THE $S P$-HULL OF A LATTICE-ORDERED GROUP

ROGER D. BLEIER

There have been several recent papers on the subject of the P-hull and the $S P$-hull of an l-group (lattice-ordered group). The most natural formulation of the concepts was given by P. Conrad in [6]. T. Speed studied P-groups extensively in [11]; his work was motivated by earlier work by H. Nakano and I. Amemiya in a vector lattice setting. A. Vecksler [12] produced the $S P$-hull for f-rings. The ortho-completion of S . Bernau [2] is a related concept.

The best construction of the P-hull and $S P$-hull thus far has been given by D. Chambless [4]. However, his direct limit construction does not leave the reader with a "concrete" feeling for these hulls. K. Keimel [10] has given a nice sheaf-theoretic interpretation of the $S P$-hull.

In this paper we give a construction of the $S P$-hull and the P-hull which is substantially different from those previously given. If G is represented as an l-subgroup of a cardinal product of totally-ordered groups indexed by X, then we construct these hulls out of G and the index set X. Section 1 lays the foundation for the succeeding sections. In Section 2 we construct the $S P$-hull and obtain various corollaries from our construction. In Section 3 it is shown that each l-homomorphism of G onto H whose kernel is a polar extends to an l-homomorphism of the $S P$-hull of G onto the $S P$-hull of H. Section 4 treats generalizations and the P-hull. A very nice description of the P-hull of the free vector lattice on two generators is given.

We briefly review the portion of l-group theory that we will be using. (We follow Conrad in our terminology. The reader is referred to [8] for the basic theory of l-groups.)

Let S be a subset of an l-group G. Then

$$
S^{\prime}=\{g \in G| | g|\wedge| s \mid=0 \quad \text { for all } s \in S\}
$$

is called the polar of S in $G . S^{\prime}$ is a convex l-subgroup of G. The collection $\mathscr{P}(G)$ of all polars in G is a Boolean algebra under inclusion. The meet operation is set-theoretic intersection, and the complement of $A \in \mathscr{P}(G)$ is A^{\prime}. We write $S^{\prime \prime}$ for $\left(S^{\prime}\right)^{\prime}$, and if $g \in G$, we write $g^{\prime \prime}$ for $\{g\}^{\prime \prime} . A \in \mathscr{P}(G)$ if and only if $A=A^{\prime \prime}$. We denote the join operation in $\mathscr{P}(G)$ by ∇.

An l-group G is the cardinal sum $A \oplus B$ of l-ideals A and B of G if $A \cap B=0$ and $A+B=G$. If this is the case, then $B=A^{\prime}$, and A and B are called (cardinal) summands of G. The collection of all summands of G is a Boolean subalgebra of $\mathscr{P}(G)$.

If G is an l-subgroup of an l-group H such that $G \cap C \neq 0$ for each non-zero
Received February 5, 1973 and in revised form, August 14, 1973.
convex l-subgroup C of H, then we say H is an essential extension of G. If for each $h \in H$ with $h>0$ there exists $g \in G$ such that $0<g \leqq h$, then we say G is dense in H. If G is a dense l-subgroup of H, then H is an essential extension of G.

Let H be an essential extension of G, and let * denote the polar operation in H. Then $A \rightarrow A^{* *}$ is a Boolean isomorphism of $\mathscr{P}(G)$ onto $\mathscr{P}(H)$. [7, Theorem 3.4]. If S is a subset of G, then $S^{\prime \prime * *}=S^{* *}$ and $S^{* *}=S^{*}$. [6, Section 2.] Thus $S^{\prime *}=S^{* *}$.

If each element of $\mathscr{P}(G)$ is a summand of G, then G is an $S P$-group (strongly projectable l-group). If H is an essential extension of G, and H is an $S P$-group, and no proper l-subgroup of H that contains G is an $S P$-group, then we say H is an $S P$-hull of G.

If $g^{\prime \prime}$ is a summand of G for each $g \in G$, then G is a P-group (projectable l-group). If H is an essential extension of G, and H is a P-group, and no proper l-subgroup of H containing G is a P-group, then we say H is a P-hull of G.

If G is an l-subgroup of a cardinal product of totally-ordered groups, we say G is representable. G is representable if and only if $g^{\prime \prime}$ is a normal subgroup of G for each $g \in G$. Thus if G has a P-hull or an $S P$-hull, then G must be representable. Conversely, if G is representable, then G has a P-hull and an $S P$-hull. Moreover, these hulls are unique. Versions of these results have been obtained by all the authors previously mentioned.

Let f be an element of the cardinal product $\Pi_{x \in X} T_{x}$, where each T_{x} is a totally-ordered group. We denote the x-component of f by $f(x)$, and we define $S(f)=\{x \in X \mid f(x) \neq 0\}$. If K is a subset of $\prod_{x \in X} T_{x}$, we define

$$
S(K)=\{x \in X \mid f(x) \neq 0 \quad \text { for some } f \in K\} .
$$

Throughout this paper G denotes an l-group and ' is the polar operation in G. Where a statement involves another l-group, it is of ten necessary or convenient to use a different symbol for the polar operation in this second l-group. We often use ${ }^{\perp}$ for this purpose. We also use * for this purpose, but never without express designation, since we sometimes use ${ }^{*}$ in other ways. We assume throughout that all l-groups are representable.

1. Fields of sets and extensions of l-groups. A field of subsets of a set X is a collection \mathscr{F} of subsets of X such that (i) $\emptyset \in \mathscr{F}$, (ii) $A \cap B \in \mathscr{F}$ if $A, B \in \mathscr{F}$, and (iii) $X \backslash A \in \mathscr{F}$ if $A \in \mathscr{F}$.

Each field of subsets of X is a Boolean algebra under the partial-ordering of inclusion. On the other hand, suppose \mathscr{B} is a collection of subsets of X satisfying (i) $\emptyset \in \mathscr{B}$, and (ii) $A \cap B \in \mathscr{B}$ for all $A, B \in \mathscr{B}$. Then, as is well-known in the theory of Boolean algebras, it is possible that \mathscr{B} is a Boolean algebra under the partial-ordering of inclusion but not a field of subsets of X. This is possible even if we assume $X \in \mathscr{B}$. (The collection of all regular open subsets of the real line is an example of this phenomenon.)

The following technical lemma is crucial to the development in succeeding sections. I owe its proof to an anonymous referee.

Lemma 1.1. Suppose \mathscr{B} is a collection of subsets of a set X such that (i) $\emptyset \in \mathscr{B}$, and (ii) $A \cap B \in \mathscr{B}$ if $A, B \in \mathscr{B}$. If \mathscr{B} is a Boolean algebra under the partialordering of inclusion, then there exists a Boolean isomorphism η of \mathscr{B} onto a field \mathscr{F} of subsets of X with $\eta B \supseteq B$ for all $B \in \mathscr{B}$.

Proof. Let \mathscr{E}_{x} be the collection of all $B \in \mathscr{B}$ such that $x \in B$. Then \mathscr{E}_{x} is empty or \mathscr{E}_{x} is a filter in \mathscr{B}. If \mathscr{E}_{x} is empty, let \mathscr{U}_{x} be any ultrafilter in \mathscr{B}; otherwise let \mathscr{U}_{x} be an ultrafilter in \mathscr{B} such that $\mathscr{U}_{x} \supseteq \mathscr{E}_{x}$.

Define, for all $B \in \mathscr{B}, \eta B=\left\{x \in X \mid B \in \mathscr{U}_{x}\right\}$. It is clear that η preserves inclusion, that $\eta(\emptyset)=\emptyset$, and that η maps the largest element of \mathscr{B} to X. If $A, B \in \mathscr{B}$ we have immediately that $\eta(A \cap B) \subseteq \eta A \cap \eta B$. On the other hand, if $x \in \eta A \cap \eta B$, then $A, B \in \mathscr{U}_{x}$ whence $A \cap B \in \mathscr{U}_{x}$, and thus $x \in \eta(A \cap B)$. Thus $\eta(A \cap B)=\eta A \cap \eta B$.

Denote the complement of B in \mathscr{B} by B^{\prime}. We show $\eta\left(B^{\prime}\right)=X \backslash \eta B . B \cap B^{\prime}=\emptyset$ so $\eta(B) \cap \eta\left(B^{\prime}\right)=\eta\left(B \cap B^{\prime}\right)=\emptyset$. Suppose $x \notin \eta B$. Then $B \notin \mathscr{U}_{x}$ and so there exists $K \in \mathscr{U}_{x}$ such that $B \cap K=\emptyset . K \subseteq B^{\prime}$ and hence $B^{\prime} \in \mathscr{U}_{x}$. Thus $x \in \eta\left(B^{\prime}\right)$. We have shown $\eta B \cap \eta\left(B^{\prime}\right)=\emptyset$ and $\eta B \cup \eta\left(B^{\prime}\right)=X$. Thus $\eta\left(B^{\prime}\right)=X \backslash \eta B$.

Suppose $A, B \in \mathscr{B}$ and there exists $z \in B$ such that $z \notin A$. If $A^{\prime} \cap B=\emptyset$, then $B \subseteq A^{\prime \prime}=A$, a contradiction. Thus there exists $x \in A^{\prime} \cap B . B \in \mathscr{U}_{x}$ and $A \notin \mathscr{U}_{x}$ (since $A^{\prime} \in \mathscr{U}_{x}$). Thus $x \in \eta B$ and $x \notin \eta A$. Hence, if $A \neq B$, then $\eta A \neq \eta B$.

We have shown that η is a one-to-one Boolean homomorphism of \mathscr{B} into the field of all subsets of X. If $x \in B$, then $B \in \mathscr{E}_{x}$, whence $B \in \mathscr{U}_{x}$, and $x \in \eta B$. Thus $\eta B \supseteq B$ for all $B \in \mathscr{B}$, and the proof is complete.

Now, let G be an l-subgroup of the cardinal product $\Pi_{x \in X} T_{x}$, where each T_{x} is a totally-ordered group, and let \mathscr{F} be a field of subsets of X. Suppose $h \in \Pi T_{x}$ is such that for some finite partition of X in \mathscr{F}, say F_{1}, \ldots, F_{n}, there exist $g_{i} \in G$ such that $h(x)=g_{i}(x)$ for all $x \in F_{i}(i=1, \ldots, n)$. We then write $h=\left[g_{i} \mid F_{i}\right]$, and we denote the set of all such h by $G[\mathscr{F}]$.

Lemma 1.2. $G[\mathscr{F}]$ is an l-subgroup of ΠT_{x} that contains G.
Proof. Suppose $h=\left[g_{i} \mid F_{i}\right]$ and $f=\left[g_{j} \mid F_{j}\right]$ are elements of $G[\mathscr{F}]$. Then $h-f=\left[g_{i}-g_{j} \mid F_{i} \cap F_{i}\right] \in G[\mathscr{F}]$ and $h \vee 0=\left[g_{i} \vee 0 \mid F_{i}\right] \in G[\mathscr{F}]$. Thus $G[\mathscr{F}]$ is an l-subgroup of ΠT_{x}. Also, if $g \in G$, then $g=[g \mid X] \in G[\mathscr{F}]$.

Lemma 1.3. For $F \in \mathscr{F}$ define $\varphi(F)=\{h \in G[\mathscr{F}] \mid S(h) \subseteq F\}$. Then $\varphi(F)$ is a cardinal summand of $G[\mathscr{F}]$; in fact,

$$
G[\mathscr{F}]=\varphi(F) \oplus \varphi(X \backslash F)
$$

Proof. Clearly $\varphi(F)$ and $\varphi(X \backslash F)$ are l-ideals of $G[\mathscr{F}]$, and $\varphi(F) \cap \varphi(X \backslash F)=0$. Suppose $h=\left[g_{i} \mid F_{i}\right] \in G[\mathscr{F}]$. Let $h_{1} \in \Pi T_{x}$ be such that $h_{1}(x)=g_{i}(x)$ for all
$x \in F \cap F_{i}$ and $h_{1}(x)=0$ for all $x \in(X \backslash F) \cap F_{i}$. Let $h_{2} \in \Pi T_{x}$ be such that $h_{2}(x)=g_{i}(x)$ for all $x \in(X \backslash F) \cap F_{i}$ and $h_{2}(x)=0$ for all $x \in F \cap F_{i}$. Then $h_{1}, h_{2} \in G[\mathscr{F}], h_{1} \in \varphi(F), h_{2} \in \varphi(X \backslash F)$, and $h=h_{1}+h_{2}$. Thus

$$
G[\mathscr{F}]=\varphi(F) \oplus \varphi(X \backslash F)
$$

Lemma 1.4. Let H be an l-subgroup of $\Pi_{y \in Y} T_{y}$, where each T_{y} is a totallyordered group, and let G be an l-subgroup of H. Suppose \mathscr{A} is a subalgebra of $\mathscr{P}(H)$ such that each $A \in \mathscr{A}$ is a summand of H. Then $\mathscr{F} *=\{S(A) \mid A \in \mathscr{A}\}$ is a field of subsets of $S(H)$, and $G\left[\mathscr{F}^{*}\right]$ is an l-subgroup of H.

Proof. We have $\emptyset=S(0) \in \mathscr{F} *$ and $S(H) \in \mathscr{F} *$. If A and B are convex l-subgroups of H, then $S(A \cap B)=S(A) \cap S(B)$. Also, since A is a summand of H, we have $S(A) \cup S\left(A^{\perp}\right)=S(H)$ and $S(A) \cap S\left(A^{\perp}\right)=\emptyset$. (Here ${ }^{\perp}$ denotes the polar operation in H.) Thus $\mathscr{F} *$ is a field of subsets of $S(H)$.

Let $g \in G$ and $F=S(A) \in \mathscr{F} *$. Let $f \in G\left[\mathscr{F}^{*}\right]$ be such that $f(x)=g(x)$ for all $x \in F$ and $f(x)=0$ for all $x \in X \backslash F=S\left(A^{\perp}\right)$. We can write $g=r+s$ where $r \in A$ and $s \in A^{\perp}$. Now $S(r) \subseteq S(A), S(s) \subseteq S\left(A^{\perp}\right)$, and $S(A) \cap S\left(A^{\perp}\right)=\emptyset$. Thus $r(x)=g(x)$ for all $x \in S(A)$ and $r(x)=0$ for all $x \in S\left(A^{\perp}\right)$. Thus $f=r \in H$, and since each element of $G[\mathscr{F} *]$ is the sum of finitely many elements like f, we conclude $G[\widetilde{F} *] \subseteq H$.
2. The $S P$-hull of an l-group. Let G be an l-subgroup of $\Pi_{x \in X} T_{x}$, where each T_{x} is a totally-ordered group. The map $J \rightarrow S(J)$ is a one-to-one inclusion preserving function of $\mathscr{P}(G)$ onto a collection \mathscr{B} of subsets of X; moreover, the inverse map is also inclusion-preserving. Thus \mathscr{B} is a Boolean algebra of subsets of X with respect to the partial-ordering of inclusion. If $I, J \in \mathscr{P}(G)$, then $S(I) \cap S(J)=S(I \cap J) \in \mathscr{B}$; also, $\emptyset=S(0) \in \mathscr{B}$. Thus by Lemma 1.1 there exists a Boolean isomorphism η of \mathscr{B} onto a field \mathscr{F} of subsets of X. We will prove $G[\mathscr{F}]$ is the $S P$-hull of G.

Lemma 2.2. If $g \in G, J \in \mathscr{P}(G)$, and $S(g) \cap S(J)=\emptyset$, then $S(g) \cap \eta S(J)=\emptyset$.
Proof. $S(g) \cap S(J)=\emptyset$ implies $g^{\prime \prime} \cap J=0$, and hence $S\left(g^{\prime \prime}\right) \cap S(J)=\emptyset$. Thus $\eta S\left(g^{\prime \prime}\right) \cap \eta S(J)=\emptyset$. Since $S(g) \subseteq S\left(g^{\prime \prime}\right) \subseteq \eta S\left(g^{\prime \prime}\right)$ we conclude

$$
S(g) \cap \eta S(J)=\emptyset .
$$

Lemma 2.2. (i) If $h \in G[\mathscr{F}], J \in \mathscr{P}(G)$, and $S(h) \cap S(J)=\emptyset$, then

$$
S(h) \cap \eta S(J)=\emptyset .
$$

(ii) If $0<h \in G[\mathscr{F}]$, there exists $g \in G$ with $0<g \leqq h$.

Proof. Suppose $z \in S(h) \cap \eta S(J)$. Let $F_{1} \in \mathscr{F}$ and $g_{1} \in G$ be such that $z \in F_{1} \subseteq \eta S(J)$ and $h(x)=g_{1}(x)$ for all $x \in F_{1} . F_{1}=\eta S\left(J_{1}\right)$ for some $J_{1} \in \mathscr{P}(G)$. We have $z \in S\left(g_{1}\right) \cap F_{1}$, so by Lemma $2.1 S\left(g_{1}\right) \cap S\left(J_{1}\right) \neq \emptyset$. Since $g_{1}(x)=h(x)$ for all $x \in S\left(J_{1}\right)$, we conclude $S(h) \cap S\left(J_{1}\right) \neq \emptyset$. Thus since $S\left(J_{1}\right) \subseteq S(J)$ we have $S(h) \cap S(J) \neq \emptyset$, and (i) is proved.

Now let $h>0$. Since $S\left(g_{1}\right) \cap S\left(J_{1}\right) \neq \emptyset$, there exists $0<k \in J_{1}$ with $S\left(g_{1}\right) \cap S(k) \neq \emptyset$. Let $g=\left|g_{1}\right| \wedge k$. Then $0<g \leqq h$, and (ii) is proved.

Lemma 2.3. Let $J \in \mathscr{P}(G)$ and $F=\eta S(J)$. Let $\varphi(F)=\{h \in G[\mathscr{F}] \mid S(h) \subseteq F\}$. Then $\varphi(F)=J^{\prime \perp}$ (where ${ }^{\perp}$ denotes the polar operation in $\left.G[\mathscr{F}]\right)$.

Proof. Let $h \in \varphi(F)$ and $g \in J^{\prime}$. Then $S(g) \cap S(J)=\emptyset$, so by Lemma 2.1, $S(g) \cap F=\emptyset$. Thus $S(g) \cap S(h)=\emptyset$, and $|g| \wedge|h|=0$. That is, $h \in J^{\prime \perp}$.

Now suppose $h \in G[\mathscr{F}]$ and $h \notin \varphi(F)$. Then $h(x) \neq 0$ for some $x \in X \backslash F=$ $\eta S\left(J^{\prime}\right)$. Thus by Lemma 2.2(i), $S(h) \cap S\left(J^{\prime}\right) \neq \emptyset$. Thus $h \notin J^{\prime \perp}$.

Theorem 2.4. $G[\mathscr{F}]$ is the $S P$-hull of G.
Proof. By Lemma 1.2, $G[\mathscr{F}]$ is an l-group, and G is an l-subgroup of $G[\mathscr{F}] . G$ is a dense l-subgroup of $G[\mathscr{F}]$ by Lemma $2.2($ ii). Thus each polar in $G[\mathscr{F}]$ is of the form $J^{\prime \perp}$ where $J \in \mathscr{P}(G)$. Thus by Lemma 2.3 and Lemma 1.3, $G[\mathscr{F}]$ is $S P$.

Suppose now that K is an l-subgroup of $G[\mathscr{F}]$ containing G and that K is an $S P$-group. Let * denote the polar operation in K. Then $J^{* *}$ is a summand of K for all $J \in \mathscr{P}(G)$. Thus $S\left(J^{* *}\right) \cup S\left(J^{*}\right)=S(K)=S(G[\mathscr{F}])$. (Note $S(G) \subseteq S(K) \subseteq S(G[\mathscr{F}])=S(G)$.) Since $G[\mathscr{F}]$ is an essential extension of G, it is also an essential extension of K, and thus $J^{* *} \subseteq J^{* * \perp \perp} \subseteq J^{\perp \perp}$ and $J^{*} \subseteq J^{* \perp}=J^{\perp}$. Thus $S\left(J^{* *}\right) \subseteq S\left(J^{\perp \perp}\right)$ and $S\left(J^{*}\right) \subseteq S\left(J^{\perp}\right)$. But $S\left(J^{\perp \perp}\right) \cap$ $S\left(J^{\perp}\right)=\emptyset$. Thus $S\left(J^{* *}\right)=S\left(J^{\perp \perp}\right)$ and $S\left(J^{*}\right)=S\left(J^{\perp}\right)$.

Now if $g \in G$ and $J \in \mathscr{P}(G)$, we can write $g=r+s$ where $r \in J^{* *}$ and $s \in J^{*}$. We have then $r(x)=g(x)$ for all $x \in S\left(J^{\perp \perp}\right)=S\left(J^{* *}\right)$, and $r(x)=0$ for all $x \in X \backslash S\left(J^{\perp}\right)$. Also, $S\left(J^{\perp}\right)=\eta S(J) \in \mathscr{F}$. Thus $r \in G[\mathscr{F}]$. But each element of $G[\widetilde{F}]$ is the sum of finitely many elements like r. Thus $K=G[\widetilde{\mathscr{F}}]$, and $G[\mathscr{F}]$ is an $S P$-hull of G.

Theorem 2.5. Suppose G is an l-subgroup of an l-group M such that
(i) M is $S P$,
(ii) if N is $S P$ and N is an l-subgroup of M containing G, then $N=M$, and
(iii) there exists a Boolean isomorphism τ of $\mathscr{P}(G)$ onto $\mathscr{P}(M)$ such that $J \subseteq \tau(J)$ for all $J \in \mathscr{P}(G)$.
Then there exists an l-isomorphism β of $G[\mathscr{F}]$ onto M such that $\beta(g)=g$ for all $g \in G$.

Proof. Let M be an l-subgroup of $\prod_{y \in Y} T_{y}$, where each T_{y} is a totallyordered group, and $S(M)=Y$. Then $\mathscr{F} *=\{S(K) \mid K \in \mathscr{P}(M)\}$ is a field of subsets of Y since M is $S P$. Let $\mathscr{B}^{*}=\{S(J) \mid J \in \mathscr{P}(G)\}$, where here we take $S(J)$ as a subset of Y. Define $\eta^{*}: \mathscr{B}^{*} \rightarrow \mathscr{F}^{*}$ by $\eta^{*}(S(J))=S(\tau(J))$. Then η^{*} is a surjective Boolean isomorphism and $S(J) \subseteq \eta^{*} S(J)$. By Theorem 2.4, $G\left[\mathscr{F}^{*}\right]$ is an $S P$-hull of G. By Lemma $1.4 G[\mathscr{F} *]$ is an l-subgroup of M. Thus $G[\mathscr{F} *]=M$.

Now define $\beta: G[\mathscr{F}] \rightarrow G[\mathscr{F} *]$ by $\beta\left[g_{i} \mid \eta S\left(J_{i}\right)\right]=\left[g_{i} \mid \eta^{*} S\left(J_{i}\right)\right]$. We show that β is a well-defined function.

Suppose $\left[g_{i} \mid \eta S\left(J_{i}\right)\right]=[0 \mid X]=0$. Then $S\left(g_{i}\right) \cap \eta S\left(J_{i}\right)=\emptyset$, and thus $S\left(g_{i}{ }^{\prime \prime}\right) \cap S\left(J_{i}\right)=\emptyset$, and $g_{i}{ }^{\prime \prime} \cap J_{i}=0$. Hence $S\left(g_{i}{ }^{\prime \prime}\right) \cap \eta^{*} S\left(J_{i}\right)=\emptyset$, and thus $S\left(g_{i}\right) \cap \eta^{*} S\left(J_{i}\right)=\emptyset$. Since this is true for each i, we conclude that

$$
\left[g_{i} \mid \eta^{*} S\left(J_{i}\right)\right]=[0 \mid X]=0
$$

Now suppose $\left[g_{i} \mid \eta S\left(J_{i}\right)\right]=\left[g_{j} \mid \eta S\left(J_{j}\right)\right]$. Then

$$
\left[g_{i}-g_{j} \mid \eta S\left(J_{i} \cap J_{j}\right)\right]=\left[g_{i}-g_{j} \mid \eta S\left(J_{i}\right) \cap \eta S\left(J_{j}\right)\right]=[0 \mid X] .
$$

Thus $\left[g_{i}-g_{j} \mid \eta^{*} S\left(J_{i} \cap J_{j}\right)\right]=[0 \mid Y]$ and hence $\left[g_{i} \mid \eta^{*} S\left(J_{i}\right)\right]=\left[g_{j} \mid \eta^{*} S\left(J_{j}\right)\right]$.
Thus β is well-defined. It is readily verified that β is a surjective l-homomorphism. We show it is an isomorphism. Suppose $\left[g_{i} \mid \eta S\left(J_{i}\right)\right] \neq 0$. Then $S\left(g_{i}\right) \cap \eta S\left(J_{i}\right) \neq \emptyset$ for some i, and hence $S\left(g_{i}\right) \cap S\left(J_{i}\right) \neq \emptyset$, using Lemma 2.1. Thus $S\left(g_{i}\right) \cap \eta^{*} S\left(J_{i}\right) \neq \emptyset$ and hence $\beta\left[g_{i} \mid \eta S\left(J_{i}\right)\right] \neq 0$.

Finally, $\beta(g)=\beta[g \mid X]=\beta[g \mid \eta S(G)]=\left[g \mid \eta^{*} S(G)\right]=[g \mid Y]=g$ for all $g \in G$. This completes the proof of Theorem 2.5.

If M is an $S P$-hull of G, then the hypotheses of Theorem 2.5 are satisfied with $\tau(J)=J^{\prime \perp}$. It follows that G has a unique $S P$-hull (up to isomorphism over G). Following [6] we denote the $S P$-hull of G by $G^{S P}$.

Our model of the $S P$-hull makes many of its properties almost self-evident. We list these below as corollaries. Many have appeared in one form or another at various places in the literature.

Corollary 2.6. If G is an l-subgroup of a cardinal product ΠR_{x} of copies of the real numbers R, then $G^{S P}$ is an l-subgroup of the same cardinal product. (c.f., [9, Theorem 3.3].)

Corollary 2.7. If $0<h \in G^{S P}$, then there exist $g, \bar{g} \in G$ such that $0<g \leqq$ $h \leqq \bar{g}$. In particular, if G is archimedean, then so is $G^{S P}$.

Proof. By Lemma 2.2 (ii) there exists $g \in G$ with $0<g \leqq h$. Write $h=\left[g_{i} \mid F_{i}\right] \in G[\mathscr{F}]$, in the notation of Section 1, and let $\bar{g}=\vee g_{i}$. Then $h \leqq \bar{g}$.

Corollary 2.8. If G is divisible (respectively, a vector lattice, an f-ring) then so is $G^{S P}$. If G belongs to an equationally-closed class \mathscr{C} of l-groups, then so does $G^{S P}$.

Proof. Only the case that G is divisible is treated here; the proofs of the remaining assertions are similar.

Suppose G is divisible. We can view G as an l-subgroup of $\Pi M_{\epsilon}[\mathscr{M}] G / M$ where each $M \in \mathscr{M}$ is a minimal prime subgroup of G (and hence G / M is a totallyordered group). Suppose $h=\left[g_{i} \mid F_{i}\right] \in G[\mathscr{F}]$ and n is a positive integer. There exists $f_{i} \in G$ such that $n f_{i}=g_{i}$. Now $\bar{h}=\left[f_{i} \mid F_{i}\right] \in G[\mathscr{F}]$ and $n \bar{h}=\left[n f_{i} \mid F_{i}\right]=h$. Thus $G[\mathscr{F}]=G^{S P}$ is divisible.

An l-group with the property that each of its l-epimorphic images is archimedean will be called hyperarchimedean. It is proved in [8, p. 2.17] that G is hyperarchimedean if and only if G is (isomorphic to) an l-subgroup of a cardinal product ΠR_{x}, where each R_{x} is a copy of the real numbers, such that if $0<g, \bar{g} \in G$ there exists a positive integer n such that $n \bar{g}(x)>g(x)$ whenever $\bar{g}(x) \neq 0$.

Corollary 2.9. If G is hyperarchimedean, then so is $G^{S P}$.
Proof. Let G be represented as in the preceding paragraph. Let $0<h, \bar{h} \in G[\mathscr{F}]$. Write $h=\left[g_{i} \mid F_{i}\right], \bar{h}=\left[g_{j} \mid F_{j}\right]$. There exists an integer $n_{i j}$ such that $n_{i j} g_{j}(x)>$ $g_{i}(x)$ whenever $g_{j}(x) \neq 0$. Let n be the largest of the $n_{i j}$. Then $n \bar{h}(x)>h(x)$ whenever $\bar{h}(x) \neq 0$. Thus $G^{S P}$ is hyperarchimedean.

Example. Let G be the l-subgroup of $\prod_{n \in N} R_{n}$ consisting of all eventually constant real sequences. (Here N denotes the natural numbers.) Then $\mathscr{B}=\{S(J) \mid J \in \mathscr{P}(G)\}$ consists of all subsets of N. Thus the map η in Lemma 1.1 can be taken to be the identity, and hence by Theorem $2.4 G^{s P}$ is the l-group of all real sequences which have finite range. $G^{S P}$ is hyperarchimedean. However, the Dedekind completion of G is the l-group of all bounded real sequences, and this is not hyperarchimedean.

Corollary 2.10. Suppose H is an essential extension of G, and H is an SPgroup. Suppose H is an l-subgroup of a cardinal product $\Pi_{y \in Y} T_{y}$ of a totallyordered groups T_{y}. Then $\mathscr{F}^{*}=\{S(J) \mid J \in \mathscr{P}(H)\}$ is a field of subsets of $S(H)$, and $G\left[\mathscr{F}^{*}\right]$ is the SP-hull of G.

Proof. This was proved in the first paragraph of the proof of Theorem 2.5.
Example. Suppose H is the l-group of all continuous almost-finite extended-real-valued functions on an extremally disconnected compact Hausdorff space Y, and H is an essential extension of G. Then $\mathscr{F} *$ is the collection of regular open subsets of Y, and $G\left[\mathscr{F}^{*}\right]$ is the $S P$-hull of G by Corollary 2.10.

Corollary 2.10 can be generalized somewhat. Suppose G is an l-subgroup of H. Let us say H is a weak-essential extension of G if $\left(J+J^{\prime}\right)^{\perp}=0$ for all $J \in \mathscr{P}(G)$. (Here ${ }^{\perp}$ denotes polar in H.) H is a weak-essential extension of G if and only if the map $J \rightarrow J^{\perp \perp}$ is a Boolean isomorphism of $\mathscr{P}(G)$ into $\mathscr{P}(H)$. [5, Theorem 4.1.] It is clear that each essential extension of G is a weakessential extension of G.

Corollary 2.11. Suppose H is a weak-essential extension of G, and H is an $S P$-group. Then $G^{S P}$ is an l-subgroup of H.

Proof. Represent H as an l-subgroup of $\prod_{y \in Y} T_{y}$, where each T_{y} is a totallyordered group, and $S(H)=Y$. Let $\mathscr{B}^{*}=\{S(J) \mid J \in \mathscr{P}(G)\}$, where here $S(J)$ is taken in Y. Let $\eta S(J)=S\left(J^{\prime \perp}\right)$. Then η is a Boolean isomorphism onto a field of subsets of Y, and $\eta S(J) \supseteq S(J)$ for all $J \in \mathscr{P}(G)$. Thus $G\left[\mathscr{F}^{*}\right]=G^{s P}$ by Theorem 2.4. By Lemma 1.4, $G\left[\mathscr{F}^{*}\right]$ is an l-subgroup of H.

Remark. Suppose $G \in \mathscr{P}(H)$. Then $J \in \mathscr{P}(G)$ if and only if $J \in \mathscr{P}(H)$ and $J \subseteq G$. It follows by an argument similar to that for Corollary 2.11 that $G^{S P}$ is an l-subgroup of $H^{S P}$.
3. Further properties of the $S P$-hull. In the first three lemmas in this section, G and H are l-groups which need not be representable, and ${ }^{\perp}$ denotes the polar operation in H.

Lemma 3.1. Let $\alpha: G \rightarrow H$ be a surjective l-homomorphism. If S is a subset of G such that $\operatorname{ker} \alpha \subseteq S^{\prime}$, then $\alpha\left(S^{\prime}\right)=\alpha(S)^{\perp}$. If $J \in \mathscr{P}(G)$ and $J \supseteq \operatorname{ker} \alpha$, then $\alpha(J)=\left(\alpha\left(J^{\prime}\right)\right)^{\perp}$, an element of $\mathscr{P}(H)$.

Proof. Suppose $h \in \alpha\left(S^{\prime}\right)$. Then $h=\alpha f$ for some $f \in S^{\prime}$, and $f \wedge s=0$ for all $s \in S$. Thus $h \wedge \alpha s=0$ for all $s \in S$, and hence $h \in \alpha(S)^{\perp}$.

On the other hand, suppose $h \in \alpha(S)^{\perp}$. Then $h=\alpha g$ for some $g \in G$, and $\alpha g \wedge \alpha s=0$ for all $s \in S$. Thus $g \wedge s \in \operatorname{ker} \alpha$ and hence by hypothesis $g \wedge s \in S^{\prime}$. Thus $(g \wedge s) \wedge s=0$ for all $s \in S$, and thus $g \in S^{\prime}$. Thus $h \in \alpha\left(S^{\prime}\right)$.

The last statement in the lemma follows by taking $\mathrm{S}=J^{\prime}$. Then $S^{\prime}=J^{\prime \prime}=J$, and hence $\alpha(J)=\alpha\left(J^{\prime}\right)^{\perp}$.

Lemma 3.2. Let $\alpha: G \rightarrow H$ be a surjective l-homorphism such that $\operatorname{ker} \alpha \in \mathscr{P}(G)$. If $K \in \mathscr{P}(H)$, then $\alpha^{-1}(K)=\{g \in G \mid \alpha g \in K\}$ is an element of $\mathscr{P}(G)$.

Proof. $K=\alpha(S)^{\perp}$ for some subset S of G. Let $A=\operatorname{ker} \alpha$, and let $D=\left\{s \wedge b \mid s \in S\right.$ and $\left.b \in A^{\prime}\right\}$. The sentences that follow are equivalent (using $A=A^{\prime \prime}$ to get from the fifth to the fourth). $g \in \alpha^{-1}(K) . \alpha g \in K . \alpha g \wedge \alpha s=0$ for all $s \in S . g \wedge s \in A$ for all $s \in S . g \wedge s \wedge b=0$ for all $s \in S$ and $b \in A^{\prime} . g \in D^{\prime}$.

Thus $\alpha^{-1}(K)=D^{\prime}$ is a polar in G.
Lemma 3.3. Let $\alpha: G \rightarrow H$ be a surjective l-homorphism such that ker $\alpha \in \mathscr{P}(G)$. Define $\bar{\alpha}: \mathscr{P}(G) \rightarrow \mathscr{P}(H)$ by $\bar{\alpha}(J)=\alpha(J \nabla \operatorname{ker} \alpha)$. Then $\bar{\alpha}$ is a surjective Boolean homorphism.

Proof. Let $\mathscr{A}=\{I \in \mathscr{P}(G) \mid I \supseteq \operatorname{ker} \alpha\}$. Then \mathscr{A} is a Boolean algebra with ker α as least element. The map $J \rightarrow J \nabla \mathrm{ker} \alpha$ is a Boolean homomorphism of $\mathscr{P}(G)$ onto \mathscr{A}. Also, by Lemmas 3.1 and 3.2, the map $I \rightarrow \alpha(I)$ is a Boolean isomorphism of \mathscr{A} onto $\mathscr{P}(H)$. Thus $\bar{\alpha}$ is a surjective Boolean homorphism.

Theorem 3.4. Suppose G and H are representable l-groups, and $\alpha: G \rightarrow H$ is a surjective l-homomorphism such that $\operatorname{ker} \alpha \in \mathscr{P}(G)$. Then there exists a surjective l-homomorphism $\beta: G^{S P} \rightarrow H^{S P}$ such that $\beta g=\alpha g$ for all $g \in G$.

Proof. Let G be an l-subgroup of $\Pi_{x \in X} T_{x}$, where each T_{x} is a totally-ordered group. Let $\mathscr{B}=\{S(J) \mid J \in \mathscr{P}(G)\}$, and let $\eta: \mathscr{B} \rightarrow \mathscr{F}$ be as in Lemma 1.1. Then $G^{S P}=G[\mathscr{F}]$ by Theorem 2.4.

Similarly, let H be an l-subgroup of $\prod_{y \in Y} T_{y}$, where each T_{ν} is a totallyordered group. Let $\mathscr{B}^{*}=\{S(K) \mid K \in \mathscr{P}(H)\}$, and let $\eta^{*}: \mathscr{B}^{*} \rightarrow \mathscr{F}^{*}$ be as in Lemma 1.1. Again, $H^{S P}=H[\mathscr{F} *]$ by Theorem 2.4.

Let $\bar{\alpha}$ be as in Lemma 3.3. Define $\beta: G[\mathscr{F}] \rightarrow H[\mathscr{F} *]$ by $\beta\left[g_{i} \mid \eta S\left(J_{i}\right)\right]=$ $\left[\alpha g_{i} \mid \eta^{*} S\left(\bar{\alpha}\left(J_{i}\right)\right)\right]$. We show that β is well-defined. For this, as in the proof of Theorem 2.5, it is enough to show that if $\left[g_{i} \mid \eta S\left(J_{i}\right)\right]=0$, then

$$
\left[\alpha g_{i} \mid \eta^{*} S\left(\bar{\alpha}\left(J_{i}\right)\right)\right]=0 .
$$

Suppose $\left[g_{i} \mid \eta S\left(J_{i}\right)\right]=0$. Then $g_{i}{ }^{\prime \prime} \cap J_{i}=0$, and hence

$$
\left(g_{i}^{\prime \prime} \nabla \operatorname{ker} \alpha\right) \cap\left(J_{i} \nabla \operatorname{ker} \alpha\right)=\operatorname{ker} \alpha,
$$

and hence $\alpha\left(g_{i}{ }^{\prime \prime} \boldsymbol{\nabla}\right.$ ker $\left.\alpha\right) \cap \alpha\left(J_{i} \nabla \operatorname{ker} \alpha\right)=0$. Now, $\alpha\left(g_{i}{ }^{\prime \prime} \nabla\right.$ ker $\left.\alpha\right)$ is a polar in H by Lemma 3.1, and αg_{i} is an element of $\alpha\left(g_{i}{ }^{\prime \prime} \boldsymbol{\nabla}\right.$ ker $\left.\alpha\right)$. Hence $\left(\alpha g_{i}\right)^{\Perp} \subseteq \alpha\left(g_{i}{ }^{\prime \prime} \nabla \operatorname{ker} \alpha\right)$ and thus $\left(\alpha g_{i}\right)^{\perp} \cap \alpha\left(J_{i} \nabla\right.$ ker $\left.\alpha\right)=0$. Therefore $S\left(\left(\alpha g_{i}\right)^{\perp \perp}\right) \cap S\left(\alpha\left(J_{i} \nabla \operatorname{ker} \alpha\right)\right)=\emptyset$, and hence by Lemma 2.2,

$$
S\left(\alpha g_{i}\right) \cap \eta^{*} S\left(\alpha\left(J_{i} \nabla \operatorname{ker} \alpha\right)\right)=\emptyset
$$

Thus $\left[\alpha g_{i} \mid \eta^{*} S\left(\alpha\left(J_{i} \nabla \operatorname{ker} \alpha\right)\right)\right]=0$, and β is well-defined.
It is easily verified that β is an l-homomorphism. To see that β is surjective, it is enough to note that α is surjective and that each finite partition of Y in $\mathscr{F} *$ is the image of a finite partition of X in \mathscr{F}. The latter is true because each finite partition of H in $\mathscr{P}(H)$ is the image under $\bar{\alpha}$ of some finite partition of G in $\mathscr{P}(G)$. (This is an elementary fact about Boolean algebras.)

Finally, if $g \in G$, then

$$
\beta g=\beta[g \mid X]=\beta[g \mid \eta S(G)]=\left[\alpha g \mid \eta^{*} S(\bar{\alpha} G)\right]=\left[\alpha g \mid \eta^{*} S(H)\right]=[\alpha g \mid Y]=\alpha g
$$

Theorem 3.5. If $A \in \mathscr{P}(G)$, then $G^{S P} \simeq(G / A)^{S P} \oplus\left(G / A^{\prime}\right)^{S P}$.
Proof. Let $G \subseteq \Pi_{x \in X} T_{x}, \eta$, and \mathscr{F} be as in the construction of $G^{S P}$ in Section 2, and let $F=\eta S\left(A^{\prime}\right)$. Denote by $\left.g\right|_{F}$ the element of $\Pi_{x \in F} T_{x}$ such that $\left.g\right|_{F}(x)=g(x)$ for all $x \in F$. Then $L=\left\{\left.g\right|_{F} \mid g \in G\right\}$ is an l-subgroup of $\Pi_{x \in F} T_{x}$ and $\alpha: G \rightarrow L$ by $\alpha g=\left.g\right|_{F}$ is a surjective l-homomorphism. If $g \in A$, then $S(g) \cap S\left(A^{\prime}\right)=\emptyset$, and so by Lemma $2.2, S(g) \cap F=\emptyset$, and hence $g \in \operatorname{ker} \alpha$. Moreover, if $g \in \operatorname{ker} \alpha$, then $S(g) \cap F=\emptyset$, and thus $S(g) \cap S\left(A^{\prime}\right)=\emptyset$ and $g \in A^{\prime \prime}=A$. Thus $L \simeq G / \operatorname{ker} \alpha=G / A$.

By Lemmas 3.1 and 3.2 the polars in L are of the form αJ where $J \in \mathscr{P}(G)$ and $J \supseteq A$. Let $\mathscr{B}^{*}=\{S(\alpha(J)) \mid J \in \mathscr{P}(G)$ and $J \supseteq A\}$ and $\mathscr{F} *=\{E \in \mathscr{F} \mid E \subseteq F\}$. Define $\eta^{*}: \mathscr{B}^{*} \rightarrow \mathscr{F}^{*}$ by $\eta^{*}(S(\alpha J))=\eta S(J) \cap \eta S\left(A^{\prime}\right)$. If $E \in \mathscr{F}^{*}$, then $(X \backslash E) \cap F \in \mathscr{F}$, and hence there exists $C \in \mathscr{P}(G)$ such that $\eta S(C)=$ $(X \backslash E) \cap F . C \subseteq A^{\prime}$ since $\eta S(C) \subseteq \eta S\left(A^{\prime}\right)=F$. Thus $C^{\prime} \supseteq A^{\prime \prime}=A$, and

$$
\left.\eta^{*} S\left(\alpha\left(C^{\prime}\right)\right)=\eta S\left(C^{\prime}\right) \cap F=(X \backslash \eta S(C)) \cap F=(X \backslash(X \backslash E) \cap F)\right) \cap F=E
$$

since $E \subseteq F$. Thus η^{*} is a surjective function. Also, it is clear that η^{*} preserves inclusion.

Suppose $I, J \in \mathscr{P}(G), I \supseteq A, J \supseteq A$, and that $\eta^{*} S(\alpha I) \subseteq \eta^{*} S(\alpha J)$. Then $\eta S\left(I \cap A^{\prime}\right)=\eta\left(S(I) \cap S\left(A^{\prime}\right)\right)=\eta S(I) \cap \eta S\left(A^{\prime}\right)=\eta^{*} S(\alpha I) \subseteq \eta^{*} S(\alpha J)=$ $\eta S\left(J \cap A^{\prime}\right)$, and thus $I \cap A^{\prime} \subseteq J \cap A^{\prime}$. Now since $I \supseteq A$ and $J \supseteq A$, we have $I=A \nabla I=(A \nabla I) \cap\left(A \nabla A^{\prime}\right)=A \nabla\left(I \cap A^{\prime}\right) \subseteq A \nabla\left(J \cap A^{\prime}\right)=J$.
It follows that η^{*} is one-to-one and that its inverse preserves inclusion.
Thus η^{*} is a Boolean isomorphism of \mathscr{B}^{*} onto \mathscr{F}^{*}. Hence

$$
(G / A)^{S P} \simeq L^{S P} \simeq L\left[\mathscr{F}^{*}\right]
$$

by Theorem 2.4. $L\left[\mathscr{F}^{*}\right]$ can be identified with $\varphi(F)=\{h \in G[\mathscr{F}] \mid S(h) \subseteq F\}$. Similarly, $\left(G / A^{\prime}\right)^{S P}$ is isomorphic to $\varphi(X \backslash F)$. By Lemma 1.3 we conclude $G[\mathscr{F}]=\varphi(F) \oplus \varphi(X \backslash F) \simeq(G / A)^{S P} \oplus\left(G / A^{\prime}\right)^{S P}$.
4. The P-hull of an l-group. In this section we generalize the results of Section 2, and we consider the P-hull of an l-group.

We assume G is an l-subgroup of $\prod_{x \in X} T_{x}$, where each T_{x} is a totally-ordered group, and that \mathscr{A} is a subalgebra of $\mathscr{P}(G)$ such that, for each $g \in G, g^{\prime \prime}$ is an element of \mathscr{A}. We let $\mathscr{C}=\{S(A) \mid A \in \mathscr{A}\}$ and let $\eta: \mathscr{C} \rightarrow \mathscr{E}$ be a Boolean isomorphism onto a field \mathscr{E} of subsets of X (as in Lemma 1.1). $G[\mathscr{E}]$ is an l-subgroup of ΠT_{x} by Lemma 1.2.

Theorem 4.1. G is a dense l-subgroup of $G[\mathscr{E}]$, and if $A \in \mathscr{A}$, then $A^{\perp \perp}$ is a summand of $G[\mathscr{E}]$. If H is an l-subgroup of G containing G which has the property that $A^{\prime *}$ is a summand of H for each $A \in \mathscr{A}$, then $H=G[\mathscr{E}]$. (Here ${ }^{\perp}$ denotes polar in $G[\mathscr{E}]$, and * denotes polar in H.) Moreover, these properties characterize $G[\mathscr{E}]$ up to isomorphism over G.

The interested reader can without difficulty modify the proofs of Theorems 2.4 and 2.5 to obtain a proof of Theorem 4.1.

Theorem 4.2. $G[\mathscr{E}]$ is a P-group.
Proof. Let $E \in \mathscr{E}$ and $g \in G$. Let $k \in G[\mathscr{E}]$ be given by $k(x)=g(x)$ if $x \in E$ and $k(x)=0$ if $x \in X \backslash E$. We show $k^{\perp}=\varphi\left(E \cap \eta S\left(g^{\prime \prime}\right)\right)$ from which it follows by Lemma 1.3 that k^{\perp} is a summand of $G[\mathscr{E}]$.

Let $0<f \in k^{\perp \perp}$. Then $f \wedge r=0$ for all $r \in k^{\perp}$. Suppose that there exists $z \in(X \backslash E) \cap S(f)$. Let $r \in G[\mathscr{E}]$ be given by $r(x)=f(x)$ for all $x \in X \backslash E$ and $r(x)=0$ for all $x \in E$. Then $r \in k^{\perp}$ but $f \wedge r>0$. We conclude from this contradiction that $S(f) \subseteq E$. Also, $k^{\perp} \subseteq g^{\perp \perp}=g^{\prime \perp}$, and hence $S(f) \subseteq S\left(g^{\prime \perp}\right)=$ $\eta S\left(g^{\prime \prime}\right)$. Thus $S(f) \subseteq E \cap \eta S\left(g^{\prime \prime}\right)$, and $f \in \varphi\left(E \cap \eta S\left(g^{\prime \prime}\right)\right)$.

On the other hand, suppose $0<f \notin k^{\perp \perp}$. Then there exists $r \in k^{\perp}$ with $k \wedge r>0$. We have $S(r) \cap E \cap S(g)=\emptyset$. Let $E=\eta S(J)$ where $J \in \mathscr{P}(G)$. Then $S(r) \cap S(J) \cap S(g)=\emptyset$, and hence $S(r) \cap S(J) \cap S\left(g^{\prime \prime}\right)=\emptyset$. Thus $S(r) \cap S\left(J \cap g^{\prime \prime}\right)=\emptyset$, and hence

$$
\begin{array}{r}
S(r) \cap E \cap \eta S\left(g^{\prime \prime}\right)=S(r) \cap \eta S(J) \cap \eta S\left(g^{\prime \prime}\right)=S(r) \cap \eta\left(S(J) \cap S\left(g^{\prime \prime}\right)\right)= \\
S(r) \cap \eta S\left(J \cap g^{\prime \prime}\right)=\emptyset
\end{array}
$$

where the last equality is by (the appropriate analogue to) Lemma 2.2. Since $k \wedge r>0$ we conclude there exists $x \in X \backslash\left(E \cap \eta S\left(g^{\prime \prime}\right)\right)$ such that $k(x) \neq 0$. Thus $k \notin \varphi\left(E \cap \eta S\left(g^{\prime \prime}\right)\right)$.

Finally, if $0<h \in G[\mathscr{E}]$, then $h=k_{1} \vee \ldots \vee k_{n}$ where each k_{i} is like k in the preceding paragraphs. Thus h^{\Perp} is the join in $\mathscr{P}(G[\mathscr{E}])$ of $k_{1} \Perp, \ldots, k_{n} \Perp$. Since the cardinal summands of an l-group H always form a subalgebra of $\mathscr{P}(H)$, we conclude h^{\perp} is a summand of $G[\mathscr{E}]$.

Theorem 4.3. If \mathscr{A} is the subalgebra of $\mathscr{P}(G)$ generated by $\left\{g^{\prime \prime} \mid g \in G\right\}$, then $G[\mathscr{E}]$ is the P-hull of G.

Remark. The possibility of using the subalgebra of $\mathscr{P}(G)$ generated by $\left\{g^{\prime \prime} \mid g \in G\right\}$ to produce the P-hull of G was first utilized by D. Chambless [4] in his direct limit construction.

Proof of Theorem 4.3. G is a dense l-subgroup of $G[\mathscr{E}]$ by Theorem 4.1, and by Theorem $4.2 G[\mathscr{E}]$ is a P-group.

Suppose now that K is an l-subgroup of $G[\mathscr{E}]$ containing G and that K is a P-group. Let \mathscr{A}_{1} be the subalgebra of $\mathscr{P}(K)$ generated by $\left\{g^{* *} \mid g \in G\right\}$, and \mathscr{A}_{2} the subalgebra of $\mathscr{P}(G[\mathscr{E}])$ generated by $\left\{g^{\perp \perp} \mid g \in G\right\}$. (* denotes polar in K, and ${ }^{\perp}$ denotes polar in $G[\mathscr{E}]$.)

Since $G[\mathscr{E}]$ and K are essential extensions of G, the maps $A \mapsto A^{\perp \perp}$ and $A \mapsto A^{* *}$ are Boolean isomorphisms of \mathscr{A} onto \mathscr{A}_{2} and \mathscr{A}_{1}, respectively. Since $G[\mathscr{E}]$ is a P-group, we conclude that A^{\perp} is a summand of $G[\mathscr{E}]$ for all $A \in \mathscr{A}$. Similarly, $A^{* *}$ is a summand of K for all $A \in \mathscr{A}$.

One can now imitate the argument in the body of the proof of Theorem 2.4 and get $K=G[\mathscr{E}]$. Thus $G[\mathscr{E}]$ is a P-hull of G.

Theorem 4.4. Let \mathscr{A} and \mathscr{E} be as in Theorem 4.3. If M is a P-hull of G, then there exists an l-group isomorphism β of $G[\mathscr{E}]$ onto M with $\beta g=g$ for all $g \in G$. Thus G has a unique P-hull.

Proof. Let M be an l-subgroup of $\prod_{y \in Y} T_{y}$, where each T_{y} is a totally-ordered group, and $S(M)=Y$. Let $\mathscr{C}^{*}=\{S(A) \mid A \in \mathscr{A}\}$, where $S(A) \mathbf{i}$ s taken in Y. The map μ by $\mu(A)=A^{\perp \perp}$ is a Boolean isomorphism of \mathscr{A} into $\mathscr{P}(M)$. Also, $\mu\left(g^{\prime \prime}\right)=g^{\prime \prime \Perp}=g^{\Perp}$ is a summand of M for all $g \in G$, since M is a P-group. Thus $A^{\perp \perp}$ is a summand of M for all $A \in \mathscr{A}$, and hence $\mathscr{E}^{*}=\left\{S\left(A^{\perp}\right) \mid A \in \mathscr{A}\right\}$ is a field of subsets of Y. Now $\eta^{*}: \mathscr{C}^{*} \rightarrow \mathscr{E}^{*}$ by $\eta^{*}(S(A))=S\left(A^{\perp 1}\right)$ is a surjective Boolean isomorphism and $C \subseteq \eta^{*} C$ for all $C \in \mathscr{C}^{*}$. By Theorem 4.3, $G\left[\mathscr{E}^{*}\right]$ is a P-hull for G.

The remainder of the proof is exactly similar to the arguments used in proving Theorem 2.5.

The results in Section 2 extend easily to the general setting of this section. The same does not seem to be true for the results in Section 3.

Let G be an l-subgroup of a product of totally-ordered groups. The only nonconstructive step in our existence proofs for $G^{S P}$ and G^{P} is the proof of Lemma 1.1.

In cases where the map η of the Lemma can be produced constructively, we get a fairly concrete model of the P-hull or $S P$-hull. We give an example illustrating this possibility.

Example. The P-hull of the free vector lattice FVL2 on two generators.
Let $X=R^{2} \backslash\{0\}$ and let $W=\Pi_{x \in X} R_{x}$. (R denotes the real numbers; thus X is the plane punctured at the origin.) Then W is the vector lattice of all realvalued functions on X. By a cone in X we mean a subset K of X such that $r k \in K$ whenever $k \in K$ and $0<r \in R . K$ is an open (closed) cone in X if and only if K is a topologically open (closed) subset of X.

Let $H=\{f \in W \mid f$ is continuous, and there exist a finite number of closed cones $K_{1} \ldots K_{n}$ in X with $K_{1} \cup \ldots \cup K_{n}=X$ and there exist linear functionals $f_{1}, \ldots, f_{n}: R^{2} \rightarrow R$ such that $f(x)=f_{i}(x)$ for all $\left.x \in K_{i}\right\}$. It was shown in [1] that $F V L 2 \subseteq H$ and in [3] that $F V L 2=H$.

The collection $\left\{f^{\prime \prime} \mid f \in F L V 2\right\}$ is a Boolean subalgebra of $\mathscr{P}(F V L 2)$. $\mathscr{C}=\left\{S\left(f^{\prime \prime}\right) \mid f \in F V L 2\right\}$ consists of the regular open cones in X that have only finitely many connected components. (See [1] for proofs of these last two sentences.) \mathscr{C} is a Boolean algebra of subsets of X. Let $C \in \mathscr{C}$ with $C \neq \emptyset$ and $C \neq X$. Each component of C has a boundary which consists of two rays, one at the clockwise-most extremity of the component, the other on the counterclockwise side. We let ηC be the union of C and the clockwise boundary rays of its components, and we let $\eta \varnothing=\emptyset$ and $\eta X=X$. Then η is a Boolean homomorphism of \mathscr{C} onto a field \mathscr{E} of subsets of X and $\eta C \supseteq C$ for $C \in \mathscr{C}$.

By Theorem 4.3, $H[\mathscr{E}]$ is the P-hull of $F V L 2 . \mathscr{E}$ consists of \emptyset, X, and all those cones in X with finitely many components, each of which is closed on the clockwise side and open on the counter-clockwise side.

Now we can give the following nice description of the P-hull of FVL2: A function $f: X \rightarrow R$ is in the P-hull of $F V L 2$ if and only if $f=0$ or there exist a finite number of connected cones E_{1}, \ldots, E_{n} in X with $E_{1} \cup \ldots \cup E_{n}=X$ and with each E_{i} closed on the clockwise side and open on the counterclockwise side, and there exist linear functionals $f_{1}, \ldots, f_{n}: R^{2} \rightarrow R$ such that $f(x)=f_{1}(x)$ for all $x \in E_{i}$.

References

1. K. Baker, Free vector lattices, Can. J. Math. 20 (1968), 58-66.
2. S. Bernau, Orthocompletions of lattice groups, Proc. London Math. Soc. 16 (1966), 107-130.
3. R. Bleier, Archimedean vector lattices generated by two elements, Proc. Amer. Math. Soc. 39 (1973), 1-9.
4. D. Chambless, Representation of the projectable and strongly projectable hulls of a latticeordered group, Proc. Amer. Math. Soc. 34 (1972), 346-350.
5. —— The representation and structure of lattice-ordered groups and f-rings, Ph.D. Thesis, Tulane University, 1971.
6. P. Conrad, Hulls of representable l-groups and f-rings, J. Austral. Math. Soc. 16 (1973), 385-415.
7. -The lateral completion of a lattice-ordered group, Proc. London Math. Soc. 19 (1969), 444-486.
8. __L_Lattice-ordered groups, Tulane University, 1970.
9. P. Conrad and D. McAlister, The completion of a lattice-ordered group, J. Austral. Math. Soc. 9 (1969), 182-208.
10. K. Keimel, Representation de groupes et d'anneaux reticules par des sections dans des faisceaux, Ph.D. Thesis, University of Paris, 1970.
11. T. Speed, On lattice-ordered groups (preprint).
12. A. Vecksler, Structural orderability of algebras and rings, Soviet Math. Dokl. 6 (1965), 1201-1204.

University of Texas,
Austin, Texas

