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Abstract
This paper presents the AffineMortalityR package which performs parameter estimation, goodness-of-
fit analysis, simulation, and projection of future mortality rates for a set of affine mortality models for use
in pricing and reserving. The computational routines build on the univariate Kalman Filtering approach
of Koopman and Durbin ((2000). Journal of Time Series Analysis, 21(3), 281–296.) along other numerical
methods to enhance the robustness of the results. This paper provides a discussion of how the package
works in order to effectively estimate and project survival curves, and describes the available functions.
Illustration of the package for mortality analysis of the US male data set is provided.
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1. Introduction
The analysis of mortality rates is fundamental for actuaries as these are used to develop and set
the premium for life insurance products, estimate liabilities, and develop the corresponding risk
management strategies.

It is widely acknowledged in practice how the development of future mortality rates is the
outcome of a stochastic process (Cairns et al., 2006a). The seminal work of Lee & Carter (1992)
attracted significant attention in the last three decades towards the development and the extension
of stochastic mortality models which, to different degrees, are capable of capturing the different
features of the mortality surface, such as the presence of the cohort effect (Willets, 2004). These
models have been originally developed for the analysis of data in discrete time, such as integer
ages and integer calendar (or birth) year. Some examples include the Cairns–Blake–Dowd model
(Cairns et al., 2006b), the Poisson log-bilinear approach of Brouhns et al. (2002), the Plat model
(Plat, 2009), and the functional approach of Hyndman & Shahid Ullah (2007).

More recently, models developed using the tools of financial mathematics gained attention in
the literature, following the work of Milevsky & Promislow (2001). For example, the papers of
Schrager (2006), Biffis (2005), Dahl (2004), Blackburn & Sherris (2013), Jevtić et al. (2013), Jevtić
& Regis (2019), and Jevtić & Regis (2021) propose the use of the affine interest rate modeling
framework developed by Duffie & Kan (1996) for the analysis of mortality dynamics. In this way,

C© The Author(s), 2024. Published by Cambridge University Press on behalf of Institute and Faculty of Actuaries. This is
an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided that no alterations are made and the original article is properly cited. The written permission of Cambridge University Press must be
obtained prior to any commercial use and/or adaptation of the article.

https://doi.org/10.1017/S1748499524000149 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000149
https://orcid.org/0000-0002-6642-0425
https://orcid.org/0000-0002-2737-7348
https://orcid.org/0000-0002-8077-3649
https://orcid.org/0000-0001-9990-8622
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1017/S1748499524000149


2 Francesco Ungolo et al.

it is possible to obtain closed-form formula for the survival curves, which can be used in pricing
longevity-related securities and devise risk management strategies for these products. These mod-
els assume that themortality intensity process is driven by a set of latent variables, whose dynamics
are characterized by a stochastic differential equation with mean reversion. This implies that the
closed-form survival curve is an exponentially affine function of the latent variables.

An advantage of the continuous-time approach for mortality modeling is the use of financial
pricing techniques, which are familiar to market practitioners. Specifically, a no-arbitrage valua-
tion framework can be used for pricing life-contingent products and developing appropriate risk
management strategies for these products using the analytical results for affine processes (Biffis,
2005).

This paper describes the R package AffineMortality, which supports an extensive analysis
of continuous time affine mortality models in the spirit of Blackburn & Sherris (2013), Huang
et al. (2022), and Ungolo et al. (2023). More precisely, the package estimates the parameters
of these models using mortality data collected at discrete time points and ages. In addition, the
package facilitates the analysis of model fit and the simulation and projection of future mortality
rates. These tasks require us to discretize the continuous-time models and to recast the inferential
problem in a state-space form.

Schrager (2006) and Ungolo et al. (2023) describe how the estimation of these models using
the base Kalman filter can be problematic due to the numerical issues which follow from the
multiplication and inversion of large-dimensional matrices. Hence, they advocate the use of the
univariate Kalman filter of Koopman & Durbin (2000). For this reason, the computational rou-
tines in AffineMortality are implemented using the univariate Kalman filtering approach,
together with other numerical tricks described in Ungolo et al. (2023), which make the Kalman
filtering procedure more stable.

Alternative methods for the parameter estimation of affine term structure models with latent
factors are the simulatedmoments estimator and theMarkov chainMonte Carlo, whose details are
described in Singleton (2006). These methods do not take advantage of the possibility to obtain a
closed-form solution for the distribution of the latent variables, as can be possible for several affine
specifications. Within the mortality modeling literature, Jevtić et al. (2013) use the differential
evolution method to estimate the parameters by minimizing the root mean squared error based
on the survival function, which in the findings of the authors can take long time to converge.

The package allows to implement and assess among others, the Blackburn–Sherris model (BS)
with independent factors, the BS model with two and three dependent factors, the Arbitrage-
Free Nelson-Siegel mortality model (AFNS) with independent and dependent factors, and the
Cox–Ingersoll–Ross mortality model (CIR). The plan is to further expand the library of models
available for analysis, and to extend the existing ones by accounting for cohort or period specific
factors.

To the best of our knowledge, currently available software focus on the analysis of mortality
models in discrete time. For example, the R package StMoMo (Villegas et al., 2018) allows for the
analysis, among others, of the Lee-Carter (Lee & Carter, 1992), CBD (Cairns et al., 2006b), and
the age-period-cohort model by Renshaw & Haberman (2006). In a similar fashion, StanMoMo
(Barigou et al., 2023) performs a Bayesian analysis of stochastic mortality models using Stan. The
R package demography (Hyndman et al., 2022) instead provides functions for demographic anal-
ysis including: lifetable calculations, Lee-Carter modeling, functional data analysis of mortality
rates, fertility rates, net migration numbers, and stochastic population forecasting.

Furthermore, there are R packages for the analysis of state-space models, such as dse (Gilbert,
2009), sspir (Dethlefsen et al., 2022), dlm (Petris, 2010), FKF (Luethi et al., 2022), and KFAS
(Helske, 2017) (see also Tusell, 2011 for a comprehensive review). However, these packages do
not readily adapt to the state-space model used for the analysis of affine mortality models. This is
because the system matrices of the affine mortality models follow as the solution of an ordinary
differential equation, as we briefly illustrate in Section 3, and its subsequent discretization.
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R and RStudio may be subject to crashes. Since the optimization process may take a long time
to perform, the functions in AffineMortality, which require a lot of time to execute (e.g.
affine_fit() for estimating the model parameters), allow the user to stop the process without
losing the computations performed thus far. The package deals with fault tolerance by allowing
the user to input a directory where the work can be saved as an .Rdata file.

AffineMortality can be installed by running the following commands:1

library(devtools)
install_github(“ungolof/AffineMortality”)
library(AffineMortality)

The source code of AffineMortality is available through the GitHub repository
https://github.com/ungolof/AffineMortality.

The paper develops as follows: Section 2 introduces the data to be used as input for the analysis,
Section 3 summarizes the affine mortality modeling framework and briefly describes the mortality
models supported by the package, and Section 4 describes their parameter estimation procedure.
Section 5 describes how the package can be used to perform the goodness-of-fit analysis and com-
pare affine models, and Section 6 describes the function affine_project(), which can be called
to project future cohort survival curves. The package provides two methods to analyze parameter
uncertainty, described in Section 7: the first estimates the covariance of the parameter estimates by
using the bootstrap, while the other implements a multiple imputation-based method. The step-
by-step illustration of the package is provided in Section 8. Section 9 describes other functions in
AffineMortality and Section 10 concludes.

2. Input data
Let μx,t denote the force of mortality for an individual aged x last birthday in calendar year t.
Without loss of generality, μx,t is approximated as the central death rate mx,t , when we assume
that the force of mortality is constant between each integer age x and x+ 1, and between each
calendar year t and t + 1. The central death ratemx,t is empirically estimated as the ratio between
the observed number of deaths dx,t and the central exposure at risk years Ecx,t .

The period survival probability at time t of an individual aged x at time t until age x+ T − t is
given by:

Sx (t, T)=
T−t∏
j=1

exp
(−μx+j−1,t

)= exp

⎛⎝−
T−t∑
j=1

μx+j−1,t

⎞⎠ (2.1)

The estimation of affine mortality models uses the average force of mortality denoted for each
calendar year t and each age as:

μ̄x (t, T)= 1
T − t

T−t∑
j=1

μx+j−1,t ≈ 1
T − t

T−t∑
j=1

mx+j−1,t (2.2)

Here, x is fixed and denotes the smallest age in the age-range of interest (for example, equal to 50
in Ungolo et al., 2023 and Huang et al., 2022). The dataset for the analysis is a matrix of dimension
N ×K, whereN is the number of ages in the age-range of interest andK is the number of calendar
years for the analysis.

1The required R package devtools should be already installed on the machine.
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Conversely, given the average force of mortality, we can obtain μ, by means of the following
recursion, starting from μx,t = μ̄x (t, t + 1):

μx+i,t = iμ̄x (t, t + i)− (i− 1) μ̄x (t, t + i− 1) (2.3)
for i= 2, . . . ,N. Furthermore, let us define the column vector μ̄t = [μ̄x(t, t + 1), . . . ,
μ̄x(t, t +N)]� (we drop the reference on x for practical reasons).

When processing the force of mortality data μx,t , the function rates2avg() in
AffineMortality can be used to transform the N ×K-dimensional matrix of μx,t rates into
the corresponding matrix of μ̄ rates. The inverse operation can be carried out using the function
avg2rates():

mu_bar <- rates2avg(mu_xt_rates)
mu_xt <- avg2rates(mu_bar)

When analyzing age-period mortality rates, each cell of μ̄ contains the average mortality rate
between the base age x and the age x+ y to which the yth row refers in calendar year t.

The matrix of average forces of mortality is the key input for the estimation of affine mortality
models. The use of the average forces of mortality yields smoother data, which renders the esti-
mation process more stable. This is the approach adopted within the interest rate literature (see
Christensen et al., 2011), as well as in the analysis of affine mortality models (Blackburn & Sherris,
2013; Huang et al., 2022 and Jevtić & Regis, 2019).

A similar data set can be set up for the analysis of age-cohort mortality rates, as discussed in
Huang et al. (2022) and Ungolo et al. (2023).

3. Affinemortality models
In this section, we provide a brief overview of the affine mortality modeling framework, and
describe the different mortality models supported by AffineMortality. We first present the
model setting in the real-world probability space (�,F , P), where P is the real-world probability
measure. We then discuss the development of the mortality model under a risk-neutral pricing
measure Q that is equivalent to P. The development of the model under Q is important in view of
applications in pricing and valuation of mortality-linked cash flows, since under Q, the combined
financial and actuarial market is assumed to be arbitrage-free. The mortality dynamics under P
and under Q are linked by a careful choice of a Radon-Nikodým density process, which shall be
discussed below.

Let τ denote the random time of death of an individual who is currently aged x. We equip
the probability space with a right-continuous and P-complete filtration F= {Ft}t≥0, which can be
decomposed as F=G∨H, where G is a filtration containing all financial and actuarial informa-
tion, except the actual time of death, and H is the smallest filtration such that τ is a H-stopping
time. Hence, τ is also a F-stopping time. See, for example, Biffis (2005) and Blackburn & Sherris
(2013) for further details.

We model τ as a doubly-stochastic stopping time that admits an intensity process μx(t), which
is a nonnegative, G-predictable process. See Biffis et al., (2010, Section 2) for a detailed math-
ematical discussion. Furthermore, we assume that μx(t) is modeled as an affine function of an
M-dimensional, F-adapted, latent factor process X(t). That is, there exist ρ(x)0 ∈R and ρ(x)1 ∈RM ,
possibly dependent on the base age x, such that

μx(t)= ρ
(x)
0 + (ρ(x)1 )�X(t), t ≥ 0. (3.1)

The process X(t) is assumed to be a solution of the (vector) stochastic differential equation (SDE)

dX(t)=K(θP − X(t))dt +�D(X(t), t)dWP(t), X(0)= x0 ∈RM , (3.2)
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where K ∈RM×M , θP ∈RM , and � ∈RM×M . We assume that D(X(t), t) is an M-dimensional
diagonal matrix with diagonal elements dii(X(t), t) given by

dii(X(t), t)=
√
αi(t)+ β i1(t)X1(t)+ · · · + β iM(t)XM(t), i= 1, . . . ,M,

where αi and β i := (β i1, . . . , β
i
M)� are bounded and continuous functions, and WP is a stan-

dardM-dimensional P-Brownian motion. The quantities K, θP, and� represent the rate of mean
reversion, the long-run mean, and the volatility of X(t), respectively. We identifyG as the natural
filtration generated by WP, so that X(t) is a G-adapted process. Since X(t) is also a (right-) con-
tinuous process, it follows that μx(t) is a G-predictable process (Cohen & Elliott, 2015, Theorem
7.2.4)

Let SPx (t, T) := EP[ exp{− ∫ T
t μx(s)ds}|Gt] denote the (real-world) probability that an individ-

ual aged x at time t, conditional on being alive at time t, survives up to timeT. Hence, following the
affine framework set in Duffie & Kan (1996) and Duffie et al. (2000), Sx(t, T) is an exponentially
affine function of X(t):

SPx (t, T)= exp{AP
x (t, T)+ (BPx (t, T))

�X(t)},
where AP

x and BPx are solutions of the system of ordinary differential equations (ODEs)

dBPx (t, T)
dt

= ρ
(x)
1 +K�BPx (t, T)−

1
2

M∑
k=1

[��BPx (t, T)BPx (t, T)��]k,k(βk(t))�

dAP
x (t, T)
dt

= ρ
(x)
0 + BPx (t, T)

�KθP − 1
2

M∑
k=1

[��BPx (t, T)BPx (t, T)��]k,kαk(t)

with terminal condition AP
x (T, T)= 0 and BPx (T, T)= 0.

Therefore, the average force of mortality over the period [t, T], defined as

μ̄P
x (t, T) := − 1

T − t
log SPx (t, T)

is an affine function of the latent state process X (t), i.e.

μ̄P
x (t, T)= −AP

x (t, T)
T − t

− BPx (t, T)�

T − t
X(t).

In correspondence to Equation (2.2), μ̄P
x (t, T) represents the average force of mortality for an

individual aged x at time t from ages x to x+ (T − t).
The affine representation of the average force of mortality allows us to cast the parameter esti-

mation problem into that for a state-space model where μ̄P
x (t, T) are the observations and X(t) is

the unknown state process.
While the model is developed with age-period mortality data in mind (as in Section 2), the

approach here is also naturally cohort-based and can be applied to the analysis of age-cohort
mortality data; see e.g. Ungolo et al. (2023).

In the following sections, we discuss how the affine mortality model can also be developed
under a pricing measure Q. Then, we discuss the affine mortality models we implement in
AffineMortality. For simplicity, we shall specify the mortality models we implement in the
package in terms of their dynamics under the pricing measure Q, since certain models call for
a specific structure in the stochastic dynamics under Q (see for example the Arbitrage-Free
Nelson-Siegel (AFNS) model and its extensions).
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3.1 Affinemortality models under the pricingmeasure
At this stage, we assume that the combined financial and actuarial market is arbitrage-free. Thus,
there exists a probability measureQ on (�,F), equivalent to P, under which the discounted finan-
cial security prices are Q-martingales. We define Q via its Radon-Nikodým density process with
respect to P,

L(t) := dQ
dP

∣∣∣∣Ft

:= exp

{
−
∫ t

0
	�

s dW
P(s)− 1

2

∫ t

0
‖	s‖2ds

}
for someG-predictable,RM-valued process	t satisfying suitable integrability conditions (e.g. the
Novikov condition) such that L(t) is a P-martingale. Here, ‖ · ‖ denotes the Euclidean norm on
RM . By the Girsanov Theorem, the processWQ(t) defined by

WQ(t) := WP(t)+
∫ t

0
	sds, t ≥ 0

is a standard Brownian motion under Q. In particular, since 	t is G-predictable, by Biffis et al.
(2010, Proposition 3.2), τ is still a doubly stochastic stopping time under Q with intensity process
μx(t) given by Equation (3.1). As such, we can define the probability that the individual survives
up to time T, conditional on being alive at time t, as

Sx(t, T) := EQ
[
exp

{
−
∫ T

t
μx(s)ds

}∣∣∣Gt].
To ensure the latent factor process X(t) is affine under both P andQ, we further assume that	t

is given by the essentially affine specification proposed by Duffee (2002). Applied to our setting,
we let

	t =
{
diag

(√
X1(t), . . . ,

√
XM(t)

)
λ0 for the CIR model

λ1X(t) for all other models,

for some λ1 ∈RM×M and λ0 ∈RM , which we refer to as themarket price of risk parameters. Under
this specification, the dynamics of X(t) can be written as

dX(t)=�(θQ − X(t))dt +�D(X(t), t)dWQ(t), X(0)= x0, (3.3)
where � ∈RM×M and θQ ∈RM , and � and D(X(t), t) are as in the P-dynamics of X(t).
Furthermore, under this construction,	t is indeedG-predictable.

Since X(t) is also an affine process underQ, the survival probability Sx(t, T) has the exponential
affine form

Sx(t, T)= exp{Ax(t, T)+ Bx(t, T)�X(t)},
where Ax and Bx are solutions of the system of ODEs

dBx(t, T)
dt

= ρ
(x)
1 +��Bx(t, T)− 1

2

M∑
k=1

[��Bx(t, T)Bx(t, T)��]k,k(βk(t))�

dAx(t, T)
dt

= ρ
(x)
0 + Bx(t, T)��θQ − 1

2

M∑
k=1

[��Bx(t, T)Bx(t, T)��]k,kαk(t)

(3.4)

with terminal condition Ax(T, T)= 0 and Bx(T, T)= 0. As a result, the average force of mortality
over the period [t, T], denoted by μ̄x(t, T), is affine in the latent factor process

μ̄x(t, T)= −Ax(t, T)
T − t

− Bx(t, T)�

T − t
X(t).
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One key advantage of the essentially affine specification of 	t is that, given λ1 or λ0, one can
compute � and θQ using the estimated values of K and θP; see Ungolo et al. (2023, Section 2.3)
for details. This is relevant if one derives the market price of risk parameters from other sources,
e.g. empirical evidence on policyholder behavior or other existing calibration methods (see e.g.
Bacinello et al., 2010, Section 4.5) and Biffis (2005, Section 5.4). Furthermore, this also relates
to the fact that the combined financial and actuarial market is incomplete, so there are infinitely
many equivalent martingale measures Q∼ P. Thus, there exist multiple values of λ0 or λ1 which
are consistent with the above (essentially affine) framework and such that the process	t remains
G-predictable. However, we do not discuss these points in detail as they fall outside the scope of
the current paper. In the estimation method we employ in the package, the parameters under P
and Q are simultaneously estimated from the data.

Another advantage is the flexibility of the choice of λ1 or λ0. This implies that we are free to
choose any desired structure forK and θP while retaining the required special structures for� and
θQ. This is relevant, especially for the AFNS model and its extensions, where the interpretation of
the latent factors as level, slope, and curvature factors are directly related to the specification of�.
To this end, we assume that θP = 0 for all models considered, except the CIR model, and assume
that K is a diagonal matrix with K = diag(κ1, . . . , κM) for all models.

In the sections that follow, we state the dynamics of the latent factor process under the pricing
measure Q for eachmodel we consider in the package. For eachmodel, the factor loadingsAx(t, T)
and Bx(t, T) are available in closed form and are functions of t and T only via T − t. For all models,
except the Gompertz-Makeham model, the mortality intensity does not depend on the individual
current age x, so we drop this from the notation and write μ(t).

3.2 Blackburn-Sherris model
The BS model assumes that

μ(t)= X1(t)+ · · · + XM(t),

i.e. ρ0 = 0 and ρ1 = (1, . . . , 1)�, where X(t)= (X1(t), . . . , XM(t))� with dynamics

dX(t)= −�X(t)dt +�dWQ(t). (3.5)

The components of X(t) can be assumed to be independent by specifying � and � as diag-
onal matrices, hence �= diag(δ1, . . . , δM) and � = diag(σ1, . . . , σM). Dependence among the
components of X(t) can be induced by setting

�=

⎛⎜⎜⎜⎜⎜⎝
δ1 0 0 . . . 0
δ12 δ2 0 . . . 0
...

...
...
. . .

...

δ1M δ2M δ3M . . . δM

⎞⎟⎟⎟⎟⎟⎠ , � =

⎛⎜⎜⎜⎜⎜⎝
σ1 0 0 . . . 0
σ12 σ2 0 . . . 0
...

...
...
. . .

...

σ1M σ2M σ3M . . . σM

⎞⎟⎟⎟⎟⎟⎠ .

In AffineMortality, the user can specify as many latent factors as desired in the indepen-
dent factor case. The factor loading expressions for the independent factor case can be found in
Blackburn & Sherris (2013). However, while the factor loadings are still available in closed form in
the dependent factor case, one cannot obtain a scalable nested expression for the factor loadings.
AffineMortality currently supports the two and the three-factor BS models with dependent
factors. The factor loading expressions for the dependent case can be found in Huang et al. (2022,
Appendix A).
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3.3 Gompertz-Makehammodel
The Gompertz-Makehammodel (see Schrager, 2006) introduces age-dependence in the mortality
intensity process. Specifically, the model assumes that X(t) has the same dynamics outlined in
Equation (3.5), and

μx(t)= X1(t)+ eγ xX2(t)

for some γ > 0. The functional specification of μx(t) implies that the mortality intensity increases
exponentially in the base age x and it is X2(t), which drives the stochasticity in the intensity pro-
cess at older ages. In this case, we have ρ(x)0 = ρ0 = 0 and ρ(x)1 = (1, eγ x)�. As before, dependence
between the latent factors can be introduced by replacing � and � by lower-triangular matrices.
The factor loading expressions for both the independent and dependent factor cases can be found
in Appendix B.1.

3.4 Arbitrage-free Nelson-Siegel model
The Arbitrage-free Nelson-Siegel (AFNS) model, proposed by Christensen et al. (2011) for mod-
eling the term structure of interest rates, assumes that there are three latent factors, identified as
Level (L), Slope (S), and Curvature (C), with Q-dynamics:

⎛⎜⎝dL(t)
dS(t)
dC(t)

⎞⎟⎠= −
⎛⎜⎝0 0 0
0 δ −δ
0 0 δ

⎞⎟⎠
⎛⎜⎝L(t)
S(t)
C(t)

⎞⎟⎠ dt +
⎛⎜⎝σL 0 0

0 σS 0
0 0 σC

⎞⎟⎠
⎛⎜⎜⎝
dWQ

L (t)

dWQ
S (t)

dWQ
C (t)

⎞⎟⎟⎠ . (3.6)

The AFNS model assumes that the mortality intensity is the sum of the level and slope factors

μ(t)= L(t)+ S(t).

The structure of � implies that the factor loadings BL, BS, and BC control for the shape (i.e.
level, slope, and curvature, respectively) of the average force of mortality, with randomness driven
by the dynamics of L, S, and C; see Christensen et al., (2011, Proposition 1 and Section 2.3) for the
closed-form expressions for the factor loadings.

A key feature of the AFNS model is the connection between the latent factors and the shape of
the average force of mortality curve through the structure of�. We can induce factor dependence
through the diffusion matrix �. Specifically, we replace � with a lower-triangular matrix in the
dependent factor case. As such, BL, BS, and BC remain the same in the dependent factor case; see
Christensen et al. (2011, Appendix B) for the formula of A(t, T).

3.4.1 Arbitrage-free generalized Nelson-Siegel model
TheArbitrage-Free GeneralizedNelson-Siegel (AFGNS)model is an extension of the AFNSmodel
proposed by Christensen et al. (2009), which includes an additional slope and curvature factor.
The AFGNS model was proposed as an arbitrage-free version of the four-factor Nelson-Siegel-
Svenssonmodel, which extends the AFNSmodel by adding a second curvature factor. The AFGNS
model is thus a five-factor model whose latent factors, in case of independence, satisfy the SDE
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⎛⎜⎜⎜⎜⎜⎜⎝

dL (t)
dS1 (t)
dS2 (t)
dC1 (t)
dC2 (t)

⎞⎟⎟⎟⎟⎟⎟⎠= −

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 δ1 0 −δ1 0
0 0 δ2 0 −δ2
0 0 0 δ1 0
0 0 0 0 δ2

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

L (t)
S1 (t)
S2 (t)
C1 (t)
C2 (t)

⎞⎟⎟⎟⎟⎟⎟⎠ dt

+

⎛⎜⎜⎜⎜⎜⎜⎝

σL 0 0 0 0
0 σS1 0 0 0
0 0 σS2 0 0
0 0 0 σC1 0
0 0 0 0 σC2

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

dWQ
L (t)

dWQ
S1 (t)

dWQ
S2 (t)

dWQ
C1
(t)

dWQ
C2
(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where δ1 �= δ2. As in the AFNS model, the dependent factor case consists of replacing a diagonal
diffusion matrix with a lower triangular one. As in the AFNSmodel, under the AFGNSmodel, the
mortality intensity is modeled as the sum of the level and the two slope factors

μ(t)= L(t)+ S1(t)+ S2(t).

Factor loading expressions for the independent factor case can be found in Christensen et al.
(2009, Proposition 3.1). In the dependent factor case, only the form of A(t, T) changes; this can be
found in Christensen et al. (2009, Appendix).

3.4.2 Arbitrage-free reduced Nelson-Siegel model
We introduce a version of the AFNS model without the curvature factor and call it the Arbitrage-
Free Reduced Nelson-Siegel (AFRNS) model. This model has been included in the package in
order to assess the effect of the curvature on the resulting model. Experiments we conducted
on the mortality data of several countries showed that the presence of the curvature factor may
produce negative mortality rates in some cases when projected 25 years ahead, despite the better
in-sample performance of the AFNS and AFGNS models.

We consider two latent factors, with dynamics(
dL(t)
dS(t)

)
= −

(
0 0
0 δ

)(
L(t)
S(t)

)
dt +

(
σL 0
0 σS

)(
dWQ

L (t)

dWQ
S (t)

)
,

for the independent factor case. As before, we replace the volatility matrix with a lower-triangular
matrix in the dependent factor case. The resulting factor loadings for both the independent and
dependent factor cases can be found in Appendix B.2.

3.4.3 Arbitrage-free unrestricted Nelson-Siegel model
We also introduce a variation of the AFNSmodel where the elements of the drift coefficient matrix
� have possibly unequal values. We call this model the Arbitrage-Free Unrestricted Nelson-Siegel
(AFUNS) model. The latent factor dynamics under the AFUNS model are given by⎛⎜⎝dL(t)

dS(t)
dC(t)

⎞⎟⎠= −
⎛⎜⎝0 0 0
0 δ1 δ2
0 0 δ3

⎞⎟⎠
⎛⎜⎝L(t)
S(t)
C(t)

⎞⎟⎠ dt +
⎛⎜⎝σL 0 0

0 σS 0
0 0 σC

⎞⎟⎠
⎛⎜⎜⎝
dWQ

L (t)

dWQ
S (t)

dWQ
C (t)

⎞⎟⎟⎠ . (3.7)
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As before, the mortality intensity is modeled as the sum of the level and slope factors

μ(t)= L(t)+ S(t).

We recover the AFNSmodel by setting δ2 = −δ1 and in the limit as δ3 → δ1. The dependent factor
case is obtained by replacing the volatility matrix by a lower-triangular matrix.

3.5 Cox–Ingersoll–Ross model
Under the CIR model, the mortality intensity is modeled as the sum of the components of the
latent factor process X(t),

μ(t)= X1(t)+ · · · + XM(t),

where each Xi(t) is a square-root diffusion process given by

dXi(t)= δi(θQi − Xi(t))dt + σi
√
Xi(t)dWQ

i (t).

This implies that each component of X(t) is nonnegative Q-almost surely and is strictly positive
Q-almost surely if Xi(0)> 0 and 2δiθQi ≥ σ 2

i . Each Xi(t) is asymptotically gamma distributed
(as t → ∞) (Cox et al., 1985), hence the CIR mortality model can capture the heterogeneity of
mortality rates at older ages (Pitacco, 2016). The factor loadings for the CIR model are given by

Bi(t, T)= − 2(eϑi(T−t) − 1)
(δi + ϑi)(eϑi(T−t) − 1)+ 2ϑi

, i= 1, 2, . . . ,M

A(t, T)=
M∑
i=1

2δiθQi
σ 2
i

log

[
2ϑie

1
2 (δi+ϑi)(T−t)

(δi + ϑi)(eϑi(T−t) − 1)+ 2ϑi

]
,

where ϑi =
√
δ2i + 2σ 2

i . Their application in the analysis of Human Mortality Database (HMD)
national mortality data can be found in Huang et al. (2022) and Ungolo et al. (2023).

4. Parameter estimation
The model parameters are estimated using data collected in discrete time, as illustrated in
Section 2. In the remainder of the paper, we use the real-world probability measure to charac-
terize the dynamics of X(t). By discretizing the stochastic differential equation of each model, and
using the affine representation of the average force of mortality, we obtain the following equally
time-spaced state-space formulation:

X (t)=�tX
(
t − j

)+ ηt ηt ∼N (0, Rt) (4.1)

μ̄t =At + BtX (t)+ εt εt ∼N (0,H) t = 1, . . . , T (4.2)

where At = [A (t, t + 1) , . . . ,A (t, t +N)]� and Bt = [B (t, t + 1) , . . . , B (t, t +N)]�. The age
subscript has been omitted for notational convenience.

The state equation (4.1) describes the dynamics of the factor as an autoregressive process of
order 1 with systemmatrix�t = e−κ j and stochastic noise ηt ∼N (0, Rt). Themeasurement equa-
tion (4.2) describes μ̄t ∈RN as an affine function of the latent variable X (t) with error term
εt ∼N (0,H). We assume that ηt and εt are independently distributed.

For themodels so far implemented in AffineMortality,A, B,H, and�= e−κ j do not depend
on t. For Gaussian models, such as the BS and the AFNS models, we have Rt = R:

R= [
I − e−κ j]��� [

I − e−κ j]� . (4.3)
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For the CIR model, because of the independence between the factors, Rt is a diagonal matrix
with kth diagonal rt,k equal to:

rt,k = σ 2
(
1− e−κk
κk

)(
1
2
θP

(
1− e−κk

)+ e−κkX (t)
)
.

Here, �, A, B, Rt , and H depend on the parameters that we estimate based on the statistical
inference for the dynamics of the mortality rates. Furthermore, H is a diagonal matrix, where
the diagonal elements ω2

i are equal to

ω2
i = rc + r1

i∑
k=1

exp
(
r2k

)
/i (4.4)

for i= 1, . . . ,N. In this way, themeasurement Equation (4.2) accounts for the increasing variation
in the mortality rates at older ages.

The parameters are estimated using maximum likelihood. Let ψ denote the vector of parame-
ters to be estimated. The likelihood function is readily obtained from the univariate Kalman Filter
recursion (see Koopman & Durbin, 2000 and Ungolo et al., 2023 for its implementation in the
context of affine mortality models), given the observed average mortality rates μ̄1:T :

log L (ψ | μ̄1:T)= −TN
2

log 2π − 1
2

T∑
t=1

N∑
i=1

(
log Ft,i + ν2t,iF

−1
t,i

)
, (4.5)

where νt,i = μ̄t,i − ai − bîxt,i is the measurement error, and Ft,i = bi�̂t,ib�
i +ω2

i is the covariance
of μ̄t,i (denotingμx (t, t + i)) taking into account the uncertainty about the latent stateX (t). Here,
ai denotes the ith element ofAt , bi the corresponding row of the matrix Bt , and x̂t,i and �̂t,i are the
univariate Kalman Filter updates of the moments of X (t) (see Appendix A for additional details).

For the CIR mortality model, the estimated parameter vector ψ̂ corresponds to the quasi-
maximum likelihood estimator. See Chen & Scott (2003) and Jevtić & Regis (2021) for additional
details.

4.1 Implementation
The parameter estimation task includes the initial state variable X (0) among the set of unknown
parameters. Other numerical tricks to foster reasonable parameter estimates, e.g. ensuring the
positive-definiteness of the covariance matrix, are described in Ungolo et al. (2023).

We recommend the use of multiple starting values due to the high non-linearity of the log-
likelihood function, which may have multiple local maxima. Some initial values are provided in
AffineMortality through the list object sv_default, which we briefly illustrate in Section 8.
These are based on previous analyses of country mortality rates. When fitting dependent factor
models, we recommend the use as starting values of the parameter estimates obtained from the
correspondent independent factor models.

4.2 affine_fit()
The function affine_fit() of the package AffineMortality allows us to carry out the param-
eter estimation task. The log-likelihood function of Equation (4.5) is optimized sequentially by
group of parameters (Coordinate Ascent) through the gradient-free simplexNelder-Meadmethod
as recommended by Christensen et al. (2011). This routine is readily available in R within the
function optim.

The function affine_fit() takes the following arguments as input:
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• model = c(“BS”, “AFNS”, “AFGNS”, “AFUNS”, “AFRNS”, “CIR”, “GMk”), to
select one of the model families to be fitted. Its default value is BS;

• fact_dep=c(FALSE, TRUE), to select whether the model accounts for factor dependence
(default FALSE);

• n_factors, to select the number of factors (only for the BS and the CIR models; default set
to 3);

• data, the rectangular data set of μ̄ rates used for the analysis;
• st_val, corresponding to the set of starting values for the parameters. Thesemust be supplied

as a list of parameters, e.g.

st_val=list(x0=c(6.960591e-03, 9.017154e-03, 5.091784e-03),
delta=c(0.04268782, −0.03122758, −0.08573677),
kappa=c(1.162624e-02, 6.787268e-02, 5.061539e-03),
sigma=exp(c(−6.806310, −6.790270, −7.559145)),
r1=exp(−3.327060e + 01), r2=exp(−6.086479e-01),
rc=exp(−1.553156e + 01))

for the BS model with three independent factors. For dependent factor models, we instead
supply sigma_dg, which is the parameter denoting the standard deviation, and Sigma_cov
indicating the elements of the off-diagonal elements of the covariance matrix (generally a
vector of zero, as suggested in Section 4.1);

• max_iter: maximum number of iterations for the coordinate ascent algorithm (default 200);
• tolerance: maximum log-likelihood value increase between iterations such that the opti-

mizer can stop (default 0.1);
• wd: working directory to save the intermediate values of the parameters throughout iterations;

This function returns a list with

• model: same as input;
• fit: list with:

– par_est: list of parameter estimates;
– log_lik: value of the log-likelihood function;
– CA_par: table listing the value of the parameters throughout the coordinate ascent

algorithm iterations;
• n.parameters: total number of estimated parameters;
• AIC: value of Akaike information criterion (see Section 5);
• BIC: value of Bayesian information criterion;

Using the pre-loaded age-cohort US data set, we can run the function affine_fit() as
follows:

data(mu_bar) # - Load the US data set
affine_fit(model=“BS”, fact_dep=FALSE, n_factors=3, data=mu_bar,
st_val=st_val, max_iter=200, tolerance=0.1)

During its execution, the console shows the value of the parameters, the log-likelihood
function, and the iteration number:

[1] “X(0)_1 0.005” “X(0)_2 0.006” “X(0)_3 0.004”
[1] “delta_1 0.053” “delta_2 -0.018” “delta_3 -0.087”
[1] “kappa_1 0.032” “kappa_2 0.007” “kappa_3 -0.003”
[1] “sigma_1 0.001” “sigma_2 0.001” “sigma_3 0”
[1] “r1 0” “r2 0.548” “rc 0”
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[1] “log_lik 10538.37”
[1] “Iteration 1”
[1] “–-–-–-–-–-–-–-–-–-–-–-”
[1] “X(0)_1 0” “X(0)_2 0.007” “X(0)_3 0.007”
[1] “delta_1 0.043” “delta_2 -0.022” “delta_3 -0.086”
[1] “kappa_1 0.017” “kappa_2 0.002” “kappa_3 0.01”
[1] “sigma_1 0.001” “sigma_2 0.001” “sigma_3 0”
[1] “r1 0” “r2 0.556” “rc 0”
[1] “log_lik 10623.92”
[1] “Iteration 2”

5. Goodness of fit
The fitted rates, denoted as ̂̄μt (which are N-dimensional vectors, for t = 1, . . . ,K), of use for the
analysis of the goodness of fit of each model with respect to historical data, can be obtained using
the function mubar_hat(), which takes the following arguments as input: model, fact_dep,
n_factors, parameters, data. Again, the input parameters are supplied as a list, similar to
the starting values of affine_fit(). The resulting fitted rates can then be used to analyze the
goodness of fit of each model with respect to historical data.

5.1 Numerical measures
AffineMortality considers four goodness-of-fit measures, following Blackburn & Sherris
(2013) and Huang et al. (2022):

• Akaike information criterion (AIC, Akaike, 1974):

AIC= −2 log L
(
ψ̂ | μ̄1:K

)+ 2k (5.1)

• Bayesian information criterion (BIC, Schwarz, 1978):

BIC= −2 log L
(
ψ̂ | μ̄1:K

)+ 2kKN (5.2)

• Root mean squared error (RMSE):

RMSE= 1
KN

∑
x

∑
t

(
μ̄x,t − ̂̄μx,t

)2 (5.3)

• Mean absolute percentage error (MAPE, by age x):

MAPEx = 1
K

K∑
t=1

|μ̄x,t − ̂̄μx,t|
μ̄x,t

(5.4)

where k is the number of parameters, t = 1, . . . ,K, and N is the number of ages considered in the
analysis.

The AIC and BIC can be obtained as the output of affine_fit() (see Section 4.2). The RMSE
is obtained by running RMSE(fitted, observed), where fitted is the N ×K-dimensional
matrix of the fitted rates obtained using the function mubar_hat(), and observed is the corre-
sponding matrix of the μ̄-rates used for parameter estimation. The function MAPE_row(fitted,
observed) yields an N-dimensional vector, which can be used to assess how the model fits at
every age in the range of interest.

A desirable characteristic of affine mortality models is that their parameters ensure that the
probability of negative rates is negligible. This is a potential limitation of Gaussian models, since
X(t) can assume any real value.
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Figure 1. Heatmap of the standardized residuals for the Blackburn-Sherris model with three dependent factors. Source:
Ungolo et al. (2023).

For this purpose, the function prob_neg_mu() yields an N-dimensional vector with the prob-
ability of negative mortality rates at each age (based on the input data set) for a specific h-year
ahead projection, based on the simulated values of X(t). prob_neg_mu() takes as input model,
fact_dep, n_factors, parameters, data, years_proj and n_simulations (default value set
to 100,000).

5.2 Residuals
The function std_res() returns an N ×K-dimensional matrix of the standardized resid-
uals for the model of interest. These are computed as N-dimensional vectors for each year
t = 1, . . . ,K as:

rt =
(√

V̂ (μ̄t)

)−1 (
μ̄t − ̂̄μt

)
, (5.5)

Further details about this formula can be found in Ungolo et al. (2023). A heatmap of
the standardized residuals by age and year (Fig. 1) can be generated by using the function
heatmap_res():

std_resid <- std_res(model=“BS”, fact_dep=TRUE, n_factors=3,
parameters=pe_BSd_3F$fit$par_est, data=mu_bar)

heatmap_res(residuals=std_resid, color=FALSE)
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In this way, we can visually detect the presence of period effects (if analyzing age-cohort data)
or of cohort effects (if analyzing age-period data).

6. Projection
The function affine_project() returns the projected survival curve for h time periods ahead
(cohort or calendar year, depending on the analyzed data set), based on the optimal forecast of the
average force of mortality under the quadratic loss (Christensen et al., 2011):

μ̄x
(
t + h, T + h

)= −Bx (t, T)
T − t

E
[
X
(
t + h

) | X (t)]− Ax (t, T)
T − t

, (6.1)

The corresponding survival probability is given by

Sx
(
t + h, T + h

)= exp
(
Bx (t, T)� E

[
X
(
t + h

) | X (t)]+Ax (t, T)
)
, (6.2)

where the expectation is taken with respect to the real-world probability measure P using equation
(4.1). The function affine_project() is illustrated in Section 8 when analyzing the BS model
with three dependent factors for the US dataset. Its input structure is similar to affine_fit(),
with the additional argument years_proj corresponding to the h time periods ahead for the
projection.

7. Parameter uncertainty
A further source of risk when projecting cohort survival curves is the uncertainty inherited from
the parameter estimation process.

The function par_cov(), returns the variance-covariance matrix of the parameter estimates
and their corresponding standard errors. It allows the user to choose between two methods for
estimating parameter uncertainty, namely multiple imputation and bootstrap.

The first method, described in Ungolo et al. (2023), can be chosen by setting method=“MI”
within par_cov(). It is recommended for Gaussian affine mortality models. Briefly, it consists
of a procedure that randomly imputes a value of the latent state variable X (t) sampled from
the smoothing distribution at the value of the parameter estimates. In this way, we obtain a set
of “completed” data sets such that parameters are then re-estimated. The number of completed
data sets can be specified through the argument D_se. This method turns out useful, because, on
one hand, it may not be possible to numerically compute the information matrix from the opti-
mization process of the likelihood function due to its very flat surface. On the other hand, the
alternative bootstrap method (briefly described later) may be computationally expensive if car-
ried out hundreds of times, as recommended in practice. The downside of multiple imputation
is that, unlike the bootstrap, it may tend to underestimate the standard errors since it is a delta
method. From a computational perspective, a potential downside is the need to invert a Hessian
matrix of larger dimensions, although this task is simpler compared to the inversion of the Hessian
matrix from the estimation procedure (whose likelihood is marginalized with respect to the latent
states). This method is not recommended, nor implemented for the CIR model, due to the lower
truncation of the latent variable X (t).

When parameter uncertainty is assessed by multiple imputation, the function par_cov returns
a list with two elements: Cov_par_est, the variance-covariance matrix of the parameters, and
St_err, which is a list of the standard error of the parameters.

The bootstrap method draws on the work of Stoffer & Wall (2009), and was used by
Blackburn & Sherris (2013) in the context of affine mortality models. It can be implemented
in AffineMortality by specifying the argument method=“Bootstrap” in the function
par_cov(). In few words, this method consists of an iterative procedure that first computes the
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standardized innovations from the measurement error, in order to obtain a bootstrapped dataset
of average mortality rates. These are used to obtain a new set of parameter estimates. Hence, once
n_BS parameter estimates are obtained, their variance-covariance is computed. In this case, the
function par_cov() provides an additional element given by the parameter estimates over the
bootstrapped samples. The argument t_excl (default value set to 4 as suggested in Stoffer &
Wall, 2009) sets the number of the oldest residuals in terms of t to adjust for the Kalman Filter
startup irregularities.

Bothmultiple imputation and bootstrap algorithms are initialized at the parameter estimates in
order to better explore the likelihood surface in the neighborhood of ψ̂ . The use of both methods
is illustrated in Section 8.

We recommend using the bootstrap for models with a large number of parameters, such as the
AFGNS, and for the CIR model with any number of factors.

8. Illustration
AffineMortality provides the data set of the average age-cohort mortality rates for the US
males aged 50–99 born in the years 1883–1915 analyzed in Ungolo et al. (2023), which can be
loaded as follows:

data(mu_bar)

This dataset will be used for illustrating the analysis of the BS model with three dependent
factors.

For this age-cohort dataset, the cell at the intersection of the row corresponding to age y and
of the column corresponding to birth year t contains the average of the mortality rates for the
corresponding cohort between the base age 50 and y.

Parameter estimation
A critical aspect of the analysis of affine mortality models is the specification of the starting

values for the algorithm. As emphasized in Ungolo et al. (2023) and Blackburn & Sherris (2013),
the likelihood function can have multiple local optima, hence the fitting algorithm should be ini-
tialized several times. In AffineMortality, we provide a set of starting values (sv_default in
an R list format), which can be used by the researcher for a first exploration of the models.

For example, to get the default starting values for the BS model with dependent factors, we can
run the following code:

starting_values <- sv_default$BSd

For the other supported models, we can use sv_default$

• BSi for the BS model up to four factors;
• AFNSi and AFNSd for the AFNSmodel with independent and dependent factors, respectively;
• GMki and GMkd for the Gompertz-Makeham model with independent and dependent factors,

respectively;
• AFGNSi and AFGNSd for the AFGNS model with independent and dependent factors,

respectively. Similar for the AFRNS and AFUNS models;
• CIR for the CIR model up to four factors;

As highlighted in Section 4.1, a general recommendation when analyzing models with depen-
dent factors is to initialize affine_fit() with the parameter estimates of the corresponding
independent factor models, and to set the starting values of the additional parameters (such as the
off-diagonal elements of the covariance matrix of X(t) and of the mean reversion matrix �) to
zero.
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We can thus estimate the parameters with affine_fit() as follows:

pe_BSd_3F <- affine_fit(model=“BS”, fact_dep=TRUE, n_factors = 3,
data=mu_bar, st_val=starting_values, max_iter = 5, tolerance = 0.1,
wd=“working_folder_directory”)

In practice, we run the fitting process for a larger number of iterations. For example, in Ungolo
et al. (2023), the authors set max_iter = 200.

Goodness-of-fit analysis
Once we obtain the object pe_BSd_3F, we run the following lines to obtain the AIC and the

BIC

>pe_BSd_3F$AIC
-21405.58

>pe_BSd_3F$BIC
-21292

This output can be used to make comparisons between different models. Suppose we want to
compare it with the AFNS model with independent factor, then we run the following lines:

pe_AFNSi <- affine_fit(model=“AFNS”, fact_dep=FALSE,
st_val=sv_default$AFNSi,
data=mu_bar, max_iter = 5, tolerance = 0.1)

>pe_AFNSi$AIC
-20842.76

>pe_AFNSi$BIC
-20772.45

Since the BS model with dependent factors has a smaller value of both AIC and BIC compared
to the AFNS model with independent factors, then we conclude that the former shows a better
in-sample fit.

The fitted average mortality rates can be then obtained by using mubar_hat()

fitted_BSd <- mubar_hat(model=“BS”, fact_dep=TRUE, n_factors = 3,
parameters=pe_BSd_3F$fit$par_est, data=mu_bar)

The fitted average mortality rates obtained using mubar_hat() can be used to calculate the
RMSE and the MAPE for each age in the range of interest:

>RMSE(mu_bar, fitted_BSd)
[1] 0.002011956

MAPE_age(mu_bar, fitted_BSd)

which can be similarly used for comparing the models.
Furthermore, we can obtain the fitted μ-rates by using the function avg2rates() described

in Section 2:

avg2rates(fitted_BSd)

In order to ensure that the probability of negative rates for the projected 10-years ahead cohort
is negligible for the model under analysis, we run the function prob_neg_mu()
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Figure 2. 1-year ahead projected survival curve for the Blackburn-Sherris model with three dependent factors.

>prob_neg_mu(model=“BS”, fact_dep=TRUE, n_factors = 3,
parameters=pe_BSd_3F$fit$par_est, data=mu_bar, years_proj = 10,
n_simulations = 1000)

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This shows vector of zeros indicating that the fitted model has zero probability of yielding
negative rates for the cohort born in 1925.

Projection
The vector of the 1-year ahead (hence for the US males born in 1916) survival rates for the

age-range of interest can be obtained by using the affine_project() function and then plotted
(Fig. 2) as follows:

BSd_3F_proj <- affine_project(model=“BS”, fact_dep=TRUE, n_factors = 3,
parameters=pe_BSd_3F$fit$par_est, data=mu_bar, years_proj = 1)

plot(rownames(mu_bar), BSd_3F_proj, type=“l”, ylab = “S(t)”, xlab =
“Age”)

Parameter uncertainty
The estimation of the parameter uncertainty by multiple imputation through the function

par_cov() described in Section 7 can be carried out as follows:

par_unc_MI <- par_cov(method=“MI”, model=“BS”, fact_dep=TRUE,
n_factors = 3,
parameters=pe_BSd_3F$fit$par_est, data=mu_bar, D_se = 5, max_iter = 10,
tolerance = 0.1, wd = 0)

We recommend setting the number of imputations D_se at least equal to 50 to obtain a more
robust estimate of the parameter uncertainty. In this illustration, we have the following set of
standard errors of the parameters as an R list object:
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>par_unc_MI$St_err
$delta
[1] 0.0038258337 0.0738215285 0.0024289977 0.0529585515 0.0020585681
0.0004005845

$kappa
[1] 0.041057554 0.010218757 0.004028687

$sigma_dg
[1] 1.850683e-06 5.515050e-05 4.927546e-05

$Sigma_cov
[1] 0.000446849 0.015596337 0.005928911

$r1
[1] 8.016628e-16

$r2
[1] 0.005309632

$rc
[1] 1.330768e-09

Similarly, we can also estimate the parameter uncertainty by using the bootstrap method:

par_unc_Bts <- par_cov(method=“Bootstrap”, model=“BS”, fact_dep=TRUE,
n_factors = 3, parameters=pe_BSd_3F$fit$par_est, data=mu_bar, t_excl = 4,
BS_s = 5, max_iter = 3, tolerance = 10, wd = 0)

When using the bootstrap in practice, Blackburn & Sherris (2013) set the number of bootstrap
samples BS_s equal to 500, while the default value of the number of residuals to be excluded
t_excl = 4 follows from Stoffer & Wall (2009). As for the function affine_fit(), the argu-
ments max_iter and tolerance are usually set to 200 and 0.1, respectively, although the user
can set any desired value.

9. Other functions
The function xfilter has the same input structure as mubar_hat and returns a list of condi-
tional mean and covariance of the filtering distribution of the latent variable as obtained from
the application of the univariate Kalman–Filter of Koopman & Durbin (2000). More precisely,
the matrix X_t returns the value of E [X (t) | μ̄1:t] (time-update step), for t = 0, . . . ,K while the
matrix X_t_c returns the value of E [X (t) | μ̄1:t−1] (forecasting step). S_t and S_t_c are the
corresponding covariance matrix of X (t). For a brief illustration, this can be run as follows:

X_filtered <- xfilter(model=“BS”, fact_dep=TRUE, n_factors = 3,
parameters=pe_BSd_3F$fit$par_est, data=mu_bar)

The function xsmooth implements the Rauch-Tung-Striebel (Rauch et al., 1965) smoothing
procedure to obtain the conditional mean and covariance matrix of the distribution of X (t) con-
ditional to μ̄1:T , that is, the entire time series of the observations. It uses as input the results from
the xfilter function and the value of the parameter κ driving the dynamics of the SDE illustrated
in Section 3 under the real-world probability measure.
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X_smoothed <- xsmooth(filterobject=X_filtered,
kappa=pe_BSd_3F$fit$par_est$kappa)

10. Conclusion and further developments
This paper describes the AffineMortality R package, which allows the user to estimate, com-
pare, project, and assess the uncertainty of affine mortality models. These models can be analyzed
from an age-period as well as from an age-cohort perspective. The package can be used to support
researchers to answer a wide range of questions involving stochastic mortality, including pricing
of mortality-contingent securities (Xu et al., 2020a and 2020b), risk management of mortality-
contingent products, assessment of the natural hedging of life insurance policies, and life annuities
(Blackburn et al., 2017 and Sherris et al., 2020), as well as the design of innovative mortality
pooling products.

The authors plan to further expand the range of models that can be fitted, such as the Squared
Gaussian model used in interest rates modeling (Leippold & Wu, 2002), and incorporate other
features, such as cohort-specific factors and other age-dependent models. Further additions will
encompass the possibility to account for incomplete cohort data and the inclusion of models
whose mean-reversion parameter is non zero.

Another strand of future developments of AffineMortality includes the possibility of using
alternative optimization methods, such as the Subplex algorithm of Rowan (1990), which is
available in R through the package nloptr (Johnson, 2020).
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Appendix
A. Univariate Kalman Filtering
Following the outline in Ungolo et al. (2023), the ith element of the vector μ̄t can be written as:

μ̄t,i = ai + bixt,i + εt,i, εt,i ∼N (0,ωi) , (A.1)

Hence, the state equation corresponding to each observation μ̄t,i is:

xt+1,1 =�xt,N + ηt , (A.2)

xt,i+1 = xt,i

for i= 1, . . .N − 1 and t = 1, . . . ,K, given initial state x0,N = X (0). Let μ̄1:t = [μ̄1, . . . , μ̄t] and
μ̄t,1:i =

[
μ̄t,1, . . . , μ̄t,i

]
.

Given initial state x0,N := X (0) and initial conditional covariance �0,N =
diag

(
10−10, . . . , 10−10):

1. Forecasting (i= 1 only):

x̂t,1 =E
(
xt,1 | μ̄1:t−1

)= �̂xt−1,N , (A.3)

�̂t,1 =V
(
xt,1 | μ̄1:t−1

)=��̂t−1,N�
� + R;
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2. Time-update (i= 1, . . . ,N − 1 on the left-hand side):

x̂t,i+1 =E
(
xt,i+1 | μ̄1:t−1, μ̄t,1:i

)= x̂t,i +Kt,iνt,i, (A.4)

�̂t,i+1 =V
(
xt,i+1 | μ̄1:t−1, μ̄t,1:i

)= �̂t,i −Kt,iFt,iK�
t,i

= (
I −Kt,ibi

)
�̂t,i

(
I −Kt,ibi

)� +Kt,iω
2
i K

�
t,i,

where the scalar quantities νt,i and Ft,i, and theM × 1-dimensional vector Kt,i, are given by

νt,i = μ̄t,i − ai − bîxt,i, (A.5)

Ft,i = bi�̂t,ib�
i +ω2

i ,

Kt,i = �̂t,ib�
i F

−1
t,i .

B. Factor Loading Expressions
B.1 Gompertz-Makehammodel
In the independent-factor Gompertz-Makeham model, the factor loadings are given by

B1(t, T)= −1− e−δ1(T−t)

δ1

B2,x(t, T)= −eγ x
e(γ−δ2)(T−t) − 1

δ2 − γ

Ax(t, T)= −σ 2
1

[
T − t
2δ21

− 1− e−δ1(T−t)

δ31
+ 1− e−2δ1(T−t)

4δ31

]

− σ 2
2 e2γ x(T−t)

(δ2 − γ )2

[
1− e2γ (T−t)

2γ
− 2

1− e(γ−δ2)(T−t)

δ2 + γ
+ 1− e2δ2(T−t)

2δ2

]
.

In the dependent factor case, we have

B1(t, T)= (a1 + a2)e−δ1(T−t) − (a1 + a2e−δ2(T−t))

B2(t, T)= −eγ x

δ2
(1− e−δ2 (t − T))

A(t, T)= − 3
2δ2

[
σ 2
2 e2γ x

2δ22
+ σ 2

12e2γ x

2δ32

]

+ (T − t)

[
σ 2
2 e2γ x

2δ22
+ σ 2

12e2γ x

2δ32
+ a1σ1σ12eγ x

2δ2
+ a1σ1

2
+ a1σ1σ12eγ x

4δ2

]

− (1− e−δ1(T−t))

[
3σ1σ12eγ x(a1 + a2)

4δ1δ2
+ a1σ 2

1 (a1 + a2)
δ1

]
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+ (1− e−δ2(T−t))

[
(a1 − 1)σ1σ12eγ x

2δ22
+ a1a2(σ 2

1 + 2)
2δ2

− σ1σ12eγ x(a1 − a2)
4δ22

]

+ (1− e−2δ1(T−t))
σ 2
1 (a1 + a2)2

4δ1

+ (1− e−2δ2(T−t))

[
a22
2δ2

− a2σ1σ12eγ x

2δ22
− σ1σ12eγ x

4δ22

]

− (1− e−δ1(T−t)−δ2(T−t))

[
2a22 + a22σ

2
1 + 2a1a2 + a1a2σ1
2(δ1 + δ2)

+ σ1σ12eγ x(a1 + a2)
4δ2(δ1 + δ2)

]

+ e−2δ2(T−t)(4eδ2(T−t) − 1)

[
σ 2
2 e2γ x

4δ32
+ σ 2

12e2γ x

4δ42

]
,

where, for convenience, we define

a1 = 1
δ1

− δ12eγ x

δ1δ2
, a2 = − δ12eγ x

δ22 − δ1δ2
.

B.2 Arbitrage-Free Reduced Nelson-Siegel (AFRNS) model
In the independent factor case, the factor loadings are given by

BL(t, T)= −(T − t)

BS(t, T)= −1− e−δ(T−t)

δ

A(t, T)= σ 2
1
6
(T − t)3 + σ 2

2 (T − t)

[
1
2δ2

− 1− e−δ(T−t)

(T − t)δ3
+ 1

4
1− e−2δ(T−t)

δ3

]

On the other hand, in the dependent factor case, we have

BL(t, T)= −(T − t)

BS(t, T)= −1− e−δ(T−t)

δ

A(t, T)= 1
12δ3

[
6σLσLS(e−δ(T−t) − 1)+ 6δσLσLSe−δ(T−t)(T − t)

+ 2δ3σ 2
L (T − t)3 + 3δ3σLσLS(T − t)2

]
− 1

4δ3
[
2σLσLS + 3(σ 2

LS + σ 2
S )+ σ 2

S e
−2δ(T−t) − 2(σLσLS − 2(σ 2

LS + σ 2
S ))e

−δ(T−t)

− 2δ(σ 2
LS + σ 2

S )(T − t)− δ2σLσLS(T − t)2 − 2δσLσLSe−δ(T−t)(T − t)
]
.
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B.3 Arbitrage-Free Unrestricted Nelson-Siegel (AFUNS) model
In the independent factor case, we have the following expressions for the factor loadings

BL(t, T)= −(T − t)

BS(t, T)= −1− e−δ1(T−t)

δ1

BC(t, T)= −δ2(T − t)
1− e−δ1(T−t)

δ1
+ 1− e−δ3(T−t)

δ3(δ1 − δ3)

A(t, T)= 1
6
σ 2
1 (T − t)3 + σ 2

2
2δ21

(T − t)− 1− e−δ1(T−t)

δ31
+ 1− e−2δ1(T−t)

4δ31

+ T − t
2

(
σ3δ3
δ1 − δ3

)2
{[

1− 2(1− e−δ1(T−t))
δ1(T − t)

+ 1− e−2δ1(T−t)

2δ1(T − t)

]
1
δ21

+
[
1− 2(1− e−δ3(T−t))

δ3(T − t)
+ 1− e−2δ3(T−t)

δ3(T − t)

]
1
δ23

+ 2

[
1− 1− e−δ1(T−t)

δ1(T − t)
− 1− e−δ3(T−t)

δ3(T − t)
+ 1− e−(δ1+δ3)(T−t)

(δ1 + δ3)(T − t)

]
1
δ1δ3

}

Meanwhile, the expression for A(t, T) in the dependent factor case is given by

A(t, T)= 1
6
σ 2
L (T − t)3 + 1

2

[
c1
δ1

+ c2c3
δ1

+ c2c3
δ3

]
(T − t)2

+
[
c4 + c3c5 + 2c3

2δ21
+ c3c5 + 2c3 + 2c3c6

2δ1δ3
+
(
1
δ1

+ 1
δ3

)(
c23c6 − c3c5

2

)]
(T − t)

+
[
c1 + 2c2c3

2δ31

] (
e−δ1(T−t)δ1(t − T)− (1− e−δ1(T−t))

)
+ c2c3

δ33

(
e−δ3(T−t)δ3(t − T)− (1− e−δ3(T−t))

)

+
[
c3c5 − c4 + 2c3 + c3c5

δ31
+ c3 − c3c5 + c23c6

δ21δ3
− c3c5

2δ21

] (
e−δ1(T−t) − 1

)

+
[
2c23c6 − c3c5

2δ23
+ c3 + c23c6

δ1δ
2
3

] (
e−δ3(T−t) − 1

)

+
[
c3c5 − c4 − 2c3 + c23c6

4δ31
− c3c5

4δ21δ3

] (
e−2δ1(T−t) − 1

)

− c23c6
4δ33

(
e−2δ3(T−t) − 1

)
+ c3 + c23c6
δ1δ3(δ1 + δ3)

(
e−δ1(T−t)−δ3(t−T) − 1

)
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where we have
c1 = σLσLS c4 = σ 2

S + σ 2
LS

c2 = σLσLC c5 = σSσSC + σLCσLS

c3 = δ2
δ1 − δ3

c6 = σ 2
C + σ 2

LC + σ 2
SC.
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