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Abstract Pseudo-Riemannian manifolds with parallel Weyl tensor that are not conformally flat or locally
symmetric, also known as essentially conformally symmetric (ECS) manifolds, have a natural local invari-
ant, the rank, which equals 1 or 2, and is the rank of a certain distinguished null parallel distribution D.
All known examples of compact ECS manifolds are of rank one and have dimensions greater than 4. We
prove that a compact rank-one ECS manifold, if not locally homogeneous, replaced when necessary by a
twofold isometric covering, must be a bundle over the circle with leaves of D⊥ serving as the fibres. The
same conclusion holds in the locally homogeneous case if one assumes that D⊥ has at least one compact
leaf. We also show that in the pseudo-Riemannian universal covering space of any compact rank-one
ECS manifold, the leaves of D⊥ are the factor manifolds of a global product decomposition.
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1. Introduction

Pseudo-Riemannian manifolds (or metrics) in dimensions n ≥ 4 with parallel Weyl tensor
W are often called conformally symmetric [1]. One speaks of ECS manifolds/metrics [4]
when, in addition, the metric is neither conformally flat nor locally symmetric, ‘ECS’
being short for essentially conformally symmetric.
ECS metrics exist in every dimension n ≥ 4, as shown by Roter [17, Corollary 3], who

also proved that they are all indefinite [3, Theorem 2]. The local structure of all ECS
metrics is described in [6].
Given an ECS manifold (M, g), we define its rank [8] to be the rank d ∈ {1, 2}

of its Olszak distribution D, which is a null parallel distribution on M discovered
by Olszak [16]. The sections of D are the vector fields v having the property that
g(v, ·) ∧ [W (v′, v′′, ·, ·)] = 0 for all vector fields v′, v′′. Every Lorentzian ECS manifold
has rank one, as the Lorentzian signature limits the ranks of null distributions to at most
1. For more details, see [6, p. 119].
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Compact rank-one ECS manifolds are known to exist in all dimensions n ≥ 5, where
they represent all indefinite metric signatures [7, 8]. There are also non-compact locally
homogeneous ECS manifolds [2] of every dimension n ≥ 4. More recently, in [10], we con-
structed examples of compact locally homogeneous ECS manifolds of all odd dimensions
n ≥ 5.
Our main result can be phrased as follows.

Theorem A. Every non-locally homogeneous compact rank-one ECS manifold with
transversally orientable distribution D⊥ is diffeomorphic to a bundle over the circle in
such a way that the fibres coincide with the leaves of D⊥. This conclusion remains valid
in the locally homogeneous case, as long as D⊥ is assumed to have at least one compact
leaf.

The assertion of Theorem A obviously implies that the leaves of D⊥ are all compact
and mutually diffeomorphic. Note that transversal orientability of D⊥ can always be
achieved by replacing the manifold in question, if necessary, with a twofold isometric
covering.
Theorem A generalizes Theorem B of [5] from the Lorentzian case to any indefinite

metric signature. The assumption in [5, Theorem B] does not include rank one or exclude
local homogeneity, since a Lorentzian ECS manifold necessarily has rank one (see above)
and cannot be locally homogeneous (Remark 7.4). The Appendix explains how our proof
of Theorem A differs from that used for [5, Theorem B].
The examples of [10], mentioned earlier, show that the final clause of Theorem A is

non-vacuous, at least in odd dimensions.
Triviality of the pullback to IR of a bundle over S 1 makes the next result an obvious

consequence of Theorem A except when (M̂, g) is locally homogeneous.

Theorem B. The leaves of D⊥ in the pseudo-Riemannian universal covering space

(M̂, g) of any compact rank-one ECS manifold are the factor manifolds of a global product

decomposition of M̂ . More precisely, every leaf L of D⊥ in M̂ is simply connected, and

M̂ is diffeomorphic to IR× L.

We prove both theorems in § 11.

2. Outline of the main argument

We fix a compact rank-one ECS manifold (M, g) of dimension n ≥ 4, and denote by

(M̂, g) its pseudo-Riemannian universal covering and by π : M̂ → M = M̂/Γ the

covering projection. Here Γ ≈ π1M is a group of isometries of (M̂, g) acting on M̂
freely and properly discontinuously. Also, D stands for the Olszak distribution (see the

Introduction), with the same symbols D and V = D⊥ denoting objects in M̂ and their

projections onto M. According to Equations (6.3)–(6.7), on M̂ there exists a function t
with a parallel gradient ∇t spanning D, so that D⊥ = Ker dt, and the Ricci tensor of

(M̂, g) equals (2 − n)f(t) dt ⊗ dt, where f : M̂ → IR is locally a function of t. If a C 1

function χ : M̂ → IR is locally a function of t, one may define its t-derivative χ̇ : M̂ → IR
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by dχ = χ̇dt. It easily follows – cf. Equation (6.8) – that

the action of Γ multiplies ∇t by non-zero constants,

implying Γ-invariance of both |f |1/2 dt and |ḟ |1/3 dt.
(2.1)

We now assume transversal orientability of V and proceed to summarize the steps, leading
to the main conclusion of Theorem A: that, unless g is locally homogeneous, V = D⊥

must be the vertical distribution of a fibration M → S1.
This is achieved by showing that V, in addition to being a transversally ori-

entable codimension-one foliation on the compact manifold M, also has what we
call property (4.1): for every compact leaf L of V, the nearby leaves are either all
non-compact – with the exception of L – or they are all compact and there exists a product-
like V-saturated tubular neighbourhood of L in M. Furthermore, some compact leaf of V
then realizes the second case in the either–or clause of Equation (4.1).
The reason why the main claim in Theorem A follows from the two conditions italicized

above is that, even within the general context of foliations, with no reference to ECS
geometry, these conditions imply that all leaves of V are compact, which forces M to be
a bundle over the circle (Theorem 4.1).
Returning to our ECS case, we prove property (4.1) for V = D⊥ by first observing, in

§ 10, that the rank-one Olszak distribution D on M̂ is spanned by the parallel gradient
∇t, and so the Levi-Civita connection of the compact ECS manifold (M, g) induces flat
linear connections both in D (over M ) and in the line bundle D∗

L over any leaf L of D⊥,
dual to the line bundle DL arising as the restriction of D to L. At the same time, D∗

L is
canonically isomorphic to the normal bundle of L in M. Assuming compactness of L, we
then show in Theorem 10.1 (see the next paragraph) that, under a suitable diffeomorphic
identification Ψ of a neighbourhood U of L in M with a neighbourhood U ′ of the zero
section L in the line bundle D∗

L, the distribution D⊥ on U corresponds to the restriction
to U ′ of the horizontal distribution of the flat linear connection in D∗

L, mentioned above.
By Equation (2.1), the holonomy group HL of the latter connection consists of multipli-
cations by positive real constants (‘non-zero’ in Equation (2.1) becoming ‘positive’ due
to transversal orientability of V = D⊥), and the dichotomy required in Equation (4.1)
comes from the obvious fact that HL is either infinite or trivial.
The identification Ψ : U → U ′, given by formula (10.2), uses a fixed smooth vector field

on M, nowhere tangent to D⊥, to provide the curve segments forming the fibres of the

tubular neighbourhood U, and along these segments, pulled back to M̂ , we define Ψ so
that it sends local t-levels to local sections parallel relative to the flat linear connection.
Due to Equation (2.1), this construction is Γ-equivariant, and hence projects into M.
Finally, still in the ECS case, we establish the second option of property (4.1) for some

compact leaf of V = D⊥ by considering, in § 8, the vector space F of all continuous func-

tions χ : M̂ → IR such that the 1-form χdt is closed (i.e., locally exact) and projectable
onto M, with the linear operator P : F → H1(M, IR) sending χ to the cohomology class
of the projected 1-form on M.
First, let dimF = m <∞. By Equation (2.1), |f |1/2, |ḟ |1/3 ∈ F , and F is closed under

the m-argument operation assigning |ψ1 · · ·ψm|1/m to ψ1, . . . , ψm. Simple set-theoretical
reasons then cause |ḟ |1/3 to be a constant multiple of |f |1/2 (see the proof of Theorem 9.1).
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This makes f globally a function of t, of the form f = ε(t−b)−2 with real constants ε 6= 0
and b, which combined with a result from algebraic geometry – Whitney’s theorem –
implies local homogeneity of g (a precise cross-reference being Lemma 7.1 invoked in the
proof of Theorem 7.3).
On the other hand, when F is infinite-dimensional, P must be non-injective due to

compactness of M and, given any χ ∈ F r {0} with Pχ = 0, we see that χdt projects
onto an exact 1-form on M, and hence onto dµ for some (non-constant) C 1 function

µ :M → IR. As D⊥ = Ker dt on M̂ , this µ is constant along D⊥.
Even though µ is only guaranteed to be of class C 1, Sard’s theorem still applies

(Remark 9.2), and any connected component L of a regular level of µ clearly realizes
the second case of Equation (4.1).

3. Preliminaries

Manifolds are (usually) connected, pseudo-Riemannian metrics and vector fields are
assumed C∞-differentiable, while functions may be of lower regularity. The terms ‘foli-
ation’ and (integrable) ‘distribution’ will be used interchangeably; by their ‘leaves’, we
always mean maximal connected integral manifolds.
The following four facts will be used in § 4, 7 and 9.

Remark 3.1. Let points x, x′ of codimension-one submanifolds L,L′ of a manifold
M be joined by an integral curve Cx of a complete C∞ vector field v on M, which is
transverse to L at x and to L′ at x ′. Then Cx belongs to a smooth variation Ũ 3 y 7→ Cy

of integral curves of v, parametrized by a neighbourhood Ũ of x in M such that, for some
neighbourhoods U,U ′ of x in L and x ′ in L′ with U ⊆ Ũ , each Cy joins y ∈ Ũ to a point

y′ ∈ U ′ and the resulting mapping y 7→ y′ is a submersion Ũ → U ′, while its restriction
to U is a diffeomorphism U → U ′. The word ‘smooth’ also applies here to the domain
intervals of the integral curves.
Namely, let IR×M 3 (τ, y) 7→ φ(τ, y) ∈M be the flow of v, so that Cx is parametrized

by [0, τ∗] 3 τ 7→ φ(τ, x). We now fix a neighbourhood Ũ ′ of x ′ in M and a C∞ function

θ : Ũ ′ → IR with L′∩ Ũ ′ = θ−1(0), having 0 as a regular value. The equation θ(φ(τ, y)) =

0, imposed on (τ, y) ∈ IR × Ũ , is satisfied when (τ, y) = (τ∗, x). The implicit function
theorem [12, p. 18] applied to this equation yields a C∞ function y 7→ τ(y), defined near
x in M, with θ(φ(τ(y), y)) = 0 and τ(x) = τ∗. Consequently, y

′ = φ(τ(y), y) lies in L′.

The submersion/diffeomorphism property of the mapping Ũ → U ′ or U → U ′ arising

in this way, with U = L ∩ Ũ , is immediate since Ũ → U ′ has a right inverse U ′ → U
obtained by using the same principle for −v instead of v.

Remark 3.2. For a (possibly disconnected) codimension-one submanifold L of a man-
ifold M and the flow IR×M 3 (τ, x) 7→ φ(τ, x) ∈M of a complete C∞ vector field on M,
which is nowhere tangent to L, the restriction φ : IR × L → M is locally diffeomorphic
(a codimension-zero immersion). If, in addition, L is also compact, φ : (−ε, ε)× L→M
is an embedding for all ε> 0 close to 0.
In fact, the first claim follows, since φ : IR × L → M has smooth local inverses as an

easy consequence of Remark 3.1. Next, if the embedding assertion failed, there would
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exist two termwise distinct sequences in IR × L having the IR components tending to
0, with the same sequence of φ-values. Since L is now compact, so are φ([−ε, ε]× L)
for all ε> 0, and hence both sequences have subsequences converging to the same
limit x ∈ L. Injectivity of our mapping on a neighbourhood of (0, x) now leads to a
contradiction.

By an m-argument operation Π in the following lemma, we mean any mapping
associating, with any ordered m-tuple (ψ1, . . . , ψm) of functions X → IR, a function
Π(ψ1, . . . , ψm) : X → IR.

Lemma 3.3. Let a vector space F of functions X → IR on a set X have a positive
finite dimension m. If X is closed both under the absolute-value operation ψ 7→ |ψ| and
under some m-argument operation Π sending any ψ1, . . . , ψm to a non-negative function
Π(ψ1, . . . , ψm), which has the same zeros as the product ψ1, . . . , ψm, then there exists a
proper subset X0 of X, a partition {Xj}mj=1 of X rX0 and a basis χ1, . . . , χm of F such
that χj > 0 on Xj and χj = 0 on X rXj for every j = 1, . . . ,m. In other words, some
basis χ1, . . . , χm of F consists of non-negative functions with pairwise disjoint supports,
the word ‘support’ meaning here the complement of the zero set.

Proof. Choose x1, . . . , xm ∈ X with the m evaluations δxj forming a basis of the dual

space F∗, so that some σ1, . . . , σm ∈ F have σj(xi) < 0 < σj(xj) whenever i 6= j. The
positive-part and negative-part operations ()± : F → F are given by σ± = (|σ| ± σ)/2.
We set χj = Π(σ̃1, . . . , σ̃m), where σ̃j = σ+

j and σ̃i = σ−
i for i 6= j. The supports

Xj = χ−1
j ((0,∞)) are non-empty (as xj ∈ Xj) and pairwise disjoint (since, if i 6= j, one

has σi < 0 < σj on Xj), which trivially implies linear independence of χ1, . . . , χm. Our
claim thus follows if we declare X 0 to be Xr

⋃m
j=1Xj , that is, the simultaneous zero set

of χ1, . . . , χm. �

Remark 3.4. A locally diffeomorphic C∞ mapping from a compact manifold into
a connected one is necessarily surjective, and so the latter manifold must be com-
pact as well. In fact, the image of the mapping is both compact and open. (We do
not need the well-known stronger conclusion that the mapping is then also a covering
projection.)

Remark 3.5. A non-empty proper subset K of (0,∞), different from {1}, and closed
under the mappings q 7→ qr for all r ∈ ZZ, must have infinitely many connected compo-
nents: if q ∈ (1,∞)rK is fixed, choosing a connected component Kr of each non-empty
intersection K ∩ (qr, qr+1), r ∈ ZZ, we obtain, due to unboundedness of K, an infinite
family of such components Kr.

4. Codimension-one foliations

The results of this section are the most crucial steps in proving Theorem A.
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Here is a property of a codimension-one foliation V on a manifold M :

every compact leaf L of V has a neighbourhood U in M such that

the leaves of V intersecting U r L are either all non-compact, or

they are all compact and some neighbourhood of L in M is a union

of compact leaves of V and may be diffeomorphically identified

with IR× L so as to make V appear as the L factor foliation.

(4.1)

The final clause of property (4.1) means that some diffeomorphism of a neighbourhood
of L in M onto IR×L pushes V forward onto the L factor foliation of IR×L, which has
the leaves {τ} × L, for τ ∈ IR.

Theorem 4.1. Let a transversally-orientable codimension-one foliation V on a com-
pact manifold M satisfy condition (4.1). If, in addition, some compact leaf L of V realizes
the second possibility in property (4.1), so as to have a product-like V-saturated neigh-
bourhood in M formed by compact leaves, then the leaves of V are all compact and they
constitute the fibres of a bundle projection M → S1.

Proof. Transversal orientability of V allows us to fix a C∞ vector field v onM, nowhere
tangent to V. We also fix a compact leaf L of V satisfying the second option in the either–
or clause of property (4.1). With IR ×M 3 (τ, x) 7→ φ(τ, x) ∈ M denoting the flow of v
and z a given point of L, the ‘second option’ guarantees the existence of an open interval
(a′, b′) containing 0 such that, for all τ ∈ (a′, b′), the leaf Lφ(τ,z) of V passing through
φ(τ, z) is compact. Let (a, b) be the maximal open interval with this property (i.e., the
union of all such intervals).
All Lφ(τ,z) with τ ∈ (a, b) satisfy the second option in condition (4.1), as their compact-

ness obviously precludes the first one. The resulting product structure of a neighbourhood
of each Lφ(τ,z) has three immediate consequences. First, the set E = {(τ, y) ∈ (a, b)×M :
y ∈ Lφ(τ,z)} is open in (a, b)×M . Second, the mapping E 3 (τ, y) 7→ τ ∈ (a, b) constitutes
a bundle projection. Finally,

the mapping E 3 (τ, y) 7→ y ∈M is locally diffeomorphic. (4.2)

The pullback of v under this last mapping is a vector field on the total space E of the
bundle in (b), transverse to the fibres, so that it spans a nonlinear connection (horizontal
distribution) in E.
For any fixed x ∈ L, let (a, b) 3 τ 7→ (τ, λ(τ, x)) ∈ E be the horizontal lift, relative

to this connection, of the curve τ 7→ τ in the base manifold (a, b), with the initial value
(0, x) at τ=0. Such a horizontal lift clearly exists on some neighbourhood (c, d) of 0
in (a, b), as it constitutes a solution to an ordinary differential equation. Compactness
of the fibres Eτ = {τ} × Lφ(τ,z) guarantees in turn that the maximal such (c, d) equals
(a, b). Namely, if we had c> a, or d < b, a neighbourhood of Ec or Ed in E forming a
union of horizontal curves would have the property that a horizontal lift entering it can
be extended so as to reach Ec or Ed and beyond, contrary to maximality of (c, d).
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Note that (a, b) 3 τ 7→ λ(τ, x), for any given x ∈ L, is a reparametrization of the
integral curve τ 7→ φ(τ, x) of v. Thus, for any (τ, x) ∈ (a, b)× L,

Cx = {λ(τ, x) : τ ∈ (a, b)} is an unparametrized integral curve of v (4.3)

passing through x for τ=0 and, for some C∞ function σ : (a, b)× L→ IR,

λ(τ, x) = φ(σ(τ, x), x), λ(τ, z) = φ(τ, z) (4.4)

whenever (τ, x) ∈ (a, b)× L. Also,

σ(0, x) = x, σ(τ, z) = τ, φ(σ(τ, x), x) ∈ Lφ(τ,z), d[σ(τ, x)]/dτ > 0, (4.5)

d[σ(τ, x)]/dτ being positive as it is non-zero everywhere and σ(τ, z) = τ.
We now proceed to establish the following conclusion:

there exist c, d with a < c < d < b and Lφ(c,z) = Lφ(d,z). (4.6)

We will achieve this by deriving a contradiction from the assumption that

Lφ(τ,z), for τ ∈ (a, b), are all mutually distinct. (4.7)

First, λ(τ, x) ∈ Lφ(τ,z) by Equations (4.4)–(4.5), so that Equations (4.7) and (4.3) give

Cx ∩ Lφ(τ,z) = {λ(τ, x)} for any (τ, x) ∈ (a, b)× L. (4.8)

Positivity of d[σ(τ, x)]/dτ – see Equation (4.5) – implies, whenever x ∈ L, that σ(τ, x)
has a limit σ(b, x) ≤ ∞ as τ → b. As a further consequence of Equation (4.7), σ(b, x) <∞
for every x ∈ L (and so, by Equation (4.5), b = σ(b, z) < ∞). Otherwise, we may fix
x ∈ L and a strictly increasing sequence τj > a with τj → b and σ(τj , x) → ∞ as j → ∞.
The sequence λ(τj , x) = φ(σ(τj , x), x) lies in the single integral curve Cx and, passing
to a subsequence, we may assume that it converges to some point y ∈ M , which has
a neighbourhood in M forming a union of ‘short’ unparametrized segments of integral
curves of v intersecting a neighbourhood of y in the leaf Ly. Since λ(τj , x) → y while its
parameter σ(τj , x) increases towards an infinite limit and, due to Equations (4.7)–(4.8),
(a, b) 3 τ 7→ λ(τ, x) is injective, Cx must contain infinitely many of the ‘short’ integral-
curve segments and, as a result, intersect some leaves Lφ(τ,z), with τ = τj , at infinitely
many points, contrary to Equation (4.8). Thus, σ(b, x) <∞ whenever x ∈ L.
Next, let us set λ(b, x) = φ(σ(b, x), x) and denote by Lb,x = Lλ(b,x) the leaf of V

through λ(b, x). Now

the mapping L 3 x 7→ Lb,x is locally constant, (4.9)

and L 3 x 7→ σ(b, x) is C∞-differentiable. In fact, given x ∈ L, the integral curve
(4.3) joins x to λ(b, x) ∈ Lb,x. Remark 3.1 applied to our L and L′ = Lb,x yields a
smooth variation of integral curves Cy of v, for all points y from a neighbourhood U of
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x in L, with each Cy joining y to a point in Lb,x. Each of these Cy is parametrized by
τ 7→ φ(τ, x) with τ ranging over an interval [0, τ∗], where τ∗ depends on y. As before,
λ(b, x) has a neighbourhood in M constituting a union of ‘short’ unparametrized integral-
curve segments intersecting a neighbourhood of λ(b, x) in Lb,x. One of these segments,
the one passing through λ(b, x), contains the portion {λ(τ, x) : b− ε ≤ τ ≤ b} of Cx, with
some ε> 0. The third equality of Equation (4.5) along with Equation (4.8) for y ∈ L near
x (rather than x itself) show that each nearby Cy similarly contains {λ(τ, y) : b − ε ≤
τ < b} and hence also the limit λ(b, x). However, by Equation (4.8), all λ(τ, y) lie in
Lφ(τ,z), just as λ(τ, x) does, and so λ(b, y) ∈ Lb,x, which gives Lb,y = Lb,x and thus
proves Equation (4.9). At the same time, Remark 3.1 yields smoothness of the mapping
L 3 y 7→ σ(b, y).
Since the leaf L is connected, local constancy in assertion (4.9) amounts to constancy, so

that Lλ(b,x) = Lφ(b,z) for all x ∈ L. Thus, for every x ∈ L, the integral curve [0, σ(b, x)] 3
τ 7→ φ(τ, x) ∈ M joins x to the point λ(b, x) in Lφ(b,z). Remark 3.1 also implies that
the mapping L 3 x 7→ λ(b, x) ∈ Lφ(b,z) is locally diffeomorphic. Compactness of L
and Remark 3.4 now yield compactness of Lφ(b,z) along with the second possibility in
Equation (4.1), for Lφ(b,z), since the first one is precluded by compactness of the nearby
leaves Lφ(τ,z) with a < τ < b. This in turn also implies compactness of Lφ(τ,z) for τ ≥ b,
close to b, contradicting maximality of (a, b) and, consequently, proving Equation (4.6).
Let us now fix c, d with the property (4.6). The image, under the mapping in

Equation (4.2), of the set E[c,d] = {(τ, y) ∈ [c, d] × M : y ∈ Lφ(τ,z)} is then clearly
compact, but also open in M. In fact, it suffices to verify that Lφ(c,z) is contained in
the interior of this image – which trivially follows since the image contains both kinds
of sufficiently small one-sided neighbourhoods of Lφ(c,z) = Lφ(d,z) in M. The image thus
coincides with M, which proves that all leaves of V are compact.
Therefore, there exists a bundle projection M → S1 with the leaves of V serving as

the fibres [15, Exercise 2.29(3)(i) on p. 49]. �

5. Rank-one ECS metrics

Let the data f, I, n, V, 〈·, ·〉, A consist of

a non-constant C∞ function f : I → IR on an open interval

I ⊆ IR, an integer n ≥ 4, a real vector space V of dimension

n− 2, a pseudo-Euclidean inner product 〈·, ·〉 on V , and a non-zero,

traceless, 〈·, ·〉-self-adjoint linear endomorphism A of V.

(5.1)

Following [17], one then defines a rank-one ECS metric [6, Theorem 4.1]

g = κdt2 + dtds+ δ (5.2)

on the n-dimensional manifold I × IR × V . The products of differentials denote here
symmetric products, t, s are the Cartesian coordinates on I × IR treated, with the aid of
the projection I × IR × V → I × IR, as functions on I × IR × V , and δ is the pullback
to I × IR × V of the flat pseudo-Riemannian metric on V corresponding to the inner
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product 〈·, ·〉. Finally, κ : I × IR× V → IR is the function given by

κ(t, s, x) = f(t)〈x, x〉+ 〈Ax, x〉. (5.3)

If we let i, j range over 2, . . . , n− 1, fix linear coordinates x i on V and use them, along
with x1 = t on I and xn = s/2 on IR, to form a global coordinate system on I × IR× V ,
then the possibly non-zero components of the metric g and the Levi-Civita connection
∇ are [17, p. 93] those algebraically related to

g11 = κ, g1n = gn1 = 1 and (constants) gij ,

Γn
11 = ∂1κ/2, Γi

11 = −gij∂jκ/2, Γn
1i = ∂iκ/2.

(5.4)

Remark 5.1. Conversely [6, Theorem 4.1], in any n-dimensional rank-one ECS mani-
fold, some neighbourhood of any given point is isometric to an open subset of a manifold of
type (5.2), where one has Equation (5.1) with one possible exception: f may be constant.
More precisely, df/dt = 0 precisely at those points at which the covariant derivative ∇R
of the curvature tensor vanishes. Thus, if f is constant on a subinterval I ′ of I, the metric
(5.2) will have ∇R = 0 on I ′ × IR× V .
In other words, a rank-one ECS manifold may have locally symmetric open submani-

folds, and then the function f appearing in the local-coordinate form of [6, Theorem 4.1]
is constant.

6. Assumptions and notation

Our (M, g) is always a rank-one ECS manifold, often compact, and (M̂, g) denotes its
pseudo-Riemannian universal covering space, which leads to

the universal covering projection π : M̂ →M = M̂/Γ, (6.1)

Γ ≈ π1M being a group of isometries of (M̂, g) acting on M̂ freely and properly dis-

continuously. Most of the time, the same symbols will stand for objects in M̂ and their
projections inM, such as the metric g, and the (rank-one) Olszak distribution D described
in the Introduction. In any rank-one ECS manifold, the distribution D, being parallel,
carries a linear connection induced by the Levi-Civita connection of g, and this induced
connection is flat since, locally, D is spanned by the parallel gradient ∇t of the coordinate
function t appearing in Equation (5.2) – see [8, the lines following formula (3.6)]. (As
stated in Remark 5.1, Equation (5.2) is a general local description of all rank-one ECS

metrics.) Simple connectivity of M̂ allows us to choose a global parallel vector field w on

M̂ spanning D, and then the 1-form g(w, ·), being parallel, is closed, and hence exact,

so that we may also fix a C∞ function t : M̂ → IR with dt = g(w, ·). This determines
t uniquely up to affine substitutions, that is, replacements of t by qt + p with q, p ∈ IR
and q > 0. Positivity of q reflects the fact that we always assume transversal orientability
of the orthogonal complement D⊥, which can be achieved by replacing (M, g) with a
twofold isometric covering and amounts to requiring that Γ be a subgroup of the group
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Iso+(M̂, g) of all self-isometries of (M̂, g) preserving a fixed transversal orientation of

D⊥. Thus, for every γ ∈ Iso+(M̂, g),

there exist unique q, p ∈ IR with q > 0 and t ◦ γ = qt+ p. (6.2)

The assignment γ 7→ q is a group homomorphism Iso+(M̂, g) → (0,∞), and we refer to
q as the q-image of γ. Summarizing,

w = ∇t is a parallel vector field on M̂, spanning D, and dt = g(w, · ). (6.3)

As a consequence of Equation (6.3),

D⊥ = Ker dt on M̂. (6.4)

Since Equation (5.2) remains unchanged when t and s are replaced by qt + p and q−1s,

t in Equation (5.2) can always be made equal to our t chosen as above, (6.5)

cf. Remark 5.1. According to [17, p. 93], where the curvature tensor has the sign opposite
to ours, the metric (5.2) has the Ricci tensor Ric = (2 − n)f(t) dt ⊗ dt, for n = dimM .
Therefore, by Remark 5.1, with our t chosen as above,

on (M̂, g) one has Ric = (2− n)f dt⊗ dt (6.6)

for a unique (non-constant) function f : M̂ → IR and, again by Remark 5.1,

f is locally a function of t. (6.7)

Changing the notational convention so as to absorb the factor 2 − n into the function f
does not seem to be a good option, since the inverse of that factor then would have to
appear in Equation (5.3). Also, the word ‘locally’ in Equation (6.7) cannot in general be
skipped: it means that f is constant on the connected components of the level sets of t,
and the level sets themselves may be disconnected.

If χ : M̂ → IR is of class C 1 and, locally, a function of t (which amounts to dχ being

a functional multiple of dt), we define the derivative χ̇ : M̂ → IR by dχ = χ̇ dt, so
that, in terms of a local expression of g in Equations (5.2)–(5.4), χ̇ = dχ/dt. For f in

Equations (6.6)–(6.7), any γ ∈ Γ, any C 1 function χ : M̂ → IR, which is locally a function
of t, and q, p, a ∈ IR with q > 0,

if t ◦ γ = qt+ p, then γ∗ dt = q dt and f ◦ γ = q−2f,

if χ ◦ γ = qaχ, then χ̇ ◦ γ = qa−1χ,
(6.8)

which is clear from Equation (6.6) and the fact that the pullback of differential forms com-

mutes with exterior differentiation. By Equations (6.3) and (6.8), for any γ ∈ Iso+(M̂, g),
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γ pulls w back to qw, where q ∈ (0,∞) is the q-image of γ. (6.9)

Let us point out that the choices of t and w made above are convenient but not canonical,
and so, rather than being preserved by isometries, t and w are transformed by them via
Equations (6.8) and (6.9).

7. Local homogeneity

We adopt here the assumptions and notation of §6. First, note that

in any ECS manifold, Ric 6= 0 somewhere, (7.1)

or else the curvature and Weyl tensors would coincide, implying local symmetry.
Just as was the case with D, the distribution D⊥ is parallel, and so it inherits a linear

connection from the Levi-Civita connection ∇ of g. As D ⊆ D⊥, a natural connection

arises in the quotient bundle E = D⊥/D over M̂ , or M, and

the connection induced by ∇ in E = D⊥/D is flat. (7.2)

This was established in [6, Lemma 2.2-f], but we need to justify it here, again, to draw
additional conclusions. Namely, by Equations (5.4) and (6.3), the coordinate vector field
∂n = w = ∇t, spanning D, is parallel, while ∂n and ∂i, for i, j = 2, . . . , n − 1, span D⊥.
Now Equation (7.2) follows since, in Equation (5.4), Γ•

1n = Γ•
1i = Γ•

in = Γ•
ij = Γ•

nn =
Γ•
ni = 0, with • denoting any index other than n, so that ∂i, i = 2, . . . , n−1, project onto

parallel local trivializing sections of E . As ∂i are also constant vector fields on the space
V in Equations (5.1)–(5.2), we may identify V with the space of parallel sections of E ,
defined on the coordinate domain. The parallel vector-bundle morphism [D∗]⊗2 → E⊗2,
over any rank-one ECS manifold, defined in [5, formula (6)] (where it was denoted by Φ,
and built from the Weyl tensor W, cf. the Appendix), is easily seen to be valued in E�2.

Let the parallel section ξ of the line bundle D∗ over M̂ be

dual to w in the sense that ξ(w) = 1 (7.3)

for the trivializing parallel section w of D appearing in Equation (6.3). Thus, over M̂ ,
the morphism [D∗]⊗2 → E⊗2 sends ξ ⊗ ξ to a parallel section of E�2, which may also be
treated as a parallel vector-bundle endomorphism of E , due to the presence in E of the
parallel fibre metric induced by g. This last endomorphism acts on local parallel sections
of E and, when the space of these sections is identified with V (see above), it becomes
the endomorphism A : V → V of Equation (5.1). (One sees this comparing formula (6) in
[5] with the expression, in [17, p. 93], for the only possibly non-zero essential component
W1i1j of the Weyl tensor W.) We will therefore use the symbols V and A : V → V for

the space of parallel sections of E over M̂ and for the endomorphism just described. Note

that, due to simple connectivity of M̂ and Equation (7.2), the bundle E is trivialized by
global parallel sections.
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By Equations (6.2) and (6.9), any γ ∈ Iso+(M̂, g) pulls w, or ξ appearing in
Equation (7.3), back to qw or, respectively, q−1ξ, for some q ∈ (0,∞). Since A : V → V
as interpreted above was the image of ξ⊗ ξ under a natural vector-bundle morphism, the
isometry in question pulls A back to q−2A, while it also acts as a linear isometry B of
the space V of parallel sections. In terms of push-forwards rather than pullbacks,

BAB−1 = q2A. (7.4)

Lemma 7.1. Let A be a non-zero linear endomorphism of a pseudo-Euclidean vector
space V. If, for some q ∈ (0,∞) r {1} there exists a linear isometry B of V satisfying
Equation (7.4) then, with our fixed A, such B exists for every q ∈ (0,∞).

Proof. For the space End V of all linear endomorphisms V →V, the formula J =
{(q,B) ∈ IR × End V : (BB∗, BAB∗) = (Id, q2A)} defines an algebraic variety J ⊆
IR×EndV . By Whitney’s classical result [18, Theorem 3], J has finitely many connected
components, and hence so does the intersection K = K ′ ∩ (0,∞) for the image K ′ of J
under the projection (q,B) 7→ q. As qr ∈ K whenever q ∈ K and r ∈ ZZ, Remark 3.5 now
gives K = (0,∞). �

We have the following immediate consequence of the conclusion (7.1):

local homogeneity of (M, g) or (M̂, g) implies that Ric 6= 0 everywhere. (7.5)

If Ric 6= 0 everywhere, it follows from Equations (6.6)–(6.8) that

|f |1/2 dt is a closed Γ-invariant C∞ 1-form without zeros on M̂. (7.6)

Closedness is here due to Equation (6.7). Thus, in view of Equation (6.3), the C∞ vector

field w′ = |f |1/2w is π-projectable onto a vector field without zeros on M = M̂/Γ, also
denoted by w ′ and, from Equations (6.3), (6.4) and (6.7),

on M, if Ric 6= 0 everywhere, w′ spans D and is parallel along D⊥. (7.7)

Lemma 7.2. Let (M̂, g) be the pseudo-Riemannian universal covering space of a com-

pact rank-one ECS manifold. If M̂ admits a closed Γ-invariant C∞ 1-form without zeros,

which is a functional multiple of dt, for the function t : M̂ → IR introduced in §6, then
the leaves of D⊥ in M̂ are the factor manifolds of a global product decomposition of M̂
and coincide with the levels of t.

Proof. Up to a change of sign, the 1-form in question may be expressed as ψ dt, where

ψ : M̂ → (0,∞) is locally a function of t. Choosing χ : M̂ → IR with dχ = ψ dt, and
denoting by Dχ the h-gradient of χ, where h is the π-pullback of a Riemannian metric
on M, we see that Dχ and u = Dχ/[h(Dχ,Dχ)] are both non-zero everywhere and
complete (the latter since dχ = h(Dχ, ·), with dχ and h both π-projectable onto M ). By
Equation (6.4), the (possibly disconnected) levels of χ are unions of leaves of D⊥.
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We now use Milnor’s argument [14, p. 12] involving the flow (τ, x) 7→ φ(τ, x) of u.
Remark 3.2 may be applied to a fixed (possibly disconnected) level L of χ and the
restriction of the flow φ to IR× L. The restriction is not only locally diffeomorphic, but
bijective as well, since duχ = 1 and so the parameter τ of each integral curve differs from

χ by a constant. Since IR × L, diffeomorphic to M̂ , must be connected, the assertion
follows, the levels of t being the same as those of χ (and thus equal to the leaves of D⊥)
due to positivity of ψ = dχ/dt. �

Theorem 7.3. Let M̂, g,Γ, f, t, () ˙ = d/dt andM = M̂/Γ be as in §6. If M is compact,
the following three conditions are mutually equivalent.

(i) (M̂, g), or (M, g), is locally homogeneous.
(ii) f 6= 0 everywhere and (|f |−1/2)¨ = 0.
(iii) (|f |−1/2)¨ = 0 wherever f 6= 0.

Proof. First, (i) yields f 6= 0 everywhere due to Equations (7.5) and (6.6). By
Remark 5.1, g has, locally, the form (5.4) on some coordinate domain U, and then,
as shown in [8, formula (3.3)], the existence of a Killing field v on U with an everywhere-
non-zero component in the t coordinate direction (which follows from local homogeneity)
gives (|f |−1/2)¨ = 0 on U, that is, (ii), while (ii) trivially leads to (iii). Assuming (iii), we
now obtain (ii): f 6= 0 everywhere, since otherwise we could choose local coordinates as
above around a boundary point of the zero set of f, with t ranging over an open interval
I ′. (By Equations (6.6) and (7.1), f 6= 0 somewhere.) A maximal open subinterval I ′′ of
I ′ with |f | > 0 on I ′′ must equal I ′, or else I ′′ would have a finite endpoint lying in I ′,
at which |f |−1/2, being a linear function, would have a finite limit, contrary to vanishing
of f at the endpoint due to maximality of I ′′. This contradiction shows that the zero set
of f has no boundary points, proving (ii).
Suppose now that (ii) holds. According to Equation (7.6), the 1-form |f |1/2 dt satisfies

the assumption, and hence the assertion, of Lemma 7.2, so that the levels of t are con-
nected. We may thus drop the word ‘locally’ in Equation (6.7) and, with I ⊆ IR denoting
the range of t, view f as a function f : I → IR which, since (|f |−1/2)¨ = 0 and f is
non-constant (Remark 5.1), has the form f(t) = ε(t− b)−2 for some real constants ε 6= 0
and b. Thus, I ⊆ (−∞, b) or I ⊆ (b,∞). Now Equation (6.2) leads to a homomorphism
Γ 3 γ 7→ (q, p) ∈ Aff+(IR) into the group of increasing affine transformations of IR map-
ping I onto itself. As I ⊆ (−∞, b) or I ⊆ (b,∞), the image of this homomorphism cannot
contain a non-trivial translation and must be infinite (or else it would be trivial, causing

t to descend to a function without critical points on the compact manifold M = M̂/Γ).
Consequently, some γ ∈ Γ has q ∈ (0,∞) r {1} in Equation (6.2). Then Equation (7.4)
and Lemma 7.1 imply that

for every q ∈ (0,∞)r {1} there exists a linear

〈·, ·〉 isometry B : V → V with BAB−1 = q2A,
(7.8)

where A, V and 〈·, ·〉 are a part of the data (5.1) representing the metric g in suitable

coordinates around any point of M̂ . (See the lines preceding Equation (7.4).) Also, instead
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of f(t) = ε(t− b)−2, we may require that f have the form

f(t) = εt−2 for all t ∈ I = (0,∞), (7.9)

as we are free to modify our choice of t via the affine substitution replacing t by |t− b|.
(The equality I = (0,∞), rather than just the inclusion I ⊆ (0,∞), follows since an
infinite group of increasing affine transformations maps I onto itself.)
Local homogeneity of g now follows: by Equation (7.9), the local-coordinate expression

(5.4) of g amounts to that of the metric gP in [2, top of p. 170], with our coordinate
x1 = t denoted there by u1. Our Equation (7.8) now becomes formula (10) in [2, p.
172] which, as stated there, guarantees homogeneity of the metric gP on I × IR× V , for
I = (0,∞) and V = IRn−2.
We have thus shown that (ii) implies (i), completing the proof. �

Remark 7.4. A Lorentzian ECS manifold must have rank one (see the Introduction)
and is never locally homogeneous: Equation (7.4) with q 6= ±1 implies nilpotency of A,
while in the Lorentzian case, the fibre metric in E induced by g, which corresponds to 〈·, ·〉
in (5.1), is positive definite, and so the non-zero 〈·, ·〉-self-adjoint linear endomorphism
A : V → V , being diagonalizable, cannot be nilpotent.

8. Function spaces and the first real cohomology

We refer to a continuous 1-form ζ on a manifold M as closed if it is locally exact in the
sense that every point of M has a neighbourhood U with ζ = dψ on U for some C 1

function ψ : U → IR.
Due to the universal coefficient theorem [13, p. 378, Theorem 13.43], for any manifold

M, one has an isomorphic identification H1(M, IR) = Hom(π1M, IR).
As in the case of smooth 1-forms, a closed continuous 1-form ζ on M thus gives rise

to the cohomology class [ζ] ∈ H1(M, IR), which, as a homomorphism π1M → IR, assigns
to each homotopy class of piecewise C 1 loops at a fixed base point the integral of ζ
over a representative loop. Clearly, [ζ] = 0 if and only if ζ = dψ for some C 1 function
ψ :M → IR.

The following lemma uses the notation π, M̂, t, f,Γ introduced in §6.

Lemma 8.1. Let F be the real vector space formed by all continuous functions χ :

M̂ → IR such that the 1-form χdt is closed and

χ ◦ γ = q−1χ whenever γ ∈ Γ and q ∈ (0,∞) is the q image of γ. (8.1)

Then |f |1/2 ∈ F and |ḟ |1/3 ∈ F . Furthermore, if χ ∈ F , then the 1-form χdt is Γ-

invariant, and hence π-projectable onto a closed 1-form on M = M̂/Γ, also denoted by
χ dt, which gives rise to a linear operator

F 3 χ 7→ [χ dt] ∈ H1(M, IR). (8.2)

This is a trivial consequence of Equation (6.8).
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9. Existence of special functions

Theorem 9.1. Let (M, g) be a compact rank-one ECS manifold such that D⊥ is transver-
sally orientable. If (M, g) is not locally homogeneous, then there exists a non-constant
C1 function µ :M → IR, constant along D⊥.

Proof. We will show that, for F defined in Lemma 8.1, either dimF <∞ and (M, g)
is locally homogeneous, or dimF = ∞ and such µ exists.
First, let dimF <∞. In this case, even without using compactness of M, we can apply

Lemma 3.3 to X =M, our vector space F , and the m-argument operation Π sending
ψ1, . . . , ψm to the product of powers of the absolute values |ψ1|, . . . , |ψm| with any fixed
positive exponents adding up to 1 (for instance, the geometric mean of the absolute
values). As |f |1/2, |ḟ |1/3 lie in F (see Lemma 8.1), on each of the open sets Xj ⊆ M

obtained in Lemma 3.3, |f |1/2 and |ḟ |1/3 are constant multiples of the j th function χj

from the basis χ1, . . . , χm of F , which clearly gives (|f |−1/2)¨ = 0 wherever f 6= 0.
(Note that |f |1/2, being a linear combination of the functions χ1, . . . , χm, vanishes on
their simultaneous zero set X r

⋃m
j=1Xj .) Local homogeneity is now immediate from

Theorem 7.3.
Finally, suppose that dimF = ∞. Due to compactness of M, Equation (8.2) is non-

injective and we may fix χ ∈ F r {0} lying in its kernel, so that χ dt treated as a 1-form
on M equals dµ for some (non-constant) C 1 function µ : M → IR. By Equation (6.4),
this completes the proof. �

Remark 9.2. Sard’s theorem [11, Theorem 1.3 on p. 69] normally applies to C k map-
pings from an n-manifold into an m-manifold, with k ≥ max(n−m+1, 1), guaranteeing
that the critical values form a set of zero measure. In our case, even though µ :M → IR
is only of class C 1, and M can have any dimension n ≥ 4, the same conclusion remains
valid, and so, due to compactness of M,

µ(M) contains an open interval consisting of regular values of µ, (9.1)

µ(M) being the range of µ. In fact, Equation (6.3) gives dt 6= 0 everywhere in M̂ , and soM
is covered by finitely many connected open sets U each of which can be diffeomorphically

identified with an open set Û ⊆ M̂ such that the levels of t : Û → IR are all connected.
This turns µ restricted to U into a function of t, allowing us to use Sard’s theorem as
stated above for k = n = m = 1.

10. Holonomy of compact leaves

Let (M, g) be a rank-one ECS manifold. Its rank-one Olszak distribution D (see the
Introduction), being parallel, carries a linear connection induced from the Levi-Civita
connection of g, and this connection is flat since, locally, D is spanned by the parallel
gradient ∇t, cf. Equation (6.3).
For any leaf L of D⊥, this flat connection gives rise to one in the line bundle DL arising

as the restriction of D to L and, consequently, also to what we call

the flat connection in the line bundle D∗
L dual to DL. (10.1)
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Note that D∗
L is canonically isomorphic to the normal bundle of L in M, since D is

isomorphic to the dual of TM/D⊥, via the isomorphism assigning to v ∈ Dx, at any
x ∈M , the linear functional gx(v, ·) : TxM → IR, vanishing on D⊥

x .
The next result remains valid without transversal orientability of D⊥ or compactness

of M. We make these assumptions here just to simplify the discussion.

Theorem 10.1. Let L be a compact leaf of D⊥ in a compact rank-one ECS manifold
(M, g). If D⊥ is transversally orientable, then some neighbourhood U of L in M can
be diffeomorphically identified with a neighbourhood U′ of the zero section L in the line
bundle D∗

L so as to make the distribution D⊥ on U correspond to the restriction to U′ of
the horizontal distribution of the flat connection in D∗

L.

Proof. Let U = φ((−ε, ε)×L) for the flow φ of a fixed C∞ vector field v on M, which
is nowhere tangent to D⊥, and for ε chosen as in Remark 3.2. We define the required
diffeomorphism Ψ : U → U ′ by declaring how Ψ(φ(τ, x)) depends on (τ, x) ∈ (−ε, ε)×L,
cf. Remark 3.2. For any point y ∈ π−1(x), with π as in Equation (6.1), the flow φ̂ of

the vector field v̂ on M̂ projecting under π onto v, and the parallel section ξ of the line

bundle D∗ over M̂ appearing in Equation (7.3), we set

Ψ(φ(τ, x)) = [t(φ̂(τ, y))− t(y)]ξy ◦ (dπy)−1 ∈ D∗
x ⊆ D∗

L. (10.2)

Here ξy ∈ D∗
y is a linear functional on Dy ⊆ TyM̂ , and we compose it with the inverse

of the isomorphism dπy : TyM̂ → TxM , so that the result is a functional on Dx ⊆ TxM ,

which we then multiply by the scalar t(φ̂(τ, y)) − t(y). The fibres Dx of the line bundle
D∗

L over L are treated here as pairwise disjoint subsets of the total space, also denoted
by D∗

L.
First, Equation (10.2) does not depend on the choice of y ∈ π−1(x). In fact, replac-

ing y by γ(y), with γ ∈ Γ, cf. Equation (6.1), we get the same right-hand side in
Equation (10.2), since

t(φ̂(τ, γ(y)))− t(γ(y)) = q[t(φ̂(τ, y))− t(y)], ξγ(y) ◦ (dπγ(y))−1 = q−1ξy ◦ (dπy)−1

for some real q > 0. Namely, as γ leaves v̂ invariant, φ̂(τ, γ(y)) = γ(φ̂(τ, y)), and so the
relation t ◦ γ = qt+ p in Equation (6.2) yields the first equality displayed above. At the
same time, Equations (6.9) and (7.3) give q−1ξ = γ∗ξ, which, since π = π ◦ γ, leads to
q−1ξy = ξγ(y) ◦ dγy and dπy = dπγ(y) ◦ dγy, so that q−1ξy ◦ (dπy)−1 = ξγ(y) ◦ (dπγ(y))−1.
Smoothness of Ψ is obvious if one uses y depending on x via a local inverse of π.

Also, Ψ is a fibre-preserving mapping from U = φ((−ε, ε)× L) (viewed, when identified
with (−ε, ε) × L, as a trivial bundle with one-dimensional fibres) into the line bundle
D∗

L, operating as the identity on the base manifold L and constituting an embedding of

each fibre separately: by Equation (6.4), |d[t(φ̂(τ, y))]/dt| > 0. This makes Ψ itself an
embedding.
Finally, with y near y∗ smoothly depending on x ∈ L near some fixed x∗ as before,

t(y) = t(y∗) is constant, by Equation (6.4). Requiring that an assignment y 7→ τ(y) give

t(φ̂(τ(y), y)) = t∗ for a constant t∗ near t(y∗), and so y 7→ λ(y) = φ̂(τ(y), y) sends a
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neighbourhood of y∗ in the leaf Ly into a single leaf, yields (Remark 3.1) a diffeomor-
phism λ between neighbourhoods of y∗ and λ(y∗) in the two leaves. By Equation (10.2),
Ψ(π(λ(y))) = [t∗ − t(y∗)]ξy ◦ (dπy)−1 which, due to constancy of t∗ − t(y∗), is a parallel
local section of D∗

L. This completes the proof. �

The holonomy representation of Equation (10.1) assigns to each x ∈ L and each homo-
topy class of piecewise C 1 loops at x in L a linear automorphism of the line Dx, that
is, the multiplication by some q ∈ IR r {0}. Since this is a multiple of the identity, the
holonomy group HL of the flat connection (10.1) in the line bundle D∗

L over L, formed by
all these q, does not depend on x. Obviously,

the holonomy group HL is either infinite, or trivial. (10.3)

Theorem 10.2. In any rank-one ECS manifold (M, g) such that D⊥ is transversally
orientable, condition (4.1) holds for V = D⊥. In addition, the two possibilities named in
Equation (4.1) correspond precisely to the two cases of Equation (10.3).

Proof. Theorem 10.1 allows us to treat some neighbourhood U ′ of the zero section L
in the line bundle D∗

L as a neighbourhood of L in M.
Any fixed fibre metric in the line bundle D∗

L gives rise to the norm function N : D∗
L →

[0,∞) on the total space D∗
L and to radius ε interval sub-bundles Uε = N−1([0, ε)) ⊆ D∗

L,
where ε> 0. As L is compact, Uε ⊆ U ′ for ε near 0, which turns Uε into a neighbourhood
of L in M, and is expressed as Uε ⊆M .
First let HL be trivial. The total space of D∗

L is thus the union of global parallel sections
obtained from one such section (on which the norm function N has some maximum value
r > 0) via multiplication by constants a 6= 0. If |a| ∈ (0, ε/r), the resulting parallel sections
are thus contained in Uε ⊆ M , and hence constitute compact leaves of D⊥. This is the
second option in the either–or clause of Equation (4.1).
Next, let HL be infinite. We fix q ∈ HL ∩ (0, 1) and, for any x ∈ L, choose a piecewise

C 1 loop λx at x in L such that the parallel transport along λx in the line bundle D∗
L equals

the multiplication by q in the line D∗
x. For any u ∈ D∗

x ∩ Uε, the horizontal lift λ̃x of λx
with the initial point u has the terminal point qu. Treating λ̃x as a compact subset of the
total space D∗

L, on which the norm function N has some maximum value rx > 0, we may

form the union Qx =
⋃∞

i=k q
iλ̃x for the least integer k ≥ 0 with qkrx < ε. Thus, Qx ⊆ Uε

is a union of piecewise C 1 horizontal curves in the total space D∗
L, joined end-to-end,

and the same is true for aQx whenever a ∈ (−1, 1)r {0} which, as Uε ⊆ M , makes aQx

a subset of a leaf L(a) of D⊥ with L(a) ⊆ Uε r L. Each L(a) contains the sequence aqiu,
with integers i ≥ k, and aqiu converges as i → ∞ to x ∈ L (the zero vector in the line
D∗

x), so that the leaves L(a) are all non-compact. At the same time, aqku ∈ L(a), with

our fixed k and all a ∈ (−1, 1)r {0}. Such aqku form a neighbourhood of 0, with 0 itself
removed, in the line D∗

x. Thus, in the portion of the radius ε interval bundle Uε over a
neighbourhood of x in L on which D∗

L has a non-zero parallel section, the products of
this parallel section by all real numbers sufficiently close to 0 fill a neighbourhood U (x )
of x in M, and the leaves of D⊥ intersecting U(x)rL are all non-compact. Compactness
of L allows us to choose finitely many x ∈ L such that L is contained in the union U
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of the corresponding sets U (x ), which yields the first option in the either–or clause of
Equation (4.1). �

11. Proofs of Theorems A and B

To establish Theorem A, fix a compact rank-one ECS manifold (M, g). Passing to a two-
fold isometric covering of (M, g), if necessary, we may also assume transversal orientability
of D⊥. Theorem 10.2 now implies Equation (4.1) for V = D⊥.
In addition, under the hypotheses of Theorem A, there exists a compact leaf L of

D⊥ realizing the second possibility in Equation (4.1), the one where some product-like
neighbourhood of L in M is a union of compact leaves of D⊥.
To prove this, note that either (M, g) is locally homogeneous and D⊥ has a compact

leaf or (M, g) is not locally homogeneous.
In the latter case, Theorem 9.1 allows us to choose a non-constant C 1 function µ :M →

IR, constant along D⊥, and Remark 9.2 implies Equation (9.1). Letting µ(x) be a regular
value of µ and fixing a one-dimensional submanifold of M containing x and transverse
to D⊥, we see that for every point y in this submanifold lying sufficiently close to x, the
connected component, containing y, of the µ-preimage of µ(y) is a compact leaf of D⊥.
This causes L to satisfy the second option in Equation (4.1) by obviously precluding the
first one.
Consider now the former case: local homogeneity along with the existence of a compact

leaf L. By Equations (7.5) and (7.7), the line bundle D∗
L with the connection (10.1) has

the global parallel section w ′ and, consequently, its holonomy group HL is trivial. This
leads again, via Theorem 10.2, to the second option in Equation (4.1).
Theorem A is now immediate from Theorem 4.1 applied to V = D⊥.
As pointed out in the Introduction, Theorem B trivially follows from Theorem A except

when (M̂, g) is locally homogeneous. On the other hand, in the locally homogeneous case,
Equations (7.5) and (7.6) imply that |f |1/2 dt is a closed Γ-invariant C∞ 1-form without

zeros on M̂ . Theorem B is now obvious from Lemma 7.2.

12. Further consequences

Let (M̂, g) be the pseudo-Riemannian universal covering space of a compact rank-one
ECS manifold (M, g), with the Olszak distribution D, and the universal covering projec-

tion π : M̂ →M = M̂/Γ, cf. Equation (6.1). As in §6, we assume transversal orientability
of the orthogonal complement D⊥.
For future reference, we state here three consequences of the above assumptions.

First, M̂ admits a smooth positive function ψ : M̂ → (0,∞) for which the 1-form ψ dt
is both Γ -invariant (in other words, π-projectable onto M ) and closed (which amounts
to requiring that ψ be, locally, a function of t).
In fact, in the locally homogeneous case (or, more generally, when Ric 6= 0 everywhere),

Equation (7.6) allows us to choose ψ = |f |1/2.
If (M, g) is not locally homogeneous, D⊥, onM, is the vertical distribution of a fibration

M → S1. (This is Theorem A.) We obtain our ψ dt, or its opposite, by pulling back from
S 1 to M a smooth 1-form without zeros.
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Second, the parallel vector field w = ∇t on M̂ , spanning D, which appears in

Equation (6.3), is complete. Namely, for ψ : M̂ → (0,∞) as above, Γ-invariance of
ψ dt implies the same for ψw (since w = ∇t, that is, dt = g(w, ·)). Completeness of ψw
now follows due to its resulting π-projectability onto the compact manifold M. However,

our ψ is, locally, a function of t and, by Equation (6.4), D⊥ = Ker dt on M̂ . This makes
ψ constant along every leaf of D⊥ and w tangent to the leaf. The integral curves of ψw
are thus affine reparametrizations of those of w, and so w is complete as well.

Finally, the levels of t : M̂ → IR are all connected and coincide with the leaves of D⊥

in M̂ . Thus, if χ : M̂ → IR is locally a function of t, it must also be one globally, in

the sense of being a composite of t with some function t(M̂) → IR, which applies, in
particular, to χ = f appearing in Equations (6.6)–(6.7).

To see this, use Theorem B: the leaves of D⊥ in M̂ are the factor manifolds of a global

product decomposition of M̂ , some open interval I ′ ⊆ IR being the one-dimensional

factor. The leaves are thus connected, and t : M̂ → IR, constant along them due to
Equation (6.4), and having a non-zero parallel gradient – see Equation (6.3) – descends
to a strictly monotone function I ′ → IR, the levels of which thus are single points. This
makes the levels of t equal to single leaves of D⊥, and hence connected.
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Politech. Śl. Mat.-Fiz. 68 (1993), 213–225.

(17) W. Roter, On conformally symmetric Ricci-recurrent spaces, Colloq. Math. 31 (1974),
no. 1, 87–96.

(18) H. Whitney, Elementary structure of real algebraic varieties, Ann. of Math. (2) 66 (1957),
no. 3, 545–556.

Appendix: The Lorentzian case

From now on we always assume transversal orientability of D⊥ for the Olszak distribution
D of the ECS manifold (M, g) in question, which makes D a trivial line bundle over M.
The purpose of this section is to inform the reader how the proof of Theorem A differs

from that for Lorentzian ECS manifolds in [5], and specifically what issues arise in higher
signatures and how they are dealt with. We already explained in the Introduction why
Theorem B of the paper [5] – the Lorentzian case of our Theorem A – does not require
assuming rank one or excluding local homogeneity.
Let us begin by outlining the proof of [5, Theorem B], given in [5]. First – as we pointed

out in the lines following Equation (6.1), and in Equation (7.2) – in any rank-one ECS
manifold (M, g), the Levi-Civita connection ∇ induces natural flat connections both in
the Olszak distribution D and in the quotient bundle E = D⊥/D over M, while – see [5,
Sect.4] – theWeyl tensorW leads to a vector-bundle morphism Φ : (D∗)⊗2 → (E∗)⊗2 with
Φx(λ⊗λ′) : Ex×Ex → IR, for any x ∈M and λ, λ′ ∈ D∗

x, equal to the symmetric bilinear
form sending the cosets v+Dx and v′+Dx of vectors v, v′ ∈ D⊥

x toWx(v, u, u
′, v′), where

u, u′ ∈ TxM are any vectors with λ = gx(u, ·) and λ′ = gx(u
′, ·) on Dx. As observed in [5,

Sect.4], the morphism Φ is well-defined, parallel relative to natural flat the connections
in the bundles involved and nonzero (which makes it injective) at every point x ∈M . So
far, the metric signature of g was arbitrary: but when it is Lorentzian, the fibre metric in
E = D⊥/D induced by g is positive definite, leading, via injectivity of Φ, to a parallel fibre
norm || in the line bundle D. Cf. [5, the end of Sect.4]. This proves [5, Theorem D]: for
the Olszak distribution D of any Lorentzian ECS manifold, it follows (from transversal
orientability of D⊥) that

(a) D is spanned by a global parallel section w, namely, one with |w| = 1.

We can now paraphrase the remainder of the proof of [5, Theorem B], which consists
of the paragraph preceding [5, Remark 5.1], followed by [5, Lemma 1.2], and instead of
assuming the Lorentzian signature, use only (a); the symbols ξ, u, ρ, φ and ψ = θ of [5]
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correspond to our dt, w,Ric, (2−n)ḟ and (2−n)f . On the pseudo-Riemannian universal

covering space (M̂, g) of (M, g), the pullback of w with (a), still denoted by w, equals

∇t, and M = M̂/Γ, as in Equations (6.3) and (6.1). Milnor’s argument [14, p. 12] is

used in [5, proof of Lemma 1.2] to show that the levels of t in M̂ are connected: the
word ‘locally’ in Equation (6.7) may be skipped. Due to Γ-invariance of w = ∇t, one has
Equation (6.2) with q =1, and the first line of Equation (6.8) gives periodicity of f as a
function of t (since a non-trivial element of Γ must thus have p 6= 0). Non-constancy of
f, cf. Equation (6.6), implies that the values of p arising from Γ form a cyclic subgroup
of IR with a unique generator c> 0. Thus,

(b) t : M̂ → IR descends to a bundle projection M → IR/cZZ = S1,

which completes the proof of [5, Theorem B].
As we already pointed out, the above proof remains valid if the Lorentzian hypothesis

is replaced by the weaker condition (a), transversal orientability of D⊥ being always
assumed. However, a compact rank-one ECS manifold does not have to be translational
in the sense of satisfying (a) – in other words, q 6= 1 may occur in Equation (6.8),

and then M = M̂/Γ, with its ECS metric, is referred to as dilational. The existence of
dilational-type compact rank-one ECS manifolds, including locally homogeneous ones,
was established quite recently in [10, Theorems 6.1 and B.1] – and for them, instead of
(b), one gets the different conclusion (c) appearing below.
Compared to the above derivation of (b), the path leading to our proof of Theorem A

is rather indirect, and we outline it here by briefly summarizing, in the following five
sentences, the five paragraphs (or two-paragraph parts) of Section 2 that begin with the
phrases ‘This is achieved’, ‘Returning’, ‘Finally’, ‘First’ and ‘On the other hand’. Namely,
we start by showing that D⊥ satisfies condition (4.1). To derive Equation (4.1) for D⊥, we

use the fact that – since in M̂ the leaves of D⊥ are the connected components of levels of t
and dt is parallel – the leaf holonomy of any compact leaf of D⊥ may be diffeomorphically
identified with its normal-connection holonomy. Next, we introduce a vector space F of

functions M̂ → IR, obviously having either a finite or an infinite dimension. The former
italicized case implies local homogeneity. The latter one causes a natural linear operator
F → H1(M, IR) to be non-injective and a non-trivial function lying in its kernel leads,
via Sard’s theorem, to a compact leaf of D⊥, satisfying the second option in the either–or
clause of Equation (4.1), thus implying compactness of all leaves of D⊥ and the conclusion
that they form the fibres of a bundle projection M → S1.
A final remark: our proof of Theorem A does eventually lead to a conclusion analogous

to (b), but different from it – namely, in the dilational case, unless (M, g) is locally
homogeneous, with D⊥ still assumed transversally orientable,

(c) τ : M̂ → IR descends to a bundle projection M → IR/ZZ = S1.

Here our choice of t has been modified by an affine substitution so that the range t(M̂)
equals (0,∞), and τ = (log t)/(log q) with suitably chosen q ∈ (0,∞) r {1}. Cf. [9, the
first proof paragraph of Theorem 2.3].
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