} and ®({c})={T+c: We <D({0})}. 

LEMMA 7. If W^C, then Y(W) is a linear manifold of B(X) such that K(X) 
ç= Y(W). Moreover, Y(W) is closed under multiplication. 
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Proof. Clearly K(X)^ Y(W). To show the closedness under addition, let J and 
T'eY(W) and S e O ( ^ ) , then T+Se9(W). T'(T+S)-(T+S)T' e K{X)9 i.e. 
(T'T-TT') + Çr'S-ST) e K(X) and hence T'T-TT e K(X). Thus 

r + r G <&(c\{0}), (r+ros-scr+r) = (rs-£0+(rs-sroe£(A9 

for every Sed>(W)9 T+Te Y(W). Now since T'T-TT e K(X), TT and T'T 
e 3>(C\{0}). TTS-STT = TÇr'S-ST)-(ST-TS)T e K(X) for every S e ®(W). 
Hence 7 T ' e 7(JF), and TTe Y(W) follows similarly. 

It was proved in [1] that if {Tn} is a sequence in $(C\{0}) and r n -> T in £(X), 
where TnT=TTn for all sufficiently large w, then Te ®(C\{0}). The next theorem 
extends this result. 

REMARK 8. Te 0>(C\{</}) iKT-de #(C\{0}). 

THEOREM 4. Le* {rn} èe a sequence in 0(C\{J}) awd Tn->T convergence in norm 
with TeB(X). IfTTn-TnTeK(X)for all sufficiently large n, then Te <b(C\{d}). 

Proof. For a nonzero scalar c there is a sufficiently large n such that ||T—rn|| 
<r(c). Hence T-Tn e 0({c}). But r n - r fG ®(C\{0}) for every «, and 

(T-Tn)(Tn-d)-(Tn-d)(T-Tn) = TTn-TnTe K{X)9 

T-d = ( T „ T n ) + (Tn-d)e®({c}) 

by Lemma 6. But c^O was arbitrary, T - r f e #(C\{0}) and hence Te <b(C\{d}). 
We may apply the same method to prove 

COROLLARY 2. Let {Tn} be a sequence in B(X) and TeB(X) with Te *(C\{</}). 
If Tn-+T convergence in norm and TTn — TnTeK(X) for all sufficiently large n, 
then Tn e ®(C\{d})for all such n. 

THEOREM 5. Y(<f) and Y({c}) are Banach algebras. 

Proof. In virtue of Theorem 4 and the fact that TnS- STn ->TS-ST for every 
S e <D(<£) provided Tn -> T9 Y{<f>) is closed. By Lemma 7, Y(</>) is a Banach algebra 
with the same norm as in B(X). To show the second part, let Tn->Tm B(X), then 
T-b=T'e €>({0}) for some b^O by Remark 7. 

TnT-TTn = Tn(T + b)-(T' + b)Tn = TnT-TTn 

= Tn(T' + c)-(T' + c)TneK(X). 

Hence T e O(C\{0}) by Theorem 4. The remainder of the proof follows as above. 
REMARK 9. T is a Fredholm operator, iff the adjoint T* of T is a Fredholm 

operator [3]. Hence if V^ C, and since (T— c)* = T* — c is the Banach space adjoint 
of T-c, we have Te ®(V) iff T* e 0(F) . Thus all above statements and proofs 
are true if we are dealing with the adjoint space and adjoint operators. 
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