THE SP-HULL OF A LATTICE-ORDERED GROUP

ROGER D. BLEIER

There have been several recent papers on the subject of the *P*-hull and the *SP*-hull of an *l*-group (lattice-ordered group). The most natural formulation of the concepts was given by P. Conrad in [6]. T. Speed studied *P*-groups extensively in [11]; his work was motivated by earlier work by H. Nakano and I. Amemiya in a vector lattice setting. A. Vecksler [12] produced the *SP*-hull for *f*-rings. The ortho-completion of S. Bernau [2] is a related concept.

The best construction of the *P*-hull and *SP*-hull thus far has been given by D. Chambless [4]. However, his direct limit construction does not leave the reader with a "concrete" feeling for these hulls. K. Keimel [10] has given a nice sheaf-theoretic interpretation of the *SP*-hull.

In this paper we give a construction of the SP-hull and the P-hull which is substantially different from those previously given. If G is represented as an l-subgroup of a cardinal product of totally-ordered groups indexed by X, then we construct these hulls out of G and the index set X. Section 1 lays the foundation for the succeeding sections. In Section 2 we construct the SP-hull and obtain various corollaries from our construction. In Section 3 it is shown that each l-homomorphism of G onto H whose kernel is a polar extends to an l-homomorphism of the SP-hull of G onto the SP-hull of H. Section 4 treats generalizations and the P-hull. A very nice description of the P-hull of the free vector lattice on two generators is given.

We briefly review the portion of l-group theory that we will be using. (We follow Conrad in our terminology. The reader is referred to [8] for the basic theory of l-groups.)

Let S be a subset of an l-group G. Then

 $S' = \{g \in G | |g| \land |s| = 0 \text{ for all } s \in S\}$

is called the polar of S in G. S' is a convex *l*-subgroup of G. The collection $\mathscr{P}(G)$ of all polars in G is a Boolean algebra under inclusion. The meet operation is set-theoretic intersection, and the complement of $A \in \mathscr{P}(G)$ is A'. We write S'' for (S')', and if $g \in G$, we write g'' for $\{g\}''$. $A \in \mathscr{P}(G)$ if and only if A = A''. We denote the join operation in $\mathscr{P}(G)$ by $\mathbf{\nabla}$.

An *l*-group G is the cardinal sum $A \bigoplus B$ of *l*-ideals A and B of G if $A \cap B = 0$ and A + B = G. If this is the case, then B = A', and A and B are called (cardinal) summands of G. The collection of all summands of G is a Boolean subalgebra of $\mathscr{P}(G)$.

If *G* is an *l*-subgroup of an *l*-group *H* such that $G \cap C \neq 0$ for each non-zero

Received February 5, 1973 and in revised form, August 14, 1973.

convex *l*-subgroup C of H, then we say H is an essential extension of G. If for each $h \in H$ with h > 0 there exists $g \in G$ such that $0 < g \leq h$, then we say G is *dense* in H. If G is a dense *l*-subgroup of H, then H is an essential extension of G.

Let *H* be an essential extension of *G*, and let * denote the polar operation in *H*. Then $A \to A'^*$ is a Boolean isomorphism of $\mathscr{P}(G)$ onto $\mathscr{P}(H)$. [7, Theorem 3.4]. If *S* is a subset of *G*, then $S''^{**} = S^{**}$ and $S'^{**} = S^*$. [6, Section 2.] Thus $S'^* = S^{**}$.

If each element of $\mathscr{P}(G)$ is a summand of G, then G is an SP-group (strongly projectable *l*-group). If H is an essential extension of G, and H is an SP-group, and no proper *l*-subgroup of H that contains G is an SP-group, then we say H is an SP-hull of G.

If g'' is a summand of G for each $g \in G$, then G is a *P*-group (projectable *l*-group). If H is an essential extension of G, and H is a *P*-group, and no proper *l*-subgroup of H containing G is a *P*-group, then we say H is a *P*-hull of G.

If G is an *l*-subgroup of a cardinal product of totally-ordered groups, we say G is *representable*. G is representable if and only if g'' is a normal subgroup of G for each $g \in G$. Thus if G has a P-hull or an SP-hull, then G must be representable. Conversely, if G is representable, then G has a P-hull and an SP-hull. Moreover, these hulls are unique. Versions of these results have been obtained by all the authors previously mentioned.

Let f be an element of the cardinal product $\prod_{x \in X} T_x$, where each T_x is a totally-ordered group. We denote the x-component of f by f(x), and we define $S(f) = \{x \in X | f(x) \neq 0\}$. If K is a subset of $\prod_{x \in X} T_x$, we define

$$S(K) = \{x \in X | f(x) \neq 0 \text{ for some } f \in K\}.$$

Throughout this paper G denotes an l-group and ' is the polar operation in G. Where a statement involves another l-group, it is often necessary or convenient to use a different symbol for the polar operation in this second l-group. We often use \perp for this purpose. We also use * for this purpose, but never without express designation, since we sometimes use * in other ways. We assume throughout that all l-groups are representable.

1. Fields of sets and extensions of *l*-groups. A field of subsets of a set X is a collection \mathscr{F} of subsets of X such that (i) $\emptyset \in \mathscr{F}$, (ii) $A \cap B \in \mathscr{F}$ if $A, B \in \mathscr{F}$, and (iii) $X \setminus A \in \mathscr{F}$ if $A \in \mathscr{F}$.

Each field of subsets of X is a Boolean algebra under the partial-ordering of inclusion. On the other hand, suppose \mathscr{B} is a collection of subsets of X satisfying (i) $\emptyset \in \mathscr{B}$, and (ii) $A \cap B \in \mathscr{B}$ for all $A, B \in \mathscr{B}$. Then, as is well-known in the theory of Boolean algebras, it is possible that \mathscr{B} is a Boolean algebra under the partial-ordering of inclusion but not a field of subsets of X. This is possible even if we assume $X \in \mathscr{B}$. (The collection of all regular open subsets of the real line is an example of this phenomenon.)

ROGER D. BLEIER

The following technical lemma is crucial to the development in succeeding sections. I owe its proof to an anonymous referee.

LEMMA 1.1. Suppose \mathscr{B} is a collection of subsets of a set X such that (i) $\emptyset \in \mathscr{B}$, and (ii) $A \cap B \in \mathscr{B}$ if $A, B \in \mathscr{B}$. If \mathscr{B} is a Boolean algebra under the partialordering of inclusion, then there exists a Boolean isomorphism η of \mathscr{B} onto a field \mathscr{F} of subsets of X with $\eta B \supseteq B$ for all $B \in \mathscr{B}$.

Proof. Let \mathscr{E}_x be the collection of all $B \in \mathscr{B}$ such that $x \in B$. Then \mathscr{E}_x is empty or \mathscr{E}_x is a filter in \mathscr{B} . If \mathscr{E}_x is empty, let \mathscr{U}_x be any ultrafilter in \mathscr{B} ; otherwise let \mathscr{U}_x be an ultrafilter in \mathscr{B} such that $\mathscr{U}_x \supseteq \mathscr{E}_x$.

Define, for all $B \in \mathscr{B}$, $\eta B = \{x \in X | B \in \mathscr{U}_x\}$. It is clear that η preserves inclusion, that $\eta(\emptyset) = \emptyset$, and that η maps the largest element of \mathscr{B} to X. If $A, B \in \mathscr{B}$ we have immediately that $\eta(A \cap B) \subseteq \eta A \cap \eta B$. On the other hand, if $x \in \eta A \cap \eta B$, then $A, B \in \mathscr{U}_x$ whence $A \cap B \in \mathscr{U}_x$, and thus $x \in \eta(A \cap B)$. Thus $\eta(A \cap B) = \eta A \cap \eta B$.

Denote the complement of B in \mathscr{B} by B'. We show $\eta(B') = X \setminus \eta B$. $B \cap B' = \emptyset$ so $\eta(B) \cap \eta(B') = \eta(B \cap B') = \emptyset$. Suppose $x \notin \eta B$. Then $B \notin \mathscr{U}_x$ and so there exists $K \in \mathscr{U}_x$ such that $B \cap K = \emptyset$. $K \subseteq B'$ and hence $B' \in \mathscr{U}_x$. Thus $x \in \eta(B')$. We have shown $\eta B \cap \eta(B') = \emptyset$ and $\eta B \cup \eta(B') = X$. Thus $\eta(B') = X \setminus \eta B$.

Suppose $A, B \in \mathscr{B}$ and there exists $z \in B$ such that $z \notin A$. If $A' \cap B = \emptyset$, then $B \subseteq A'' = A$, a contradiction. Thus there exists $x \in A' \cap B$. $B \in \mathscr{U}_x$ and $A \notin \mathscr{U}_x$ (since $A' \in \mathscr{U}_x$). Thus $x \in \eta B$ and $x \notin \eta A$. Hence, if $A \neq B$, then $\eta A \neq \eta B$.

We have shown that η is a one-to-one Boolean homomorphism of \mathscr{B} into the field of all subsets of X. If $x \in B$, then $B \in \mathscr{C}_x$, whence $B \in \mathscr{U}_x$, and $x \in \eta B$. Thus $\eta B \supseteq B$ for all $B \in \mathscr{B}$, and the proof is complete.

Now, let G be an *l*-subgroup of the cardinal product $\prod_{x \in X} T_x$, where each T_x is a totally-ordered group, and let \mathscr{F} be a field of subsets of X. Suppose $h \in \prod T_x$ is such that for some finite partition of X in \mathscr{F} , say F_1, \ldots, F_n , there exist $g_i \in G$ such that $h(x) = g_i(x)$ for all $x \in F_i$ $(i = 1, \ldots, n)$. We then write $h = [g_i|F_i]$, and we denote the set of all such h by $G[\mathscr{F}]$.

LEMMA 1.2. $G[\mathcal{F}]$ is an l-subgroup of $\prod T_x$ that contains G.

Proof. Suppose $h = [g_i|F_i]$ and $f = [g_j|F_j]$ are elements of $G[\mathscr{F}]$. Then $h - f = [g_i - g_j|F_i \cap F_j] \in G[\mathscr{F}]$ and $h \vee 0 = [g_i \vee 0|F_i] \in G[\mathscr{F}]$. Thus $G[\mathscr{F}]$ is an *l*-subgroup of $\prod T_x$. Also, if $g \in G$, then $g = [g|X] \in G[\mathscr{F}]$.

LEMMA 1.3. For $F \in \mathscr{F}$ define $\varphi(F) = \{h \in G[\mathscr{F}] | S(h) \subseteq F\}$. Then $\varphi(F)$ is a cardinal summand of $G[\mathscr{F}]$; in fact,

 $G[\mathscr{F}] = \varphi(F) \bigoplus \varphi(X \setminus F).$

Proof. Clearly $\varphi(F)$ and $\varphi(X \setminus F)$ are *l*-ideals of $G[\mathscr{F}]$, and $\varphi(F) \cap \varphi(X \setminus F) = 0$. Suppose $h = [g_i|F_i] \in G[\mathscr{F}]$. Let $h_1 \in \prod T_x$ be such that $h_1(x) = g_i(x)$ for all

 $x \in F \cap F_i$ and $h_1(x) = 0$ for all $x \in (X \setminus F) \cap F_i$. Let $h_2 \in \prod T_x$ be such that $h_2(x) = g_i(x)$ for all $x \in (X \setminus F) \cap F_i$ and $h_2(x) = 0$ for all $x \in F \cap F_i$. Then $h_1, h_2 \in G[\mathscr{F}], h_1 \in \varphi(F), h_2 \in \varphi(X \setminus F)$, and $h = h_1 + h_2$. Thus

 $G[\mathscr{F}] = \varphi(F) \bigoplus \varphi(X \setminus F).$

LEMMA 1.4. Let H be an l-subgroup of $\prod_{v \in Y} T_v$, where each T_v is a totallyordered group, and let G be an l-subgroup of H. Suppose \mathscr{A} is a subalgebra of $\mathscr{P}(H)$ such that each $A \in \mathscr{A}$ is a summand of H. Then $\mathscr{F}^* = \{S(A) | A \in \mathscr{A}\}$ is a field of subsets of S(H), and $G[\mathscr{F}^*]$ is an l-subgroup of H.

Proof. We have $\emptyset = S(0) \in \mathscr{F}^*$ and $S(H) \in \mathscr{F}^*$. If A and B are convex *l*-subgroups of H, then $S(A \cap B) = S(A) \cap S(B)$. Also, since A is a summand of H, we have $S(A) \cup S(A^{\perp}) = S(H)$ and $S(A) \cap S(A^{\perp}) = \emptyset$. (Here^{\perp} denotes the polar operation in H.) Thus \mathscr{F}^* is a field of subsets of S(H).

Let $g \in G$ and $F = S(A) \in \mathscr{F}^*$. Let $f \in G[\mathscr{F}^*]$ be such that f(x) = g(x) for all $x \in F$ and f(x) = 0 for all $x \in X \setminus F = S(A^{\perp})$. We can write g = r + s where $r \in A$ and $s \in A^{\perp}$. Now $S(r) \subseteq S(A)$, $S(s) \subseteq S(A^{\perp})$, and $S(A) \cap S(A^{\perp}) = \emptyset$. Thus r(x) = g(x) for all $x \in S(A)$ and r(x) = 0 for all $x \in S(A^{\perp})$. Thus $f = r \in H$, and since each element of $G[\mathscr{F}^*]$ is the sum of finitely many elements like f, we conclude $G[\mathscr{F}^*] \subseteq H$.

2. The SP-hull of an *l*-group. Let G be an *l*-subgroup of $\prod_{x \in X} T_x$, where each T_x is a totally-ordered group. The map $J \to S(J)$ is a one-to-one inclusion preserving function of $\mathscr{P}(G)$ onto a collection \mathscr{B} of subsets of X; moreover, the inverse map is also inclusion-preserving. Thus \mathscr{B} is a Boolean algebra of subsets of X with respect to the partial-ordering of inclusion. If $I, J \in \mathscr{P}(G)$, then $S(I) \cap S(J) = S(I \cap J) \in \mathscr{B}$; also, $\emptyset = S(0) \in \mathscr{B}$. Thus by Lemma 1.1 there exists a Boolean isomorphism η of \mathscr{B} onto a field \mathscr{F} of subsets of X. We will prove $G[\mathscr{F}]$ is the SP-hull of G.

LEMMA 2.2. If $g \in G$, $J \in \mathscr{P}(G)$, and $S(g) \cap S(J) = \emptyset$, then $S(g) \cap \eta S(J) = \emptyset$.

Proof. $S(g) \cap S(J) = \emptyset$ implies $g'' \cap J = 0$, and hence $S(g'') \cap S(J) = \emptyset$. Thus $\eta S(g'') \cap \eta S(J) = \emptyset$. Since $S(g) \subseteq S(g'') \subseteq \eta S(g'')$ we conclude

 $S(g) \cap \eta S(J) = \emptyset.$

LEMMA 2.2. (i) If $h \in G[\mathcal{F}]$, $J \in \mathcal{P}(G)$, and $S(h) \cap S(J) = \emptyset$, then

$$S(h) \cap \eta S(J) = \emptyset.$$

(ii) If $0 < h \in G[\mathcal{F}]$, there exists $g \in G$ with $0 < g \leq h$.

Proof. Suppose $z \in S(h) \cap \eta S(J)$. Let $F_1 \in \mathscr{F}$ and $g_1 \in G$ be such that $z \in F_1 \subseteq \eta S(J)$ and $h(x) = g_1(x)$ for all $x \in F_1$. $F_1 = \eta S(J_1)$ for some $J_1 \in \mathscr{P}(G)$. We have $z \in S(g_1) \cap F_1$, so by Lemma 2.1 $S(g_1) \cap S(J_1) \neq \emptyset$. Since $g_1(x) = h(x)$ for all $x \in S(J_1)$, we conclude $S(h) \cap S(J_1) \neq \emptyset$. Thus since $S(J_1) \subseteq S(J)$ we have $S(h) \cap S(J) \neq \emptyset$, and (i) is proved.

Now let h > 0. Since $S(g_1) \cap S(J_1) \neq \emptyset$, there exists $0 < k \in J_1$ with $S(g_1) \cap S(k) \neq \emptyset$. Let $g = |g_1| \wedge k$. Then $0 < g \leq h$, and (ii) is proved.

LEMMA 2.3. Let $J \in \mathscr{P}(G)$ and $F = \eta S(J)$. Let $\varphi(F) = \{h \in G[\mathscr{F}] | S(h) \subseteq F\}$. Then $\varphi(F) = J'^{\perp}$ (where $^{\perp}$ denotes the polar operation in $G[\mathscr{F}]$).

Proof. Let $h \in \varphi(F)$ and $g \in J'$. Then $S(g) \cap S(J) = \emptyset$, so by Lemma 2.1, $S(g) \cap F = \emptyset$. Thus $S(g) \cap S(h) = \emptyset$, and $|g| \wedge |h| = 0$. That is, $h \in J'^{\perp}$.

Now suppose $h \in G[\mathscr{F}]$ and $h \notin \varphi(F)$. Then $h(x) \neq 0$ for some $x \in X \setminus F = \eta S(J')$. Thus by Lemma 2.2(i), $S(h) \cap S(J') \neq \emptyset$. Thus $h \notin J'^{\perp}$.

THEOREM 2.4. $G[\mathcal{F}]$ is the SP-hull of G.

Proof. By Lemma 1.2, $G[\mathscr{F}]$ is an *l*-group, and *G* is an *l*-subgroup of $G[\mathscr{F}]$. *G* is a dense *l*-subgroup of $G[\mathscr{F}]$ by Lemma 2.2(ii). Thus each polar in $G[\mathscr{F}]$ is of the form J'^{\perp} where $J \in \mathscr{P}(G)$. Thus by Lemma 2.3 and Lemma 1.3, $G[\mathscr{F}]$ is *SP*.

Suppose now that K is an *l*-subgroup of $G[\mathscr{F}]$ containing G and that K is an SP-group. Let * denote the polar operation in K. Then J^{**} is a summand of K for all $J \in \mathscr{P}(G)$. Thus $S(J^{**}) \cup S(J^*) = S(K) = S(G[\mathscr{F}])$. (Note $S(G) \subseteq S(K) \subseteq S(G[\mathscr{F}]) = S(G)$.) Since $G[\mathscr{F}]$ is an essential extension of G, it is also an essential extension of K, and thus $J^{**} \subseteq J^{*+\perp} \subseteq J^{\perp\perp}$ and $J^* \subseteq J^{*+\perp} = J^{\perp}$. Thus $S(J^{**}) \subseteq S(J^{\perp\perp})$ and $S(J^*) \subseteq S(J^{\perp})$. But $S(J^{\perp\perp}) \cap S(J^{\perp}) = \emptyset$. Thus $S(J^{**}) = S(J^{\perp\perp})$ and $S(J^*) = S(J^{\perp})$.

Now if $g \in G$ and $J \in \mathscr{P}(G)$, we can write g = r + s where $r \in J^{**}$ and $s \in J^*$. We have then r(x) = g(x) for all $x \in S(J^{\perp\perp}) = S(J^{**})$, and r(x) = 0 for all $x \in X \setminus S(J^{\perp\perp})$. Also, $S(J^{\perp\perp}) = \eta S(J) \in \mathscr{F}$. Thus $r \in G[\mathscr{F}]$. But each element of $G[\mathscr{F}]$ is the sum of finitely many elements like r. Thus $K = G[\mathscr{F}]$, and $G[\mathscr{F}]$ is an *SP*-hull of *G*.

THEOREM 2.5. Suppose G is an l-subgroup of an l-group M such that (i) M is a constant of the formula of th

(i) M is SP,

(ii) if N is SP and N is an l-subgroup of M containing G, then N = M, and

(iii) there exists a Boolean isomorphism τ of $\mathscr{P}(G)$ onto $\mathscr{P}(M)$ such that $J \subseteq \tau(J)$ for all $J \in \mathscr{P}(G)$.

Then there exists an l-isomorphism β of $G[\mathcal{F}]$ onto M such that $\beta(g) = g$ for all $g \in G$.

Proof. Let M be an l-subgroup of $\prod_{y \in Y} T_y$, where each T_y is a totallyordered group, and S(M) = Y. Then $\mathscr{F}^* = \{S(K) | K \in \mathscr{P}(M)\}$ is a field of subsets of Y since M is SP. Let $\mathscr{B}^* = \{S(J) | J \in \mathscr{P}(G)\}$, where here we take S(J) as a subset of Y. Define $\eta^* : \mathscr{B}^* \to \mathscr{F}^*$ by $\eta^*(S(J)) = S(\tau(J))$. Then η^* is a surjective Boolean isomorphism and $S(J) \subseteq \eta^*S(J)$. By Theorem 2.4, $G[\mathscr{F}^*]$ is an SP-hull of G. By Lemma 1.4 $G[\mathscr{F}^*]$ is an l-subgroup of M. Thus $G[\mathscr{F}^*] = M$. Now define $\beta: G[\mathscr{F}] \to G[\mathscr{F}^*]$ by $\beta[g_i|\eta S(J_i)] = [g_i|\eta^*S(J_i)]$. We show that β is a well-defined function.

Suppose $[g_i|\eta S(J_i)] = [0|X] = 0$. Then $S(g_i) \cap \eta S(J_i) = \emptyset$, and thus $S(g_i'') \cap S(J_i) = \emptyset$, and $g_i'' \cap J_i = 0$. Hence $S(g_i'') \cap \eta^* S(J_i) = \emptyset$, and thus $S(g_i) \cap \eta^* S(J_i) = \emptyset$. Since this is true for each *i*, we conclude that

 $[g_i|\eta^*S(J_i)] = [0|X] = 0.$

Now suppose $[g_i|\eta S(J_i)] = [g_j|\eta S(J_j)]$. Then

$$[g_i - g_j|\eta S(J_i \cap J_j)] = [g_i - g_j|\eta S(J_i) \cap \eta S(J_j)] = [0|X].$$

Thus $[g_i - g_j | \eta^* S(J_i \cap J_j)] = [0 | Y]$ and hence $[g_i | \eta^* S(J_i)] = [g_j | \eta^* S(J_j)]$.

Thus β is well-defined. It is readily verified that β is a surjective *l*-homomorphism. We show it is an isomorphism. Suppose $[g_i|\eta S(J_i)] \neq 0$. Then $S(g_i) \cap \eta S(J_i) \neq \emptyset$ for some *i*, and hence $S(g_i) \cap S(J_i) \neq \emptyset$, using Lemma 2.1. Thus $S(g_i) \cap \eta^* S(J_i) \neq \emptyset$ and hence $\beta[g_i|\eta S(J_i)] \neq 0$.

Finally, $\beta(g) = \beta[g|X] = \beta[g|\eta S(G)] = [g|\eta^*S(G)] = [g|Y] = g$ for all $g \in G$. This completes the proof of Theorem 2.5.

If *M* is an *SP*-hull of *G*, then the hypotheses of Theorem 2.5 are satisfied with $\tau(J) = J'^{\perp}$. It follows that *G* has a unique *SP*-hull (up to isomorphism over *G*). Following [6] we denote the *SP*-hull of *G* by G^{SP} .

Our model of the *SP*-hull makes many of its properties almost self-evident. We list these below as corollaries. Many have appeared in one form or another at various places in the literature.

COROLLARY 2.6. If G is an l-subgroup of a cardinal product $\prod R_x$ of copies of the real numbers R, then G^{SP} is an l-subgroup of the same cardinal product. (c.f., [9, Theorem 3.3].)

COROLLARY 2.7. If $0 < h \in G^{SP}$, then there exist g, $\overline{g} \in G$ such that $0 < g \leq h \leq \overline{g}$. In particular, if G is archimedean, then so is G^{SP} .

Proof. By Lemma 2.2(ii) there exists $g \in G$ with $0 < g \leq h$. Write $h = [g_i|F_i] \in G[\mathcal{F}]$, in the notation of Section 1, and let $\bar{g} = \bigvee g_i$. Then $h \leq \bar{g}$.

COROLLARY 2.8. If G is divisible (respectively, a vector lattice, an f-ring) then so is G^{SP} . If G belongs to an equationally-closed class \mathscr{C} of l-groups, then so does G^{SP} .

Proof. Only the case that G is divisible is treated here; the proofs of the remaining assertions are similar.

Suppose G is divisible. We can view G as an *l*-subgroup of $\prod M_{\in}[\mathcal{M}]G/M$ where each $M \in \mathcal{M}$ is a minimal prime subgroup of G (and hence G/M is a totallyordered group). Suppose $h = [g_i|F_i] \in G[\mathcal{F}]$ and n is a positive integer. There exists $f_i \in G$ such that $nf_i = g_i$. Now $\bar{h} = [f_i|F_i] \in G[\mathcal{F}]$ and $n\bar{h} = [nf_i|F_i] = h$. Thus $G[\mathcal{F}] = G^{SP}$ is divisible. An *l*-group with the property that each of its *l*-epimorphic images is archimedean will be called *hyperarchimedean*. It is proved in [8, p. 2.17] that G is hyperarchimedean if and only if G is (isomorphic to) an *l*-subgroup of a cardinal product $\prod R_x$, where each R_x is a copy of the real numbers, such that if $0 < g, \bar{g} \in G$ there exists a positive integer n such that $n\bar{g}(x) > g(x)$ whenever $\bar{g}(x) \neq 0$.

COROLLARY 2.9. If G is hyperarchimedean, then so is G^{SP} .

Proof. Let *G* be represented as in the preceding paragraph. Let $0 < h, \bar{h} \in G[\mathscr{F}]$. Write $h = [g_i|F_i], \bar{h} = [g_j|F_j]$. There exists an integer n_{ij} such that $n_{ij}g_j(x) > g_i(x)$ whenever $g_j(x) \neq 0$. Let *n* be the largest of the n_{ij} . Then $n\bar{h}(x) > h(x)$ whenever $\bar{h}(x) \neq 0$. Thus G^{SP} is hyperarchimedean.

Example. Let G be the *l*-subgroup of $\prod_{n \in N} R_n$ consisting of all eventually constant real sequences. (Here N denotes the natural numbers.) Then $\mathscr{B} = \{S(J) | J \in \mathscr{P}(G)\}$ consists of all subsets of N. Thus the map η in Lemma 1.1 can be taken to be the identity, and hence by Theorem 2.4 G^{SP} is the *l*-group of all real sequences which have finite range. G^{SP} is hyperarchimedean. However, the Dedekind completion of G is the *l*-group of all bounded real sequences, and this is not hyperarchimedean.

COROLLARY 2.10. Suppose H is an essential extension of G, and H is an SPgroup. Suppose H is an l-subgroup of a cardinal product $\prod_{y \in Y} T_y$ of a totallyordered groups T_y . Then $\mathscr{F}^* = \{S(J) | J \in \mathscr{P}(H)\}$ is a field of subsets of S(H), and $G[\mathscr{F}^*]$ is the SP-hull of G.

Proof. This was proved in the first paragraph of the proof of Theorem 2.5.

Example. Suppose H is the *l*-group of all continuous almost-finite extendedreal-valued functions on an extremally disconnected compact Hausdorff space Y, and H is an essential extension of G. Then \mathscr{F}^* is the collection of regular open subsets of Y, and $G[\mathscr{F}^*]$ is the *SP*-hull of G by Corollary 2.10.

Corollary 2.10 can be generalized somewhat. Suppose G is an *l*-subgroup of H. Let us say H is a *weak-essential* extension of G if $(J + J')^{\perp} = 0$ for all $J \in \mathscr{P}(G)$. (Here $^{\perp}$ denotes polar in H.) H is a weak-essential extension of G if and only if the map $J \to J'^{\perp}$ is a Boolean isomorphism of $\mathscr{P}(G)$ into $\mathscr{P}(H)$. [5, Theorem 4.1.] It is clear that each essential extension of G is a weak-essential extension of G.

COROLLARY 2.11. Suppose H is a weak-essential extension of G, and H is an SP-group. Then G^{SP} is an l-subgroup of H.

Proof. Represent H as an l-subgroup of $\prod_{v \in Y} T_v$, where each T_v is a totallyordered group, and S(H) = Y. Let $\mathscr{B}^* = \{S(J) | J \in \mathscr{P}(G)\}$, where here S(J) is taken in Y. Let $\eta S(J) = S(J'^{\perp})$. Then η is a Boolean isomorphism onto a field of subsets of Y, and $\eta S(J) \supseteq S(J)$ for all $J \in \mathscr{P}(G)$. Thus $G[\mathscr{F}^*] = G^{SP}$ by Theorem 2.4. By Lemma 1.4, $G[\mathscr{F}^*]$ is an l-subgroup of H.

Remark. Suppose $G \in \mathscr{P}(H)$. Then $J \in \mathscr{P}(G)$ if and only if $J \in \mathscr{P}(H)$ and $J \subseteq G$. It follows by an argument similar to that for Corollary 2.11 that G^{SP} is an *l*-subgroup of H^{SP} .

3. Further properties of the SP-hull. In the first three lemmas in this section, G and H are *l*-groups which need not be representable, and \perp denotes the polar operation in H.

LEMMA 3.1. Let $\alpha: G \to H$ be a surjective l-homomorphism. If S is a subset of G such that ker $\alpha \subseteq S'$, then $\alpha(S') = \alpha(S)^{\perp}$. If $J \in \mathscr{P}(G)$ and $J \supseteq \ker \alpha$, then $\alpha(J) = (\alpha(J'))^{\perp}$, an element of $\mathscr{P}(H)$.

Proof. Suppose $h \in \alpha(S')$. Then $h = \alpha f$ for some $f \in S'$, and $f \wedge s = 0$ for all $s \in S$. Thus $h \wedge \alpha s = 0$ for all $s \in S$, and hence $h \in \alpha(S)^{\perp}$.

On the other hand, suppose $h \in \alpha(S)^{\perp}$. Then $h = \alpha g$ for some $g \in G$, and $\alpha g \wedge \alpha s = 0$ for all $s \in S$. Thus $g \wedge s \in \ker \alpha$ and hence by hypothesis $g \wedge s \in S'$. Thus $(g \wedge s) \wedge s = 0$ for all $s \in S$, and thus $g \in S'$. Thus $h \in \alpha(S')$.

The last statement in the lemma follows by taking S = J'. Then S' = J'' = J, and hence $\alpha(J) = \alpha(J')^{\perp}$.

LEMMA 3.2. Let $\alpha: G \to H$ be a surjective *l*-homorphism such that ker $\alpha \in \mathscr{P}(G)$. If $K \in \mathscr{P}(H)$, then $\alpha^{-1}(K) = \{g \in G | \alpha g \in K\}$ is an element of $\mathscr{P}(G)$.

Proof. $K = \alpha(S)^{\perp}$ for some subset S of G. Let $A = \ker \alpha$, and let $D = \{s \land b | s \in S \text{ and } b \in A'\}$. The sentences that follow are equivalent (using A = A'' to get from the fifth to the fourth). $g \in \alpha^{-1}(K)$. $\alpha g \in K$. $\alpha g \land \alpha s = 0$ for all $s \in S$. $g \land s \in A$ for all $s \in S$. $g \land s \land b = 0$ for all $s \in S$ and $b \in A'$. $g \in D'$.

Thus $\alpha^{-1}(K) = D'$ is a polar in G.

LEMMA 3.3. Let $\alpha: G \to H$ be a surjective *l*-homorphism such that ker $\alpha \in \mathscr{P}(G)$. Define $\bar{\alpha}: \mathscr{P}(G) \to \mathscr{P}(H)$ by $\bar{\alpha}(J) = \alpha(J \lor \ker \alpha)$. Then $\bar{\alpha}$ is a surjective Boolean homorphism.

Proof. Let $\mathscr{A} = \{I \in \mathscr{P}(G) | I \supseteq \ker \alpha\}$. Then \mathscr{A} is a Boolean algebra with ker α as least element. The map $J \to J \bigvee \ker \alpha$ is a Boolean homomorphism of $\mathscr{P}(G)$ onto \mathscr{A} . Also, by Lemmas 3.1 and 3.2, the map $I \to \alpha(I)$ is a Boolean isomorphism of \mathscr{A} onto $\mathscr{P}(H)$. Thus $\overline{\alpha}$ is a surjective Boolean homorphism.

THEOREM 3.4. Suppose G and H are representable l-groups, and $\alpha: G \to H$ is a surjective l-homomorphism such that ker $\alpha \in \mathscr{P}(G)$. Then there exists a surjective l-homomorphism $\beta: G^{SP} \to H^{SP}$ such that $\beta g = \alpha g$ for all $g \in G$.

Proof. Let G be an *l*-subgroup of $\prod_{x \in \mathbb{X}} T_x$, where each T_x is a totally-ordered group. Let $\mathscr{B} = \{S(J) | J \in \mathscr{P}(G)\}$, and let $\eta: \mathscr{B} \to \mathscr{F}$ be as in Lemma 1.1. Then $G^{SP} = G[\mathscr{F}]$ by Theorem 2.4.

Similarly, let H be an l-subgroup of $\prod_{y \in Y} T_y$, where each T_y is a totallyordered group. Let $\mathscr{B}^* = \{S(K) | K \in \mathscr{P}(H)\}$, and let $\eta^* : \mathscr{B}^* \to \mathscr{F}^*$ be as in Lemma 1.1. Again, $H^{SP} = H[\mathscr{F}^*]$ by Theorem 2.4.

Let $\bar{\alpha}$ be as in Lemma 3.3. Define $\beta: G[\mathcal{F}] \to H[\mathcal{F}^*]$ by $\beta[g_i|\eta S(J_i)] = [\alpha g_i|\eta^* S(\bar{\alpha}(J_i))]$. We show that β is well-defined. For this, as in the proof of Theorem 2.5, it is enough to show that if $[g_i|\eta S(J_i)] = 0$, then

 $[\alpha g_i | \eta^* S(\bar{\alpha}(J_i))] = 0.$

Suppose $[g_i|\eta S(J_i)] = 0$. Then $g_i'' \cap J_i = 0$, and hence

 $(g_i'' \mathbf{\nabla} \ker \alpha) \cap (J_i \mathbf{\nabla} \ker \alpha) = \ker \alpha,$

and hence $\alpha(g_i'' \vee \ker \alpha) \cap \alpha(J_i \vee \ker \alpha) = 0$. Now, $\alpha(g_i'' \vee \ker \alpha)$ is a polar in H by Lemma 3.1, and αg_i is an element of $\alpha(g_i'' \vee \ker \alpha)$. Hence $(\alpha g_i)^{\perp \perp} \subseteq \alpha(g_i'' \vee \ker \alpha)$ and thus $(\alpha g_i)^{\perp \perp} \cap \alpha(J_i \vee \ker \alpha) = 0$. Therefore $S((\alpha g_i)^{\perp \perp}) \cap S(\alpha(J_i \vee \ker \alpha)) = \emptyset$, and hence by Lemma 2.2,

 $S(\alpha g_i) \cap \eta^* S(\alpha(J_i \vee \ker \alpha)) = \emptyset.$

Thus $[\alpha g_i | \eta^* S(\alpha(J_i \vee \ker \alpha))] = 0$, and β is well-defined.

It is easily verified that β is an *l*-homomorphism. To see that β is surjective, it is enough to note that α is surjective and that each finite partition of Y in \mathscr{F}^* is the image of a finite partition of X in \mathscr{F} . The latter is true because each finite partition of H in $\mathscr{P}(H)$ is the image under $\bar{\alpha}$ of some finite partition of G in $\mathscr{P}(G)$. (This is an elementary fact about Boolean algebras.)

Finally, if $g \in G$, then

$$\beta g = \beta[g|X] = \beta[g|\eta S(G)] = [\alpha g|\eta^* S(\overline{\alpha}G)] = [\alpha g|\eta^* S(H)] = [\alpha g|Y] = \alpha g.$$

THEOREM 3.5. If $A \in \mathscr{P}(G)$, then $G^{SP} \simeq (G/A)^{SP} \bigoplus (G/A')^{SP}$.

Proof. Let $G \subseteq \prod_{x \in X} T_x$, η , and \mathscr{F} be as in the construction of G^{S^P} in Section 2, and let $F = \eta S(A')$. Denote by $g|_F$ the element of $\prod_{x \in F} T_x$ such that $g|_F(x) = g(x)$ for all $x \in F$. Then $L = \{g|_F | g \in G\}$ is an *l*-subgroup of $\prod_{x \in F} T_x$ and $\alpha: G \to L$ by $\alpha g = g|_F$ is a surjective *l*-homomorphism. If $g \in A$, then $S(g) \cap S(A') = \emptyset$, and so by Lemma 2.2, $S(g) \cap F = \emptyset$, and hence $g \in \ker \alpha$. Moreover, if $g \in \ker \alpha$, then $S(g) \cap F = \emptyset$, and thus $S(g) \cap S(A') = \emptyset$ and $g \in A'' = A$. Thus $L \simeq G/\ker \alpha = G/A$.

By Lemmas 3.1 and 3.2 the polars in L are of the form αJ where $J \in \mathscr{P}(G)$ and $J \supseteq A$. Let $\mathscr{B}^* = \{S(\alpha(J)) | J \in \mathscr{P}(G) \text{ and } J \supseteq A\}$ and $\mathscr{F}^* = \{E \in \mathscr{F} | E \subseteq F\}$. Define $\eta^*: \mathscr{B}^* \to \mathscr{F}^*$ by $\eta^*(S(\alpha J)) = \eta S(J) \cap \eta S(A')$. If $E \in \mathscr{F}^*$, then $(X \setminus E) \cap F \in \mathscr{F}$, and hence there exists $C \in \mathscr{P}(G)$ such that $\eta S(C) = (X \setminus E) \cap F$. $C \subseteq A'$ since $\eta S(C) \subseteq \eta S(A') = F$. Thus $C' \supseteq A'' = A$, and

$$\eta^* S(\alpha(C')) = \eta S(C') \cap F = (X \setminus \eta S(C)) \cap F = (X \setminus (X \setminus E) \cap F)) \cap F = E,$$

since $E \subseteq F$. Thus η^* is a surjective function. Also, it is clear that η^* preserves inclusion.

Suppose $I, J \in \mathscr{P}(G), I \supseteq A, J \supseteq A$, and that $\eta^*S(\alpha I) \subseteq \eta^*S(\alpha J)$. Then $\eta S(I \cap A') = \eta(S(I) \cap S(A')) = \eta S(I) \cap \eta S(A') = \eta^*S(\alpha I) \subseteq \eta^*S(\alpha J) = \eta S(J \cap A')$, and thus $I \cap A' \subseteq J \cap A'$. Now since $I \supseteq A$ and $J \supseteq A$, we have $I = A \bigvee I = (A \bigvee I) \cap (A \bigvee A') = A \bigvee (I \cap A') \subseteq A \bigvee (J \cap A') = J$. It follows that η^* is one-to-one and that its inverse preserves inclusion.

Thus η^* is a Boolean isomorphism of \mathscr{B}^* onto \mathscr{F}^* . Hence

 $(G/A)^{SP} \simeq L^{SP} \simeq L[\mathscr{F}^*]$

by Theorem 2.4. $L[\mathscr{F}^*]$ can be identified with $\varphi(F) = \{h \in G[\mathscr{F}] | S(h) \subseteq F\}$. Similarly, $(G/A')^{SP}$ is isomorphic to $\varphi(X \setminus F)$. By Lemma 1.3 we conclude $G[\mathscr{F}] = \varphi(F) \bigoplus \varphi(X \setminus F) \simeq (G/A)^{SP} \bigoplus (G/A')^{SP}$.

4. The *P*-hull of an *l*-group. In this section we generalize the results of Section 2, and we consider the *P*-hull of an *l*-group.

We assume G is an *l*-subgroup of $\prod_{x \in X} T_x$, where each T_x is a totally-ordered group, and that \mathscr{A} is a subalgebra of $\mathscr{P}(G)$ such that, for each $g \in G$, g'' is an element of \mathscr{A} . We let $\mathscr{C} = \{S(A) | A \in \mathscr{A}\}$ and let $\eta \colon \mathscr{C} \to \mathscr{E}$ be a Boolean isomorphism onto a field \mathscr{E} of subsets of X (as in Lemma 1.1). $G[\mathscr{E}]$ is an *l*-subgroup of $\prod T_x$ by Lemma 1.2.

THEOREM 4.1. G is a dense l-subgroup of $G[\mathscr{E}]$, and if $A \in \mathscr{A}$, then A'^{\perp} is a summand of $G[\mathscr{E}]$. If H is an l-subgroup of G containing G which has the property that A'^* is a summand of H for each $A \in \mathscr{A}$, then $H = G[\mathscr{E}]$. (Here $^{\perp}$ denotes polar in $G[\mathscr{E}]$, and * denotes polar in H.) Moreover, these properties characterize $G[\mathscr{E}]$ up to isomorphism over G.

The interested reader can without difficulty modify the proofs of Theorems 2.4 and 2.5 to obtain a proof of Theorem 4.1.

THEOREM 4.2. $G[\mathscr{E}]$ is a *P*-group.

Proof. Let $E \in \mathscr{C}$ and $g \in G$. Let $k \in G[\mathscr{C}]$ be given by k(x) = g(x) if $x \in E$ and k(x) = 0 if $x \in X \setminus E$. We show $k^{\perp \perp} = \varphi(E \cap \eta S(g''))$ from which it follows by Lemma 1.3 that $k^{\perp \perp}$ is a summand of $G[\mathscr{C}]$.

Let $0 < f \in k^{\perp \perp}$. Then $f \wedge r = 0$ for all $r \in k^{\perp}$. Suppose that there exists $z \in (X \setminus E) \cap S(f)$. Let $r \in G[\mathscr{C}]$ be given by r(x) = f(x) for all $x \in X \setminus E$ and r(x) = 0 for all $x \in E$. Then $r \in k^{\perp}$ but $f \wedge r > 0$. We conclude from this contradiction that $S(f) \subseteq E$. Also, $k^{\perp \perp} \subseteq g^{\perp \perp} = g'^{\perp}$, and hence $S(f) \subseteq S(g'^{\perp}) = \eta S(g'')$. Thus $S(f) \subseteq E \cap \eta S(g'')$, and $f \in \varphi(E \cap \eta S(g''))$.

On the other hand, suppose $0 < f \notin k^{\perp \perp}$. Then there exists $r \in k^{\perp}$ with $k \wedge r > 0$. We have $S(r) \cap E \cap S(g) = \emptyset$. Let $E = \eta S(J)$ where $J \in \mathscr{P}(G)$. Then $S(r) \cap S(J) \cap S(g) = \emptyset$, and hence $S(r) \cap S(J) \cap S(g'') = \emptyset$. Thus $S(r) \cap S(J \cap g'') = \emptyset$, and hence

$$S(r) \cap E \cap \eta S(g'') = S(r) \cap \eta S(J) \cap \eta S(g'') = S(r) \cap \eta (S(J) \cap S(g'')) = S(r) \cap \eta S(J \cap g'') = \emptyset,$$

where the last equality is by (the appropriate analogue to) Lemma 2.2. Since $k \wedge r > 0$ we conclude there exists $x \in X \setminus (E \cap \eta S(g''))$ such that $k(x) \neq 0$. Thus $k \notin \varphi(E \cap \eta S(g''))$.

Finally, if $0 < h \in G[\mathscr{E}]$, then $h = k_1 \vee \ldots \vee k_n$ where each k_i is like k in the preceding paragraphs. Thus $h^{\perp \perp}$ is the join in $\mathscr{P}(G[\mathscr{E}])$ of $k_1^{\perp \perp}, \ldots, k_n^{\perp \perp}$. Since the cardinal summands of an l-group H always form a subalgebra of $\mathscr{P}(H)$, we conclude $h^{\perp \perp}$ is a summand of $G[\mathscr{E}]$.

THEOREM 4.3. If \mathscr{A} is the subalgebra of $\mathscr{P}(G)$ generated by $\{g''|g \in G\}$, then $G[\mathscr{E}]$ is the P-hull of G.

Remark. The possibility of using the subalgebra of $\mathscr{P}(G)$ generated by $\{g''|g \in G\}$ to produce the *P*-hull of *G* was first utilized by D. Chambless [4] in his direct limit construction.

Proof of Theorem 4.3. *G* is a dense *l*-subgroup of $G[\mathscr{E}]$ by Theorem 4.1, and by Theorem 4.2 $G[\mathscr{E}]$ is a *P*-group.

Suppose now that *K* is an *l*-subgroup of $G[\mathscr{C}]$ containing *G* and that *K* is a *P*-group. Let \mathscr{A}_1 be the subalgebra of $\mathscr{P}(K)$ generated by $\{g^{**}|g \in G\}$, and \mathscr{A}_2 the subalgebra of $\mathscr{P}(G[\mathscr{C}])$ generated by $\{g^{\perp \perp}|g \in G\}$. (* denotes polar in *K*, and $^{\perp}$ denotes polar in $G[\mathscr{C}]$.)

Since $G[\mathscr{C}]$ and K are essential extensions of G, the maps $A \mapsto A^{\perp\perp}$ and $A \mapsto A^{**}$ are Boolean isomorphisms of \mathscr{A} onto \mathscr{A}_2 and \mathscr{A}_1 , respectively. Since $G[\mathscr{C}]$ is a P-group, we conclude that $A^{\perp\perp}$ is a summand of $G[\mathscr{C}]$ for all $A \in \mathscr{A}$. Similarly, A^{**} is a summand of K for all $A \in \mathscr{A}$.

One can now imitate the argument in the body of the proof of Theorem 2.4 and get $K = G[\mathscr{E}]$. Thus $G[\mathscr{E}]$ is a *P*-hull of *G*.

THEOREM 4.4. Let \mathscr{A} and \mathscr{E} be as in Theorem 4.3. If M is a P-hull of G, then there exists an l-group isomorphism β of $G[\mathscr{E}]$ onto M with $\beta g = g$ for all $g \in G$. Thus G has a unique P-hull.

Proof. Let M be an l-subgroup of $\prod_{y \in Y} T_y$, where each T_y is a totally-ordered group, and S(M) = Y. Let $\mathscr{C}^* = \{S(A) | A \in \mathscr{A}\}$, where S(A) is staken in Y. The map μ by $\mu(A) = A^{\perp \perp}$ is a Boolean isomorphism of \mathscr{A} into $\mathscr{P}(M)$. Also, $\mu(g'') = g''^{\perp \perp} = g^{\perp \perp}$ is a summand of M for all $g \in G$, since M is a P-group. Thus $A^{\perp \perp}$ is a summand of M for all $A \in \mathscr{A}$, and hence $\mathscr{C}^* = \{S(A^{\perp \perp}) | A \in \mathscr{A}\}$ is a field of subsets of Y. Now $\eta^* : \mathscr{C}^* \to \mathscr{C}^*$ by $\eta^*(S(A)) = S(A^{\perp \perp})$ is a surjective Boolean isomorphism and $C \subseteq \eta^*C$ for all $C \in \mathscr{C}^*$. By Theorem 4.3, $G[\mathscr{C}^*]$ is a P-hull for G.

The remainder of the proof is exactly similar to the arguments used in proving Theorem 2.5.

The results in Section 2 extend easily to the general setting of this section. The same does not seem to be true for the results in Section 3.

Let *G* be an *l*-subgroup of a product of totally-ordered groups. The only nonconstructive step in our existence proofs for G^{SP} and G^{P} is the proof of Lemma 1.1. In cases where the map η of the Lemma can be produced constructively, we get a fairly concrete model of the *P*-hull or *SP*-hull. We give an example illustrating this possibility.

Example. The *P*-hull of the free vector lattice *FVL*2 on two generators.

Let $X = R^2 \setminus \{0\}$ and let $W = \prod_{x \in X} R_x$. (*R* denotes the real numbers; thus *X* is the plane punctured at the origin.) Then *W* is the vector lattice of all real-valued functions on *X*. By a cone in *X* we mean a subset *K* of *X* such that $rk \in K$ whenever $k \in K$ and $0 < r \in R$. *K* is an open (closed) cone in *X* if and only if *K* is a topologically open (closed) subset of *X*.

Let $H = \{f \in W | f \text{ is continuous, and there exist a finite number of closed cones <math>K_1 \ldots K_n$ in X with $K_1 \cup \ldots \cup K_n = X$ and there exist linear functionals $f_1, \ldots, f_n: \mathbb{R}^2 \to \mathbb{R}$ such that $f(x) = f_i(x)$ for all $x \in K_i$. It was shown in [1] that $FVL2 \subseteq H$ and in [3] that FVL2 = H.

The collection $\{f''|f \in FLV2\}$ is a Boolean subalgebra of $\mathscr{P}(FVL2)$. $\mathscr{C} = \{S(f'')|f \in FVL2\}$ consists of the regular open cones in X that have only finitely many connected components. (See [1] for proofs of these last two sentences.) \mathscr{C} is a Boolean algebra of subsets of X. Let $C \in \mathscr{C}$ with $C \neq \emptyset$ and $C \neq X$. Each component of C has a boundary which consists of two rays, one at the clockwise-most extremity of the component, the other on the counterclockwise side. We let $\eta \mathcal{O}$ be the union of C and the clockwise boundary rays of its components, and we let $\eta \emptyset = \emptyset$ and $\eta X = X$. Then η is a Boolean homomorphism of \mathscr{C} onto a field \mathscr{E} of subsets of X and $\eta C \supseteq C$ for $C \in \mathscr{C}$.

By Theorem 4.3, $H[\mathscr{E}]$ is the *P*-hull of *FVL*2. \mathscr{E} consists of \emptyset , *X*, and all those cones in *X* with finitely many components, each of which is closed on the clockwise side and open on the counter-clockwise side.

Now we can give the following nice description of the *P*-hull of FVL2: A function $f: X \to R$ is in the *P*-hull of FVL2 if and only if f = 0 or there exist a finite number of connected cones E_1, \ldots, E_n in X with $E_1 \cup \ldots \cup E_n = X$ and with each E_i closed on the clockwise side and open on the counterclockwise side, and there exist linear functionals $f_1, \ldots, f_n: \mathbb{R}^2 \to \mathbb{R}$ such that $f(x) = f_1(x)$ for all $x \in E_i$.

References

- 1. K. Baker, Free vector lattices, Can. J. Math. 20 (1968), 58-66.
- 2. S. Bernau, Orthocompletions of lattice groups, Proc. London Math. Soc. 16 (1966), 107-130.
- 3. R. Bleier, Archimedean vector lattices generated by two elements, Proc. Amer. Math. Soc. 39 (1973), 1-9.
- 4. D. Chambless, Representation of the projectable and strongly projectable hulls of a latticeordered group, Proc. Amer. Math. Soc. 34 (1972), 346-350.
- 5. —— The representation and structure of lattice-ordered groups and f-rings, Ph.D. Thesis, Tulane University, 1971.
- 6. P. Conrad, Hulls of representable l-groups and f-rings, J. Austral. Math. Soc. 16 (1973), 385-415.
- 7. The lateral completion of a lattice-ordered group, Proc. London Math. Soc. 19 (1969), 444–486.

ROGER D. BLEIER

- 8. Lattice-ordered groups, Tulane University, 1970.
- 9. P. Conrad and D. McAlister, The completion of a lattice-ordered group, J. Austral. Math. Soc. 9 (1969), 182–208.
- 10. K. Keimel, Representation de groupes et d'anneaux reticules par des sections dans des faisceaux, Ph.D. Thesis, University of Paris, 1970.
- 11. T. Speed, On lattice-ordered groups (preprint).
- 12. A. Vecksler, Structural orderability of algebras and rings, Soviet Math. Dokl. 6 (1965), 1201–1204.

University of Texas, Austin, Texas