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SEMIPRIME RINGS WITH NILPOTENT DERIVATIVES 

BY 

L. O. CHUNG AND JIANG LUH 

There has been a great deal of work recently concerning the relationship 
between the commutativity of a ring JR and the existence of certain specified 
derivations of R. Bell, Herstein, Procesei, Schacher, Ligh, Martindale, Putcha, 
Wilson, and Yaqub [1, 2, 6, 8, 9, 10, 11, 12, 14] have studied conditions on 
commutators which imply the commutativity of rings. By noting that a com­
mutator is simply the image of an element under an inner derivation, the 
present authors and A. N. Richoux [3, 4, 5] have generalized several earlier 
results by replacing inner derivations by certain (not necessarily inner) deriva­
tions. Recently in [8], Herstein claims that, for a prime ring R, if x e R and if 
there is a positive integer n such that [x, y]n = 0 for all y e R then x is central 
in R. The purpose of this paper is to extend this result to semi-prime rings and, 
at the same time, to relax the hypothesis by replacing the commutator [x, y] by 
dx for an arbitrary derivation d of R. 

THEOREM. Let Rbe a semi-prime ring with a derivation d. Suppose there exists 
a positive integer n such that (dx)n = 0 for all xeR and suppose R is ( n -1 ) ! -
torsion free. Then d = 0. 

Let us first establish the following: 

LEMMA 1. Let R be an m \-torsion free ring. Suppose yl5 y 2 , . . . , ym e R satisfy 
ay1 + a2y2+* • - + amym = 0 for a = 1,2,... ,m. Then yt = 0 for all i. 

Proof. Let A be the matrix 

IX 1 . . . 1 \ 
j 2 22 • • • 2m \ 

\ m m2 ••• m m / 

Then, by our assumption, 

•Of) 
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Premultiplying by the adjoint of A yields 

Since the determinant of A, det A, known as a Vandermonde determinant, is 
equal to a product of positive integers, each of which is less than m, and since 
R is m !-torsion free, it follows immediately that yt = 0 for all l 

Throughout the balance of this paper we assume JR is a semi-prime ring with 
a derivation d. Assume n is a positive integer, JR is (n — l)!-torsion free and 
(dx)n = 0 for all x G JR. Moreover, Z denotes the ring of integers, dR denotes 
the set of all dx where xeR. 

LEMMA 2. For all x,yeR, 

(1) dyidxT'1 + ax dy(djc)n~2+ • • • + (dxT'1 dy = 0. 

Proof. Let aeZ and l < a < n - l . 

By expanding (d(x + ay))n = 0 , we obtain 

(ax)n + a(dy(dx)n-1 + dxdy(dx)n'2-¥ • • • +(dx)n~1 dy) + a2((dy)2(dx)n-2 

+ dy dx dy(dx)n-3 + dx(dy)2(dx)n-3+ • • • +(dx)n-2(8y)2)+ • • • +a n (dy) n = 0. 

Since (dx)n = 0 and (dy)n = 0, it can be written abbreviately as 

ayi + a 2 y 2 + " - + a n - 1 y n _ 1 = 0. 

By Lemma 1, all yt = 0 and, particularly, 

y! = ay(ax)n_14-ax ay(ax)n"2+ • • • +(ax)n~1 ay = o. 

LEMMA 3. For all x,yeR, and k = 2, 3, 4 , . . . , 

(2) akxy(ax)n-1 + axakxy(ax)n~2+- • • + (dx)n~1dkxy = 0, 

(2)' (ax)n_1y dkx + (ax)n~2y dkx,dx + • • • + y akx(dx)n"1 = 0. 

Proof. We proceed by induction on k. In (1) we replace y by axy. We obtain 

[tfxyidxy-'L + dx a2xy(ax)n~2+ • • • +(dx)n _ 1 a2xy] 

+ [ax ay(dx)n_1 + 0x)2oy(dx)n"2+ • • • +(ax)n ay] = 0. 

The second bracket is zero by (1) and hence (2) holds for k = 2. 
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Now, we assume (2) holds for k = m - 1 . In (1), replacing y by am_1xy yields 

[ff^xyidxT^ + dx dmxy(dx)n-2+ • • • + (ax)n_1 amxy] 
+ [am-1x ay(ax)n_1+ax am_1x ay(ax)n~2+ • • • +(ax)n_1 am_1x ay] = o. 

The second bracket again is zero by the induction hypothesis and thus (2) holds 
for fc = m. 

Similarly, in (1) replacing y by y ax and y ak - 1x respectively yield (2)'. 

LEMMA 4. For all xeR and k = 2, 3 , 4 , . . . , 

(3) (dx)n"1dkx = 0, 

and 

(3') dkx(dx)n-1 = 0. 

Proof. (3) can be obtained from (2) by premultiplying by (dx)n_1 and by the 
semi-primeness of JR, (3)' can be obtained from (2)' similarly. 

LEMMA 5. For all x, y GR and positive integer k. 

(4) aky(ax)n-1+akx(ay(ax)n_2+axay(ax)n-3+- • - + (ax)n-2ay) = o, 

and 

(4)' (ax)n_1ôky + (ôy(ax)n"2+axôy(ax)n-3+- • - + (ax)n-2ay)akx = o. 

Proof. From Lemma 2, (4) and (4)' both hold for fc = 1. Now we assume 
fc > 2. We replace x by x + ay in (3)', where a e Z and 1 < a < n -1 and then 
expand it. The identity (4) follows immediately from Lemma 1. Likewise (4)' 
can be obtained from the identity (3). 

LEMMA 6. For all xeR, 

(5) (ax)n~2a2x = a2x(ax)n~2 = o. 

Proof. In the identity (4) for k = 2, replacing y by y ax yields 

(a2y ax+ay a2x + y a3x)(ax)n-1+a2x[(ay ax + y a2x)(ax)n_2 

+ax (ay ax + y a2x)(ax)n_3+• • • + (ax)n~2(ay ax + y a2x)] = o 

or 

[a2y)(ax)n-1+a2x(ay(ax)n-2+axay(ax)n-3+- • - + (ax)n-2ay)]ax 

4-[ay a2x(ax)n_1 + y d3x(dx)n~1] + d2x[y d2x(dx)n~2 

+axy a2x(ax)n~3+- • - + (ax)n-2y a2x] = o. 

This first bracket is zero by Lemma 5 while the second bracket is zero by 
Lemma 4. Hence we have a2x[y d2x(dx)n~2 + axy d2x(dx)n~3 + • • • + 
(ax)n_2y a2x] = 0. Now we postmultiply by (dx)n~2 and use Lemma 4. We arrive 
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that (dx)n~2y d2x(dx)n~2 = 0. Since y is arbitrary and JR is semi-prime, 
d2x(dx)n~2 = 0 as we desired. Similarly (dx)n'2 d2x = 0. 

LEMMA 7. For all xeR, 

(6) d3x(dx)n~2 = (dx)n~2 d3x = 0. 

Proof. In d2x(dx)n~2=:0, by replacing x by x + ay, by expanding and by 
using Lemma 1, we obtain 

d2y(dx)n-2 + d2x[(dx)n-2dy + (ax)n"3ay dx+ • • • + ay(ax)n-2] = 0. 

Replacing y by y dx and applying (5) yield 

(7) y a3x(ax)n_2+a2x[(ax)n-2y a2x + (ax)n~3y a2x ax + • • • + y a2x(ax)n_2] - o. 

Now, we premultiply by (dx)n~2 and use (5). It follows that 
(ax)n_2y a3x(ax)n~2 = 0. The semi-primeness of JR implies a3x(ax)n-2 = 0. 
Likewise, (dx)n~2 d3x = 0. 

LEMMA 8. For all xeR, 

(8) (ax)2a2x = a2x(ax)2 = o. 

Proof. For n < 4 , it is trivial by Lemma 6. Now we assume that n > 4 . From 
(7), using (6) and (5) we obtain 

(9) a2x[(ax)n_3y a2x ax+(ax)n~4y d2x(dx)2+• • •+axy a2x(ax)n~3] = o. 

Postmultiplying by (dx)n~4 yields a2x(ax)n_3y a 2 x(ax ) n - 4 -0 which, by the 
semi-primeness of R, implies a2x(ax)n - 3 = 0. Likewise, (dx)n~3 d2x = 0. So we 
are done if n = 4 or 5. Suppose n > 5 . The identity (9) becomes 
a2x[(ax)n_4y a2x(ax)2+ • • • +(ax)2y a2x(ax)n~4]-0. Postmultiplying by (dx)n~6 

yields a2x(ax)n_4y a2x(ax)n_4 = 0. Again by the semi-primeness of R, 
a2x(ax)n~4 = 0. Continuing this process if necessary, we obtain d2x(dx)2 = 0 and, 
likewise, (dx)2 d2x = 0. 

LEMMA 9. For all xeR, 

(10) ax a2x = a2x ax = o. 

Proof. From a2x(ax)2 = 0, we replace x by x + y. After expansion we get 

( i l) a2y(ax)2+a2x(axay+ay ax)-o. 

Replacing y by y ax yields 

(a2y ax+ay a2x + y a3x)(ax)2+a2x(ax(ay ax + y a2x) + (ay ax + y a2x) ax) = o. 

By noting that a2x(ax)2 = 0, we get 

[a2y(ax)3+a2x ax ay dx+d2x ay(ax)2]+y a3x(ax)2+a2x(axy a2x + y a2x ax) = o. 
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The first bracket is zero according to (11). So 

(12) y d3x(dx)2 + d2x(dxy d2x + y d2x dx) = 0. 

Now premultiplying by (dx)2 yields (dx)2y d3x(dx)2 = 0 which, by semi-
primeness of R, implies d3x(dx)2 = 0. Thus the identity (12) becomes 
d2x(dxy d2x + y d2x dx) = 0. Postmultiplying by dx yields d2x dxy d2x dx = 0, and 
hence by the semi-primeness of JR, d2x dx = 0. That dx d2x - 0 can be obtained 
analogously. 

LEMMA 10. For all xeR, d3x = 0. 

Proof. By Lemma 9, for all x, y e R, d(x + y) d2(x + y) = 0 which implies 
dy d2x-\-dx d2y = 0. Premultiplying by d2x yields 

(13) d2xdyd2x = 0. 

Now we replace y by y d2xz. 
It follows d2x(dy d2xz + y d3xz + y d2x dz) d2x = 0 or, by (13), d2xy d3xz d2x = 

0. By the semi-primenesss of R, d2xy d3x = 0. Replacing x by x + z yields 
d2zy d3x+d2xy d3z = 0. Now by premultiplying by d3z and by noting that 
d3z d2z = 0 (Lemma 9), we obtain d3z d2xy d3z = 0. Consequently, 

(14) d3zd2x = 0 for all x, z G JR. 

Replacing x by dxy yields. 

(15) d3z dx d2y = 0 for all x, y, z G R 

by using (14). On the other hand, in (14), replacing x by x dy yields 
d3x(d2x dy 4-dx d2y + x d3y) = 0 which, by (14) and (15), implies d3zx d3y = 0 for 
all x, y, z G JR. The semi-primeness of JR gives d3y = 0 for all y e R. 

It is perhaps worth noting that for an arbitrary ring A d3x = 0 for all xeA 
does not imply d = 0 or the commutativity of A. 

EXAMPLE. Let A be the 3 by 3 matrix ring over a division ring and d be the 
inner derivation of A defined by 

*31 X32 X 33~~ X l l \ 

0 0 - x 2 1 | . 

It can be seen easily that d3x = 0 for all xeA. However, A is not commuta­
tive. Now we are in a position to prove our main theorem. 

Proof of the Theorem. By Lemma 9, d(x + y) d2(x + y) = 0 which implies 

(16) dyd2x + axd2y = 0. 

(x n x12 x13\ 
*21 *22 *23 

X^i Xoo Xri-x/ 

(0 0 1\ / x n x12 x13\ 
o o o r ix 2 1 x22 x23 

_ 0 0 0/ \x oi Xao Xii / 
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On the other hand, by Lemma 10, d3(xy) = 0 which implies 

(17) d2xdy + dxd2y = 0. 

Thus, from (16) and (17), 

(18) a2x ay = ay d2x, for all x, y e JR. 

In (18), replacing y by y ax yields 

(19) a2x(ay dx + y d2x) = (ay dx + y d2x) d2x, 

while in (17), replacing x by dx yields 

(20) d2x d2y = 0, for all x, y e JR. 

From (19), using (20) and (10), we obtain a2x(dy ax + y a2x) = 0. 
But a2x ay ax = ay a2x ax = 0 by (18) and (10). So we have 

(21) a2x = 0 for all x G JR. 

Here to prove a = 0 we might use a result of Posner [13] which says that a 
product of two non-trivial derivations is not a derivation in a prime ring if the 
characteristic of the ring is not 2. However, for the sake of self containment we 
provide a direct and elementary proof. Indeed, from (21), for all x, ye l ? , 
a2(xy) = 0. This implies dx dy = 0. Now by replacing y by yx we obtain 
axy dx = 0 for all x, y e R. Therefore, a = 0 by the semi-primeness of R. 

As an immediate consequence of the theorem we have 

COROLLARY. Let R be a semi-prime ring and xeR. If there exists a positive 
integer n such that [x, y]M = 0 for all yeR and R is (n- \)\-torsion free, then x 
lies in the center of R. 

We conclude with some open problems: 
1. It can be shown that for some small n, e.g. 2, 3, the theorem is true 

without assuming that R is (n-1)!-torsion free. Is it true for general n? 
2. Does the theorem remain true if one weakens the assumption by assum­

ing that n depends upon x? 
3. Let R be a semi-prime ring with derivation a. If there exist positive 

integers n and k such that (akx)n is central for all x€JR, what kind of 
conclusion can be drawn on R and a? (cf. [10]). 
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The detailed proof of the results in reference [8] has appeared in J. Algebra 60 (1979), 567-574. 
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