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The objective of this three-part work is to formulate and rigorously analyse a
number of reduced mathematical models that are nevertheless capable of describing
the hydrology at the scale of a river basin (i.e. catchment). Coupled surface and
subsurface flows are considered. In this second part, we construct a benchmark
catchment scenario and investigate the effects of parameters within their typical ranges.
Previous research on coupled surface–subsurface models have focused on numerical
simulations of site-specific catchments. Here, our focus is broad, emphasising the
study of general solutions to the mathematical models, and their dependencies on
dimensionless parameters. This study provides a foundation based on the examination
of a geometrically simple three-dimensional benchmark scenario. We develop a
non-dimensional coupled surface–subsurface model and extract the key dimensionless
parameters. Asymptotic methods demonstrate under what conditions the model can be
reduced to a two-dimensional form, where the principal groundwater and overland flows
occur in the hillslope direction. Numerical solutions provide guidance on the validity of
such reductions, and demonstrate the parametric dependencies corresponding to a strong
rainfall event.

Key words: river dynamics, shallow water flows

1. Introduction

Since the publication of the Stanford Watershed Model by Crawford & Linsley (1966), a
wide range of computational models of catchment-scale hydrology have been developed
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(Singh & Frevert 2003). Indeed, over two hundred models have been identified in the
extensive review by Peel & McMahon (2020).

Such computational models are primarily designed in order to predict the evolution of
surface and subsurface flow in a particular river basin given the input precipitation via
rainfall or snowfall. These so-called rainfall-runoff models are often divided into three
classes: empirical, conceptual and physical (Sitterson et al. 2018); this last category of
physical models involves those that are developed from the known physical principles
of hydrodynamics. For instance, the Richards equation is commonly used to model the
subsurface flow through the saturated or unsaturated soil, while the Saint Venant equation
is used to model the overland and the channel flow. For a detailed introduction, see
Shaw et al. (2010). Such governing equations form the foundation of many currently
used computational integrated catchment models, e.g. MIKE SHE (Abbott et al. 1986a,b),
HydroGeoSphere (Brunner & Simmons 2012), ParFlow (Kollet & Maxwell 2006) and
OpenGeoSys (Kolditz et al. 2012).

However, in contrast to computational studies, there seems to have been more limited
work on the systematic mathematical analysis of the fundamental principles of coupled
surface–subsurface catchment-scale models. A proper mathematical formulation can allow
us to better understand the importance of parameters, establish the limits of simplifications
used in computational models and develop analytical or semi-analytical solutions in
certain scenarios.

1.1. On the development and benchmarking of computational models
The Stanford Watershed Model IV is a conceptual model, which is considered to
be amongst the earliest attempts to computationally model the entire hydrological
cycle. Its publication resulted in the subsequent development of an enormous number
of independent computational models (Donigian & Imhoff 2006). However, further
computational power was needed before the first physically based models were
implemented. Notable early examples include TOPMODEL (Kirkby & Beven 1979),
MIKE SHE (Abbott et al. 1986a,b) and IHDM (Institute of Hydrology Distributed Model,
cf. Beven, Calver & Morris 1987).

The abundance of independent catchment models results in a need to better understand
their accuracy and differences. Within the industry, such models are typically assessed
by comparing model predictions (usually after earlier calibration) with available data,
such as river flow or groundwater depth measurements (see a detailed introduction to
rainfall-runoff modelling by Beven 2011). However, there is criticism, e.g. by Hutton
et al. (2016), that the models in hydrology are often not reproducible. Beven (2018,
p. 6) highlighted some fundamental issues that continue to exist in the state-of-the-art
of catchment modelling. He noticed that:

Where model intercomparisons have been done, different models give different results, and it is
often the case that the rankings of models in terms of performance will vary with the period of
data used, site or type of application. This would seem to be a very unsatisfactory situation for the
advancement of the science, especially when we expect that when true predictions are made, they
will turn out to be at best highly uncertain and at worst quite wrong.

In response to this problem, many numerical methodologies for calibration,
cross-validation and uncertainty estimation have been developed (see e.g. Beven & Binley
1992; Gupta, Beven & Wagener 2006). These methods allow us to assess, in a more
unbiased way, the accuracy of the models. However, they do not necessarily point out
the reason for potential inaccuracies. As Kirchner (2006) argued, advancing the science of
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Figure 1. Illustration of the idealised catchment geometries developed in the works of Kollet & Maxwell
(2006) and Gilbert et al. (2016). Geometries (a) and (c) represent a tilted V-shaped river valley with two
hillslopes and a river in the middle, with the latter geometry introducing subsurface flow in the third dimension.
Geometry (b) represents a single two-dimensional hillslope with a river channel located at the right boundary.
(a) Two-dimensional tilted V-shaped catchment, (b) hillslope cross-section and (c) three-dimensional tilted
V-shaped catchment.

hydrology requires developing not only models that match the available data, but models
that are theoretically justified.

Independently, there has been an effort to develop simple (idealised) catchment
geometries that can be used as benchmarks to assess the accuracy of integrated catchment
models in fully controlled conditions. Kollet & Maxwell (2006) used a tilted V-shaped
catchment geometry (figure 1a) to compare predictions for overland flow given by four
different hydrological catchment models with an analytical one-dimensional solution.
Then, they introduced a simple two-dimensional hillslope (figure 1b), which they used
to explore the sensitivity of an integrated ParFlow model for geometry settings (e.g.
water table depth, hydraulic conductivity and soil heterogeneities). The same benchmark
scenarios were used by Sulis et al. (2010) to compare ParFlow and CATHY models (Bixio
et al. 2000). This study was followed by far more extensive intercomparison studies by
Maxwell et al. (2014) and Kollet et al. (2017), which used these and other benchmark
scenarios to compare the results obtained using a wide range of integrated catchment
models.

In the meanwhile, simple catchment/hillslope scenarios have also been used to assess
coupled surface and subsurface flow with other models – this includes examination of
evapotranspiration (Kollet et al. 2009), atmosphere (Sulis et al. 2017), biochemistry (Cui,
Welty & Maxwell 2014), the impact of climate change (Markovich, Maxwell & Fogg
2016) and the effects of different types of heterogeneities, e.g. the heterogeneity of the
land surface (Rihani, Chow & Maxwell 2015), soil properties (Meyerhoff & Maxwell
2011) and even flow through fractures (Sweetenham, Maxwell & Santi 2017). The two
studies by Jefferson et al. (2015) and Gilbert et al. (2016) introduced a three-dimensional
tilted V-shaped catchment with a constant soil depth (figure 1c). The authors used this
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geometry to perform a sensitivity analysis of integrated catchment models – the first study
by Jefferson et al. (2015) focused on the energy flux terms, while the second by Gilbert
et al. (2016) studied the heterogeneity of soil permeability. In both studies, the sensitivity
analysis results were used to obtain a certain level of dimensionality reduction by applying
the active subspace method (Constantine 2015).

An open question remains, however, whether one can simplify the model and its
parameter space based on the analysis of the governing equations (even in a simplified
catchment scenario), rather than based on the numerical results; this could provide more
rigorous insight into the limits of applicability of the above computational reductions.

Another aspect we shall investigate in this work concerns the study of key
non-dimensional parameters characterising surface–subsurface hydrological processes.
We highlight some prior works that have used non-dimensionalisation in order to analyse
governing equations describing individual flow components: for example, this has been
applied by Akan (1985) in the Saint Venant equations to study the water infiltration into
the ground. It has also been used by e.g. Warrick, Lomen & Islas (1990), Warrick &
Hussen (1993) and Haverkamp et al. (1998) for the study of the one-dimensional Richards
equation, describing water vertical infiltration through the unsaturated soil.

A notable work, in which non-dimensionalisation plays a prominent role for the case of
coupled surface–subsurface models, was performed by Sivapalan, Beven & Wood (1987),
and focuses on the TOPMODEL scheme of Kirkby & Beven (1979). A similar study
was performed by Calver & Wood (1991) for the IHDM model (Beven et al. 1987). In
particular, Calver & Wood (1991) define a list of ten dimensionless parameters, study the
dependencies between selected parameters and discuss the properties of the hydrographs.
However, the relevant scale of dimensionless parameters is not assessed in this latter work.

1.2. On the development of a simple benchmark model
The modern-day catchment hydrology is studied based on the simulation of complex
integrated catchment models. So far, however, the authors have not found many
comprehensive studies on the design and analysis of simple benchmark scenarios for
coupled surface–subsurface catchment models. Our work in Part 1 (Morawiecki & Trinh
2024) has initiated this task via a thorough examination of the typical parameter sizes.
In this part, we focus on the design of a three-dimensional benchmark, study its typical
dynamics and discuss its reduction to lower-dimensional models.

Compared with the existing literature, there are three novel elements in our study:

(i) Our benchmark scenario is posed on a simple geometry, but the surface/subsurface
governing equations are posed in a general three-dimensional dimensionless form.

(ii) We use the dimensionless model to provide a rigorous argument behind the
simplifications commonly used in computational hydrology. We discuss the
reduction of a problem geometry to two dimensions in detail, and comment on the
kinematic/dynamic wave approximation. We achieve this by setting clear conditions
on the size of dimensionless parameters, and justify them based on the typical values
of model parameters obtained in the previous part of our work (see table 1 from
Part 1).

(iii) We use the benchmark model to numerically explore the impact of the remaining
parameters on the system in response to intensive rainfall. Because we attempt to do
this in a systematic and analytical way, this work also serves to set a more rigorous
benchmark standard for future studies. For example, scaling laws are derived that
may serve as a benchmark for other model schemes.
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Note that our study is restricted to modelling the formation of storm flow during an
intensive rainfall (Guérin et al. 2019); however, similar benchmark scenarios can be
considered in order to study other flow regimes. This may include, for instance, drought
flow observed during a period without any rainfall (Brutsaert & Nieber 1977), or a sudden
drawdown drainage when a rapid change of water level occurs at the outlet (Sanford,
Parlange & Steenhuis 1993).

We start by formulating a three-dimensional benchmark scenario in § 2, which is
non-dimensionalised in § 3. In § 5 we show that this model can be reduced to a
two-dimensional form by neglecting the subsurface and overland flow component in the
y-direction. Following the numerical methodology from § 6, this model simplification is
numerically assessed in § 7. The impact of each parameter in the resulting two-dimensional
model is summarised in § 8, which is followed by the discussion in § 9.

Symbols. There are many symbols in this work. For ease of reference, we provide a list
of symbols in tables 2 and 3 in Appendix A.

2. Formulation of a simplified three-dimensional catchment model

In this section, we formulate a simplified catchment model, inspired by the
infiltration-excess, saturation-excess and tilted V-shaped catchment scenarios from the
benchmark study by Maxwell et al. (2014).

We introduce the following three scenarios, as depicted in figure 2.

(a) The V-shaped catchment. This scenario, shown in figure 2(a), represents a V-shaped
catchment with a thick aquifer, where subsurface water is transferred both through
the soil and through the underlying bedrock. The aquifer dimensions are Lx × Ly ×
Lz, where Lz is the thickness of the permeable layer of the aquifer. The elevation
gradient along the hillslope is denoted as Sx, and along the direction of the river
as Sy. Similar to the V-shaped scenario studied by Maxwell et al. (2014), we shall
assume that the channel has a constant width, w, and zero depth, d = 0. Later in
§ 5, we demonstrate that under certain conditions, the scenario reduces to largely
two-dimensional dynamics along the hillslope.

(b) The deep aquifer. This scenario, shown in figure 2(b), represents a two-dimensional
hillslope with a thick aquifer, where the subsurface water is transferred through both
the soil and the underlying bedrock. Following the infiltration- and saturation-excess
scenarios discussed in Maxwell et al. (2014), the channel is assumed to have a
rectangular xz cross-section with width, w, and depth, d.

(c) The shallow aquifer. This scenario, shown in figure 2(c), represents a catchment with
a low-productive aquifer, in which the subsurface water is transferred only through
a thin soil layer. Mathematically, the geometry of the problem is equivalent to the
deep aquifer scenario with Lz � Lx. We analyse this scenario in Part 3.

The focus of work in this Part 2 is the study of the V-shaped catchment scenario and
its reduction to a two-dimensional deep aquifer scenario. In Part 3, we shall demonstrate
that under the additional restrictions of the shallow aquifer scenario, further analysis can
be performed through a long wavelength reduction. In the V-shaped catchment scenario,
an orthogonal coordinate system (x, y, z) is chosen such that z is vertical and y is directed
along the channel. Using the reflection symmetry of the catchment, we can describe the
catchment behaviour by only considering a hillslopes only on one side of the river.

When formulating the governing equations for overland and subsurface flow, we are
going to use a more convenient non-orthogonal coordinate system, where the axes (x̂, ŷ, ẑ)
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Figure 2. Simplified catchment geometry in the considered scenarios (not to scale). (a) V-shaped catchment
scenario, (b) deep aquifer scenario and (c) shallow aquifer scenario.

are directed along the hillslope edges. Hence, x̂ is directed along the hillslope (x̂ = 0
representing the location of the channel), ŷ along the channel (ŷ = 0 representing the
location of the outlet) and ẑ vertically (ẑ = 0 representing the bottom of the aquifer).
After the coordinate transformation, the entire catchment can be represented as a cuboid
of dimensions Lx̂ × Ly × Lz. The following coordinate transformation is used:

x = x̂

√
1 −

(
Sy

Sx

)2

, y = x̂
Sy

Sx
+ ŷ, z = Sxx̂ + Syŷ + ẑ. (2.1a–c)

We introduced Lx̂ to represent the catchment width along the x̂ direction given as

Lx̂ = Lx√
1 −

(
Sy

Sx

)2
. (2.2)

The land surface in this geometry corresponds to

Hsurf (x̂, ŷ) = z(x̂, ŷ, ẑ = Lz) = Sxx̂ + Syŷ + Lz. (2.3)

Note that real-world systems are characterised by different levels of heterogeneity of
the surface, soil, and parent material properties. Here, in order to construct a minimal
model, we consider properties to be homogeneous; this is similar to the assumptions
made by Maxwell et al. (2014). Thus, the surface is assumed to have uniform roughness,
and the properties of soil and rock layer are assumed to be homogeneous, i.e. have a
uniform hydraulic conductivity and water-retention curve. Also, we assume that the soil
and bedrock do not include the presence of macropores and fractures, which would lead to
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the formation of preferential flow – see more in the reviews by Bouma (1981) and Neuzil
& Tracy (1981). Because of the last assumption, the model may not properly represent the
infiltration through the unsaturated zone in many of the real-world systems. As noted e.g.
by Beven & Germann (2013), including these effects in the model may significantly affect
the time scale of infiltration.

2.1. Asymptotic limits of geometrical parameters
It is convenient to discuss the asymptotic limits of the key non-dimensional parameters
that characterise the geometry. First, we have the slope ratios between the channel and
hillslope directions

ε = Sy

Sx
, (2.4)

which for a typical UK catchment is ε ∈ [0.13, 0.25] (the estimates represent the
interquartile range based on parameters characterising over 1200 UK catchments, values
of which were estimated in Part 1 (here the first quartile is 0.13, and the third quartile
is 0.25)). We also have the aspect ratio between the catchment height and the catchment
dimension along the river

βzy = Lz

Ly
, (2.5)

which for a typical UK catchment is βzy ∈ [0.0007, 0.025]. Finally, we have the aspect
ratio between the catchment height and the catchment length along the hillslope

βzx = Lz

Lx̂
, (2.6)

which for a typical UK catchment is βzx ∈ [0.1, 2.1]. Note that as βzy/βzx → 0, we get
long catchments with a width much shorter than their length, while for βzy/βzx → ∞, we
get short catchments with a width much longer than their length.

The impact of these two parameters on the catchment geometry is schematically
presented in figure 3. Here, we draw lines of constant topographic elevation on a projection
of the catchment onto z = 0. Note that, for example in figure 3(a) for Sy = 0, surface and
subsurface flow will typically occur in the x direction, perpendicular to the river direction.
In contrast, for figure 3(c), we may expect to observe a significant flow component parallel
to the river direction.

It is important to remember that, since our interest is in the study of the benchmark
model, we are not necessarily limited to studying only physical regimes. That is, it is still
interesting to study the asymptotic limits so that we can establish the qualitative trends.

2.2. Relationship to Maxwell et al. (2014)
Here, we briefly outline how the scenarios introduced above relate to the scenarios
presented in the benchmark analysis of Maxwell et al. (2014).

In §§ 4.1 and 4.2, Maxwell et al. (2014) introduce two scenarios called the infiltration
excess and saturation excess, respectively. In the infiltration scenario, precipitation exceeds
the saturated soil conductivity (r > Ks). Only part of the precipitation infiltrates through
the soil, while the remaining part accumulates at the surface to form an overland flow (the
so-called Horton overland flow). In the saturation-excess scenario (r < Ks), overland flow
is not generated unless the entire soil becomes fully saturated.
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Increasing Sy (increasing ε)

(a) (b) (c)

(d) (e) ( f )

Increasing Ly (decreasing βzy)

Figure 3. These illustrations provide a guide to understand the impact of changing values of the slope, Sy
(a–c), and length, Ly (d– f ) on our V-shaped catchment geometry (the channel is shaded). Lines of constant
elevation of the topography are represented with dashed lines, drawn on top of a projection of the catchment
onto z = 0. By the definition of a catchment, the top and bottom boundaries are perpendicular to lines of
constant elevation (since an unperturbed flow will follow lines of the steepest descent). These dashed lines help
to visualise the geometry of the later contour plots.

Γs

ΓR

ΓB
ΓR

ΓB

ΓI

ΓO

(a) (b)

Figure 4. Boundaries defined for the V-shaped tilted catchment. (a) Boundaries for the subsurface flow and
(b) boundaries for the surface flow.

Both scenarios are posed on a single hillslope, which represents a thin layer of soil
(Lz = 5 m) with a slope following the x direction, while the river is assumed to have a fixed
surface water height. Thus, this geometry represents the shallow aquifer scenario shown in
figure 2, where the flow takes place only in a thin layer of the soil. Note that this geometry
does not include water infiltration to the deeper permeable layers of the parent material (as
in the deep aquifer scenario in figure 2), which is an effect that characterises the majority
of the real-world aquifers (note a small area of aquifers without the groundwater on the
UK map in figure 4 from Part 1).

A second limitation of the geometries considered by Maxwell is that there is no slope
along the river, which drives the flow down the river valley. Although the authors included
the slope perpendicular to the hillslope in a separate scenario introduced in their § 4.3
(V-shaped catchment), this benchmark scenario does not include subsurface modelling;
therefore, the water infiltration into the soil was not studied.
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Our scenarios in this work combine the above two elements, i.e. groundwater flow
through deep aquifers and slope both perpendicular and along the river. Therefore, we
consider a V-shaped catchment with an additional z-dimension allowing the saturation to
vary with depth, as in the hillslope scenario. The need to introduce a tilted coordinate
system comes from the fact that the elevation gradient (determining the direction of
surface flow) is not perpendicular to the river, since it must have a small component
along the y-axis. In order to satisfy the no-surface flow boundary condition at the
catchment boundary, the bottom and top boundaries of the hillslope are thus inclined by
a small angle, φ = asin(Sy/Sx), relative to the rectangular domain in the infiltration- and
saturation-excess scenarios.

Last but not least, we use the typical catchment parameters as estimated in Part 1; note
that these values can be significantly different from those numerical values used in the
work of Maxwell et al. (2014). Based on our simulations, we observed that if one were
to use the parameter values given by Maxwell et al. (2014), this would lead to unrealistic
steady states, where the seepage covers almost the entire catchment (even for relatively
low levels of mean precipitation).

3. Governing equations (dimensional)

We begin with the dimensional model. As introduced in § 2 of Part 1, we consider three
types of flow: the subsurface flow (the three-dimensional (3-D) Richards equation), the
overland flow (the 2-D Saint Venant equations) and the channel flow (1-D Saint Venant
equation). In this section, we present governing equations for each of the flow components
in our benchmark scenario, together with the corresponding boundary conditions. General
reviews of these governing equations can be found in the works of Farthing & Ogden
(2017), Schaake (1975) and references therein.

3.1. Three-dimensional Richards equation for the subsurface flow
The subsurface flow qg(x, y, z, t) depends on the pressure head hg(x, y, z, t). Its evolution
in time t is commonly modelled using a 3-D Richards equation (see e.g. Dogan & Motz
2005; Weill, Mouche & Patin 2009), which is given by

dθ

dhg

∂hg

∂t
= ∇ · qg, where qg = KsKr(hg)∇(hg + z). (3.1)

Here, ∇ = (∂/∂x, ∂/∂y, ∂/∂z) is a standard nabla operator, Ks > 0 is the saturated soil
conductivity and dθ(hg)/dhg is the so-called specific moisture capacity. We assume
that the volumetric water content θ(hg), and relative hydraulic conductivity Kr(hg) are
functions of the pressure head given by the Mualem–van Genuchten (MvG) model (Van
Genuchten 1980)

θ(hg) =
⎧⎨
⎩θr + θs − θr

(1 + (αMvGhg)n)m hg < 0

θs hg ≥ 0
, (3.2a)

Kr(hg) =
⎧⎨
⎩

(1 − (αMvGhg)
n−1(1 + (αMvGhg)

n)−m)2

(1 + (αMvGhg)n)m/2 hg < 0

1 hg ≥ 0
. (3.2b)

Here, the value of hg = 0 corresponds to the pressure head at the groundwater table
surface, which separates the fully saturated zone (hg > 0) from the partially saturated
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zone (hg < 0) (see the later figure 6(a) for a reference image). In essence, the MvG model
describes the key hydraulic properties of the soil, hydraulic conductivity and saturation
as nonlinear functions of the pressure head hg. The model introduces further parameters
αMvG, θr, θs, n and m = 1 − 1/n, which depend on the soil properties. The residual water
content θr and saturated water content θs represent the lowest and the highest water content,
respectively. The αMvG parameter in m−1 represents the scaling factor for the pressure head
hg (m). The n coefficient describes the pore sizes distribution.

3.2. Two-dimensional Saint Venant equations for the overland flow
If the precipitation exceeds the inflow into the soil, water can accumulate on the surface
and form overland flow. Typically, and following e.g. Tayfur & Kavvas (1994) and Liu
et al. (2004) this flow is described using the 2-D Saint Venant equations that govern the
overland water height, hs(x, y, t). Following the discussion in § 2.2 of Part 1, we consider
mass and momentum conservation. Firstly, the continuity equation is given by

∂hs

∂t
= ∇ · qs(hs) + Reff − I, (3.3)

where I = I(x, y, t) is the infiltration rate, and Reff = R(x, y, t) − ET(x, y, t) is the
effective precipitation rate, which we define as the difference between the precipitation
rate, R, and the evapotranspiration rate, ET .

The flux, qs, that appears in the Saint Venant equation (3.3), is commonly obtained
in hydrology using an empirical relationship known as Manning’s law. Written in vector
form, it is given by

qs = 1
ns

h5/3
s

Sf√|Sf |
, (3.4)

where ns is an empirically determined value known as Manning’s coefficient, and
describes the overland surface roughness; Sf is a dimensionless friction slope defined as
gradient of energy of water per unit weight.

When Manning’s law in (3.4) is substituted into the continuity equation (3.3), this
yields a single equation for the two unknowns, hs and Sf . In general, the friction slope,
Sf , is given by momentum conservation (cf. (2.7) in Part 1). However, in computational
integrated catchment models, a kinematic approximation is often used which neglects all
effects on Sf other than gravity. This approximation is used in e.g. Parflow (Maxwell et al.
2009), although there are others such as e.g. MIKE SHE that implement a more complete,
diffusive approximation (MIKE SHE 2017). In the case of the kinematic approximation

Sf ∼ S0, (3.5)

where S0 = −∇Hsurf is the elevation gradient. In this paper, we shall adopt the above
kinematic approximation. This reduction significantly simplifies the problem since, under
this approximation, the overland flows only down the hillslope (the x̂-direction). As Daluz
Vieira (1983) argues, this approximation may give inaccurate predictions when the system
is close to reaching a steady state.

3.3. One-dimensional Saint Venant equation for the channel flow
Finally, we need to formulate the governing equation for the surface flow in a rectangular
channel of width w. The channel is directed along the ŷ-axis. Following Daluz Vieira
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Asymptotic analysis of catchment models

(1983) and Chaudhry (2007), the channel flow is modelled as a 1-D Saint Venant equation
that governs the channel water height, z = hc(ŷ, t), and is given by

w
∂hc

∂t
= qin − ∂qc

∂ ŷ
, (3.6)

where w(hc, x̂) is the channel width (constant in the case of a rectangular channel), and qin
is a source term governing the total surface and subsurface inflow into the river. As for the
overland equations, the flux, qc, is assumed to be given by the empirical Manning’s law,
which takes the form

qc = A

√
Sriver

f

nc

(
A
P

)2/3

, (3.7)

where A is the channel cross-section, P is the channel wetted perimeter, nc is Manning’s
coefficient dependent on banks and channel bed roughness and Sriver

f is the friction slope,
which under kinematic approximation is equal to the elevation gradient along the river

Sriver
f = Sy. (3.8)

In summary, the solution of the channel flow involves the substitution of Manning’s
equation (3.7) and the friction slope (3.8) into the Saint Venant equation (3.6). For the case
of the V-shaped catchment illustrated in figure 2, where there is a rectangular channel, this
involves setting the area A = whc and P = w + 2hc.

The above channel flow model, when coupled to the hillslope forms a challenging
numerical computation due to the nonlinearity. Instead, for the purpose of numerical
computation, we apply a model simplification of the channel flow similar to what
is considered by Maxwell et al. (2014). In this simplification, we set A = whc and
approximate P ≈ w, and hence ignore the friction effects of the channel sidewalls. In this
case, Manning’s equation (3.7) becomes

qc = w

√
Sy

nc
h5/3

c . (3.9)

The later simulations will thus involve the solution of the Saint Venant equation (3.6) with
the shallow Manning equation (3.9) and (3.8). The advantage of the above approximation is
that the channel flow problem satisfies a similar partial differential equation to the surface
flow, but with adjusted coefficient values.

3.4. Boundary conditions
The domain consists of four types of boundaries: (i) the catchment boundary, ΓB, both
for the surface and subsurface part of the domain, including the bedrock constraining the
aquifer from the bottom; (ii) the land surface Γs; (iii) the river bank, ΓR; (iv) the river
outlet, ΓO; and (v) the river inlet ΓI (see figure 4).

(i) Firstly, there is no surface flow through the catchment boundary. Also, for simplicity,
we will assume that there is no groundwater flow through this boundary – the
rainwater can only leave the catchment via the channel flow. Hence, on ΓB, we set
no-flow conditions for both subsurface and surface flow

qg · n = 0, qs · n = 0 on ΓB. (3.10a)

Alternatively, one could introduce a free-flow condition for the groundwater flow,
qg · n = 0, to allow for the outflow of the groundwater flow through the catchment
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boundary. In this work, we have chosen no-flow conditions to guarantee that the
entirety of the rainfall eventually reaches the channel, which simplifies the resultant
water balance.

(ii) Next, on the land surface, Γs, continuity of pressure and flow between the
groundwater and surface water yields

hs =
{

0 if hg < 0
hg if hg > 0

and qg · n = I on Γs. (3.10b)

This first condition imposes continuity of pressure only if the groundwater reaches
Γs, while the second imposes the condition of rain infiltration, I.

(iii) On the river bank, ΓR, we also impose continuity of pressure between the channel
water, which is characterised by a hydrostatic profile, h(z) = hc − z, and the
subsurface pressure head, hg

hg = hc − z on ΓR. (3.10c)

(iv) At the inlet, located at the upstream end of the river, ΓI , we can impose an inflow
from the upstream part of the catchment, which is located outside of the modelled
domain. In general, it can change over time, and so

qc = qinput(t), on ΓI . (3.10d)

In our benchmark scenario, we assume for simplicity that qinput = 0, as if the
top boundary represents the start of the stream. Such a stream is referred to as a
first-order stream (see Strahler 1957), however, in real-world situations the first-order
stream does not reach the catchment divide. The presented model can be also
generalised to represent higher-order streams by including a non-zero upstream
inflow qinput(t).

Note that the kinematic approximation (3.5) that we follow in our work reduces the
overland and channel equations to advective equations, rather than advective–diffusion
equations. Thus, in this approximation, the downstream boundary conditions – at the river
bank ΓR (for overland flow) and at the catchment outlet ΓO (for channel flow) – do not
have to be imposed.

This means that, effectively, the channel flow does not impact the overland flow.
However, overland flow impacts the channel flow thought the inflow term qin in (3.6).
According to flow continuity, the input to the channel flow is the sum of the overland flow
and the total groundwater flow, integrated over the entire channel perimeter at the given
cross-section. Thus

qin = qs|ΓR · n +
∫

ΓR

qg · n dl. (3.11)

Two-way coupling between channel flow and subsurface flow is maintained via
boundary condition (3.10c), and two-way coupling between the overland flow and
subsurface flow is maintained via (3.10b).

3.5. Initial conditions of the benchmark
The choice of the initial condition is more arbitrary. In contrast to the benchmark scenarios
by Maxwell et al. (2014), which assumed a constant groundwater depth, we select a more
realistic setting, where the groundwater profile is given by its typical shape for a given
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Asymptotic analysis of catchment models

catchment. Thus, we find a steady state of hg(x, y, z), hs(x, y) and hc(x, y) given by the
time-independent versions of the governing equations (3.1), (3.3) and (3.6), solved for a
given mean precipitation rate Reff = R0

∇ · qg = 0, ∇ · qs + R0 − I = 0, and qin − ∂qc

∂ ŷ
= 0. (3.12a–c)

Once this initial state is found by solving the above system of equations, we then explore
the evolution of hg(x, y, z, t) and hs(x, y, t) caused by intensive rainfall, Reff > R0, which
moves the system away from the initial state.

4. Governing equations (non-dimensional)

4.1. Non-dimensionalisation
The governing equations for subsurface, surface and channel flow presented in § 2 are
now written in tilted coordinates (x̂, ŷ, ẑ) (cf. (2.1a–c)) and given in dimensional form
in Appendix B.1. In order to understand the relative size of the terms appearing in the
governing equations, we non-dimensionalise these equations. The following scalings are
used:

x̂ = Lx̂x̂′, hg = Lzh′
g, t = t0t′, Reff = rR′

eff ,

ŷ = Lyŷ′, hs = Lsh′
s, θ(h) = θ ′(h′), I = rI′,

ẑ = Lzẑ′, hc = Lch′
c, Kr(h) = K′

r(h
′), qin = rLx̂q′

in.

⎫⎪⎬
⎪⎭ (4.1)

Here, r is an average value of Reff . We shall choose the characteristic time, t0, overland
water height, Ls, and channel water height, Lc, according to

t0 = Lz

Ks
, Ls =

(
Lx̂nsr

S1/2
x

)3/5

, Lc =
(

ncrLx̂Ly

wS1/2
y

)3/5

. (4.2a–c)

The choice of the above quantities comes from balancing the leading terms in the
governing equations for subsurface, overland and channel flow, respectively. Their
formulation, in terms of tilted coordinates, is presented in (B1), (B2) and (B3) in
Appendix B.1.

Additionally, the non-dimensional terms in (4.2a–c) have straightforward physical
interpretations. The time scale, t0, describes a characteristic time that rainwater needs to
penetrate the aquifer of thickness Lz, infiltrating with a characteristic speed Ks (such flow
occurs due to gravity if there is no hydraulic gradient, e.g. during uniform rainfall). The
quantity Ls represents the height of the overland flow at the river bank in a steady state
with rainfall r (assuming that the entire rainfall forms an overland flow, i.e. no infiltration
appears). Similarly, Lc is an approximate height of the flow in a wide channel at the river
outlet in a steady state. Crucially, we note that the choice of the above scaling seems to
be correct for our chosen benchmark, with all relevant dimensionless quantities of typical
order unity in the numerical simulations of § 6.2.

It should be noted that, even though t0 is a characteristic time of the vertical flow through
the soil, other time scales are present. For example, we shall observe typically shorter time
scales for the overland flow, and much longer time scales for the horizontal flow through
the soil. Further discussion of the separation of time scales appears in Part 3 of our work.
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4.2. Summary of governing equations and parameters
We collect the non-dimensional governing equations from Appendix B.2. To review, our
hydrological problems in the 3-D geometry consist of solving three time-dependent partial
differential equations for three unknowns: (i) a 3-D Richards equation for the subsurface
flow (4.3a); (ii) a 2-D Saint Venant equation for the overland flow (4.3b); and (iii) a
1-D Saint Venant equation for the channel flow (4.3c). In the tilted frame, these are,
respectively,

(Subsurface)
dθ

dh

∣∣∣∣
h=hg

∂hg

∂t
= N1(hg) + β2

zyN2(hg) + εβzyN3(hg), (4.3a)

(Overland) τs
∂hs

∂t
= ∂

∂ x̂
(h5/3

s ) + Reff − I, (4.3b)

(Channel) τc
∂hc

∂t
= qin − ∂

∂ ŷ
(h5/3

c ), (4.3c)

where the subsurface equations involve operator definitions

N1(hg) = ∂

∂ ẑ

[
Kr(hg)

(
∂hg

∂ ẑ
+ 1
)]

+ βzxSx
∂

∂ x̂

[
Kr(hg)

(
2
∂hg

∂ ẑ
+ 1
)]

+β2
zx

(
1 + S2

x

) ∂

∂ x̂

[
Kr(hg)

∂hg

∂ x̂

]
− dθ

dh

∣∣∣∣
h=hg

∂hg

∂t
, (4.4a)

N2(hg) = (1 + S2
y)

∂

∂ ŷ

[
Kr(hg)

∂hg

∂ ŷ

]
, (4.4b)

N3(hg) = 2βzx(1 + S2
x)

∂

∂ x̂

[
Kr(hg)

∂hg

∂ ŷ

]
+ Sx

∂

∂ ŷ

[
Kr(hg)

(
2
∂hg

∂ ẑ
+ 1
)]

. (4.4c)

Expressions for θ(hg) and Kr(hg) are provided in Appendix B.2. Each partial differential
equation in (4.3) is solved subject to boundary conditions posed on the domain boundaries
given by (B8a)–(B8d).

Finally, these equations are characterised by nine independent dimensionless
parameters, {βzx, βzy, σx, σy, τs, τc, γ , α, ρ}, with definitions provided in Appendix C.

5. Model reduction to a two-dimensional model

In § 2, we formulated a general 3-D catchment model. The purpose of this section is
to discuss the non-dimensionalisation of the model, which subsequently allows for the
determination of the key dimensionless parameters governing the system. Once these are
known, we may use the typical dimensional values established in Part 1 in order to compare
the relative strengths of the various physical effects of the system.

We highlight two approximations:

(i) Considering either small river slope (Sy � Sx), short (Ly � Lz), or long catchment
(Ly � Lz) approximations together with the necessary low channel limit (Lc � Lz),
we may reduce the general 3-D governing equations for hg and hs to a 2-D form
neglecting the flow along the y-axis.

(ii) In addition, in the case of the shallow aquifer scenario (Lz � Lx), we may apply
a shallow-water approximation to further reduce the 2-D hillslope model to a 1-D
model.
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Asymptotic analysis of catchment models

In this section, the approximations given in (i) are discussed. The regime of (ii) and its
consequences are explored in Part 3 of our work.

5.1. Discussion of the low channel height limit, Lc � Lz

The 3-D model in (x, y, z) can be formally approximated by a 2-D model in (x, z) if
the subsurface profile, hg(x, y, z, t) ∼ hg,0(x, z, t), and the surface profile, hs(x, y, t) ∼
hs,0(x, t), and both asymptotic approximations are consistent with the initial and boundary
conditions (at the leading order).

We observe that the boundary condition (3.10c), along the channel, ΓR, depends in
general on the channel water height, hc( y, t), which can vary along the catchment. For
example, the dimensional height can vary from hc = 0 at y = Ly (if there is no inflow to
the river from the upstream point) to a dimensional height hc = Lc at y = 0 (in the case
of the steady-state outflow). Returning to non-dimensional values for hg, hc and z, (3.10c)
yields

hg = Lc

Lz
hc − z, on ΓR. (5.1)

Typically, the values of Lc/Lz are very small: based on the UK catchment data from Part
1, we can extract the interquartile range for Lc/Lz, namely [0.0011, 0.0147] (i.e. the middle
half of UK catchments have Lc/Lz within this interval). Thus, even though the channel
water height may vary along the channel, it is negligibly small comparing with the typical
variation of the pressure head. In the limit of Lc/Lz → 0, we see that the subsurface
boundary condition is

hg ∼ −z, on ΓR, (5.2)

which is no longer y-dependent.

5.2. An asymptotic expansion for small river slopes, in ε = Sy/Sx

Although the remaining boundary conditions ((3.10a)–(3.10d) without (3.10c)) are not
explicitly y-dependent, the solution h(x, z, t) may still exhibit leading y-dependent effects
due to e.g. the topography. However, there are certain approximations in which these
effects are very small – for example, when the slope along the channel Sy is much
lower than the slope along the hillslope Sx. Note that the aspect ratio introduced in § 2.1,
ε = Sy/Sx, typically has small values (half of UK catchments have ε between 0.13 and
0.25). Here, we shall demonstrate that when ε � 1 (equivalent to Sy � Sx), the solution
is expected to be predominantly two-dimensional.

Firstly, we rewrite the set of dimensionless governing equations for the subsurface and
overland flows, (B4) and (B5), in a simpler form highlighting its structure

(Subsurface)
dθ

dh

∣∣∣∣
h=hg

∂hg

∂t
= N1(hg) + β2

zyN2(hg) + εβzyN3(hg), (5.3a)

(Overland) τs
∂hs

∂t
= ∂

∂ x̂
(h5/3

s ) + Reff − I, (5.3b)

where the nonlinear operators, Ni, for i = 1, 2, 3 are defined in (B13) in Appendix B.2.
Note that these operators are dependent on hg and hs, and independent of ε and βzy, which
are the only dimensionless parameters involving Sy and Ly.
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When ε = 0, we can verify that the solutions are independent of ŷ, i.e. they can be
written as hg(x̂, ŷ, ẑ) = hg,0(x̂, ẑ) and hs(x̂, ŷ) = hs,0(x̂). This is caused by the combination
of three facts:

(i) term N1(hg) is independent of ŷ;
(ii) operators N2 and N3 applied to a function independent of ŷ become 0; and

(iii) the no-flux boundary condition at ŷ = 0, 1 in (B8a) is then

∂hg

∂ ŷ
− ε

1 − ε2

(
βzx

βzy

∂hg

∂ x̂
− ε

∂hg

∂ ŷ
− 2Sx

βzy

∂hg

∂ ẑ

)
= 0. (5.4)

Hence, for ε = 0, the above boundary condition is satisfied by hg = hg,0(x̂, ẑ).
(iv) From (5.3b) only Reff and I can be ŷ-dependent terms, but in the considered scenario

Reff is constant, and I(x̂, ŷ) is ŷ independent as long as hg is.

Essentially, ε = 0 is associated with a zero gradient along the river, i.e. there is no
forcing flow in the ŷ-direction, and the domain becomes transitionally symmetric in that
direction.

There is an important consideration in the formal limit as Sy ∝ ε → 0. In this limit,
holding other parameters fixed, the Lc defined in (4.2a–c) tends to ∞, and so the Lc � Lz
condition from (5.1) is no longer satisfied. This is due to the fact that when reducing the
gradient along the channel, Sy, the channel water height must increase in order to maintain
a significant channel flow (cf. Manning’s law (3.9)). Therefore, we would expect for a 2-D
dynamics to dominate when (

ncrLx̂Ly

wL5/3
z

)2

� Sy � Sx. (5.5)

Above, the expression on the left-hand side is obtained from the definition of Ly from
(4.2a–c), and represents the value of Sy, for which Lc = Lz. In real-world situations, Sy
(with a median value of 0.014 based on the data collected in Part 1) is higher by a few
orders of magnitude over this threshold (with a median value of 6.1 × 10−11), and so only
the second approximation in (5.5) needs to be considered.

5.3. Asymptotic expansions for short (βzy � 1) and long (βzy � 1) catchments
There are additional limits that allow us to reduce the 3-D problem into simpler 2-D
formulations at the leading order, and these involve the non-dimensional geometrical
parameter

βzy ≡ Lz

Ly
. (5.6)

For instance, in the limit as βzy → ∞, the 3-D catchment reduces to an infinitely thin
hillslope profile with a negligible flow in the perpendicular direction to the hillslope (since
we imposed no-flow conditions at ŷ = 0 and ŷ = 1). Equivalently, this corresponds to an
asymptotically short section of a river. From (5.4), we see that the leading-order profile
should satisfy the dhg,0/ dŷ = 0 condition at ŷ = 0, 1, which is automatically satisfied for
a ŷ-independent solution. As argued in the previous section, we also conclude that such a
ŷ-independent solution will also satisfy the governing equations (5.3).
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Boundary layer around y  = 1

Boundary layer around y = 0Boundary layer around y = 0

Approximately two-dimensional solutionApproximately two-dimensional solution
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ˆ̂
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Figure 5. This graphic shows the steady-state depth of the groundwater table, according to the 3-D model.
We note that the solution is mostly ŷ-independent, except for two apparent boundary layers around ŷ = 0
and ŷ = 1; near these points, the groundwater table aligns with the lines of constant elevation. The figure is
generated using the solver described in § 6 using the parameter values given in table 1, except for two values:
we use Ly = 13680 m (βzy = 0.05) and Sy = 0.0075 (ε = 0.1); as a result, this graphic matches an inset in
figure 9. The boundary layer thicknesses, δ1 and δ2, tend to zero as βzy → ∞.

Using a similar analysis to the one presented in the previous section, by balancing
leading terms in the boundary conditions (5.4), we can show that the full three-dimensional
solution can be expanded in terms of β−1

zy

hg(x̂, ŷ, ẑ) = hg,0(x̂, ẑ) + β−1
zy hg,1(x̂, ŷ, ẑ) + O(β−2

zy ), (5.7a)

hs(x̂, ŷ) = hs,0(x̂) + β−1
zy hs,1(x̂, ŷ) + O(β−2

zy ). (5.7b)

The last interesting limit we discuss is βzy → 0, which corresponds to the situation of
an asymptotically long river. Similarly, the 2-D solution satisfies the governing equations
(5.3). However, this time, it does not satisfy the no-flow boundary condition (5.4).
Therefore, we expect to observe a boundary layer around ŷ = 0 and ŷ = 1 (see figure 5).
Consequently, hg,0 and hs,0 are understood to represent the ‘outer’ asymptotic solutions,
valid for 0 < ŷ < 1.

Without loss of generality, let us consider the boundary layer near ŷ = 0. We rescale
ŷ = δŷ′ where δ(βzy) is a characteristic size of the boundary layer. After applying this
transformation, the governing equations (5.3) become

(Subsurface)
dθ

dh

∣∣∣∣
h=hg

∂hg

∂t
= N1(hg) + β2

zy

δ2 N2(hg) + ε
βzy

δ
N3(hg), (5.8a)

(Overland) τs
∂hs

∂t
= ∂

∂ x̂
(h5/3

s ) + Reff − I. (5.8b)

The 3-D effects given by N2 and N3 become significant when the characteristic size of
the boundary layer is of the order O(βzy). Hence, we conclude that the thickness of the
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Parameter Default value Parameter range Parameter Value

Ks [m s−1] 1 × 10−5 10−6–10−4 Ly [m] 945
Lx̂ [m] 6.16 × 102 102–103 w [m] 5
Lz [m] 6.84 × 102 101–103 ns [m s−1/3] 0.1
Sx [−] 7.5 × 10−2 10−2–10−1 θs [−] 0.488
r [m s−1] 2.36 × 10−7 3 × 10−8–3 × 10−6 θr [−] 0
r0 [m s−1] 2.95 × 10−8 10−9–10−7 n [−] 1.19
ns [m s−1/3] 5.1 × 10−2 10−2–10−1

αMvG [m−1] 3.7 100–101

Table 1. Columns on right present the default values and ranges of the parameters used to perform a sensitivity
analysis. Columns on the left present parameters which were not varied during the sensitivity analysis. The
length of the catchment was selected to be Ltrib

y estimated from Part 1, which represents the typical distance
between the main tributaries of the river.

boundary layer is O(1/βzy). Therefore, if we consider the βzy → 0 limit, the solution for
the problem becomes two-dimensional except for an infinitely thin boundary layer around
the boundaries.

5.4. Summary of the two-dimensional model
To summarise, we considered three approximations for small river slope (ε � 1), short
catchments (βzy � 1), and long catchments (βzy � 1). We showed that, under any of these
approximations, the model can be approximately represented in the following 2-D form:

(Subsurface)
dθ

dh

∣∣∣∣
h=hg,0

∂hg,0

∂t
= N1(hg,0), (5.9a)

(Overland) τs
∂hs,0

∂t
= ∂

∂ x̂
(h5/3

s,0 ) + Reff − I, (5.9b)

with

N1(hg,0) = ∂

∂ ẑ

[
Kr(hg,0)

(
∂hg,0

∂ ẑ
+ 1
)]

+ βzxSx
∂

∂ x̂

[
Kr(hg,0)

(
2
∂hg,0

∂ ẑ
+ 1
)]

+ β2
zx(1 + S2

x)
∂

∂ x̂

[
Kr(hg,0)

∂hg,0

∂ x̂

]
. (5.10)

Both the groundwater and overland flows reaching the channel contribute to the river
flow in the ŷ-direction governed by (B6). Thus

(Channel) τc
∂hc

∂t
= qin − ∂

∂ ŷ
(h5/3

c ), (5.11)

where the inflow qin = qin(t) is given by the total groundwater and overland inflow to the
channel. This equation allows us to find the hydrograph at the outlet of the catchment
Q(t) = qc(ŷ = 0, t). However, note that after the reduction to a 2-D model, (5.9a) and
(5.9b) are uncoupled from (5.11), and so qin can be found without solving the last equation.
Therefore, we can study the properties of the 2-D model by solving (5.9a) and (5.9b) alone,
and exploring the properties of the river inflow term qin(t). We follow this approach in the
study of the 2-D model in § 8, and in Part 3 of our work. The above system of partial

982 A29-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1032


Asymptotic analysis of catchment models

ΓR
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hs (x,t)

hg (x,z,t) hg (x̂,ẑ,t)

1

1

Lx

Lz

ẑ

x̂

z

x Sx

hs (x̂,t)

Groundwater table

hg = 0

Seepage zone

Saturated zone

Unsaturated zone

ΓB

ΓS

ΓR

(b)(a)

Figure 6. An illustration of a 2-D hillslope geometry in Cartesian coordinates (a) and in the tilted coordinate
system (b). These represent a cross-section (in the xz-plane) of the original V-shaped catchment.

differential equations forms a model describing surface and subsurface flow in a 2-D
hillslope cross-section, as presented in figure 6. The boundaries are now one-dimensional,
but the boundary conditions are the same as in the 3-D model, as given by (B8a)–(B8d).
As before, for the initial condition, we consider the steady state of the above system
for Reff = R0. In § 7, we will explore the accuracy of this approximation numerically,
investigating the size of 3-D features of the full solution and their behaviour in limits
formulated above.

A two remarks are in order:

(i) Firstly, there are some remaining terms in the dimensionless governing equations,
which are small; however, they should not be neglected. For example, coefficient
τs = Ls/(t0r) is small, which means that the characteristic time scale of
accumulation of surface water (Ls/r) is much shorter than the characteristic time
scale of vertical subsurface flow (t0). However, temporal term of (5.9b) becomes
significant for small values of t. Since the typical rainfall times are much lower than
the characteristic time of groundwater transfer (estimated as t0 ≈ 6.8 × 107 s ≈ 2
years), we are often interested in the short-time behaviour, and therefore, this term
should not be neglected.

(ii) Secondly, the βzx term is also small in the shallow aquifer scenario compared with
the leading term representing the flow in the ẑ-direction, and therefore it can be
neglected in regions with significant temporal effects (e.g. in partially saturated
zones impacted by the rainfall). However, in the fully saturated zone, where hg > 0,
we have dθ/dh = 0. In this zone, the balance between the two remaining terms
needs to be maintained – the horizontal flow becomes high enough to balance the
vertical flow. Therefore, the βzx term cannot be neglected in the fully saturated zone;
however, another simplification based on the shallow-water approximation can be
considered. This will be explored in the Part 3 of our work.

6. Numerical methodology

In order to validate the reduction of the 3-D model to the 2-D approximation and quantify
the impact of model parameters on the observed peak flow, we follow a numerical
approach.

Here, we present the numerical method used to implement the coupled surface–
subsurface model based on the governing equations introduced in § 3. To summarise, these
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(a) (b)
Ny

Nz

Nx
Nx, 1

Nx, 2

Nz, 2

Nz, 1

ν2Δz

νΔz

μΔx
μ

3Δx μ
4Δx

μ
2Δx

Δz

Δx

Figure 7. (a) Discretisation of the 3-D catchment, representing the V-shaped catchment scenario. In the case
of the 2-D deep aquifer and shallow aquifer model, we set Ny = 0. (b) Example of mesh refinement. The size
of edges is given by the geometric series with ratios μ and ν.

are

(Subsurface)
dθ

dhg

∂hg

∂t
= ∇ · (KsKr(hg)∇(hg + z)), (6.1a)

(Overland)
∂hs

∂t
= ∇ ·

(
1
ns

h5/3
s

S0√|S0|
)

+ Reff − I, (6.1b)

(Channel) w
∂hc

∂t
= qin − w

√
Sy

nc
h5/3

c , (6.1c)

subject to boundary conditions (3.10a)–(3.10d).
Our numerical implementation has two applications in this study. Firstly, in § 7 we

use the numerical scheme based on a discrete version of this equations to verify our
reductions to the 2-D problem introduced in § 5. Secondly, in § 8.2 we numerically analyse
features of a benchmark scenario in a reduced 2-D analysis. We use the same equations as
above, excluding y-dependent terms and channel flow. The source codes were written in
MATLAB and are available in our GitHub repository (Morawiecki 2022).

6.1. Model discretisation
The implementation of the 3-D and 2-D models is based on the finite volume method.
The entire hillslope is divided into Nx × Ny × Nz cells. Here, Nz is additionally split into
Nz,1 cells representing the layer of soil with the same depth as the channel, and Nz,2 =
Nz − Nz,1 cells representing deeper layers of the aquifer, as illustrated in figure 7(a). In
the case of the shallow aquifer scenario, we set Nz,2 = 0. The implementation allows for a
mesh refinement by varying the cells extent, according to a geometric series (see figure 7b).

Depending on the type of simulation, we handle the channel differently. In the case of
2-D simulations, we will assume the water level in the channel to be equal to the channel
depth (unless stated otherwise). In the case of 3-D simulations, hc( y, t) will be iteratively
computed. However, following the V-shaped catchment scenario by Maxwell et al. (2014),
we consider the channel flow in the same way as the overland flow, just with a different
Manning coefficient. This way, we neglect the interactions with the river banks; however,
the simulations are significantly more stable.

A value of hg is assigned to each cell to represent hg at the centroid of the cell. Due to
the pressure continuity condition at the surface, hs = hg, so there is no need to consider
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hs at the surface as an independent variable (the same applies to hc in 3-D simulations).
One challenge is the significant difference in the time scales between the overland and
groundwater flow (the ratio of which is quantified with the dimensionless parameter τs ≈
2.8 × 10−4). A stable numerical scheme for overland flow requires a shorter time step than
groundwater flow. Therefore, for each groundwater flow step, we compute several steps of
the surface flow, while simultaneously satisfying the continuity boundary condition at the
surface.

The groundwater in each time step is found using an implicit scheme. The following
discretised version of Richards equation (B4) for each cell is used:

Vi

θ(h′t+1
i ) + dθ

dh

∣∣∣∣
h′t+1

i

(ht+1
i − h′t+1

i ) − θ(ht
i)

�t
=

∑
j∈ neighbours

Gij, (6.2a)

where

Gij = Si,j

cos(ηi,j)

(
K′

i,j +
dK′

i,j

dh
(ht+1

u(i,j) − h′t+1
u(i,j))

)

×
ht+1

j + zj − ht+1
i − zi

‖ri→j‖
β · ri→j

‖ri→j‖ . (6.2b)

Few remarks should be made here:

(i) The left-hand side represents the estimated rate of change of the ith cell’s water
content. Here, Vi is the cell’s volume, �t is the time step duration, ht

i and ht+1
i are

the pressure head (hg) in cell i at time step t (previous one) and t + 1 (current one),
respectively, h′t

i is the pressure head computed in the previous iteration of the implicit
scheme and θ is the saturation given by the MvG model (B7).

(ii) The right-hand side represents the sum of all flows between cell i and its neighbours.
Here, Si,j is the area of the face between cell i and j, ηi,j is the angle between this face
and the line joining these cells’ centroids, ri→j is the vector from the centroid of cell i
to the centroid of cell j and zi is the z coordinate of the ith cell centroid. Additionally,
β = (β2

zx, β
2
zy, 1) is a vector describing the anisotropy coming from different scaling

factors in the dimensionless model. Also, K′
i,j is the hydraulic conductivity of the

face between cell i and j. It is computed using the upwind scheme, i.e. its value is
computed using MvG model (B7b) for h = h′t+1

u(i,j), where ui,j = i if the flow is going
from cell i to j, and ui,j = j otherwise.

(iii) The change of both θ and K is estimated using the first two terms of the Taylor
series. If the time step is short enough, the algorithm converges to ht+1

i satisfying
the continuity condition. Equation (6.2) is linear in h′t+1

i for all i, and therefore, it
can be solved using standard methods for linear algebraic equations.

(iv) After each iteration of groundwater flow, a number of iterations of overland flow is
performed. In order to guarantee numeric stability, the Courant number defined as

C = ui,j�t
‖ri→j‖ with ui,j = K′

i,j

ht+1
j + zj − ht+1

i − zi

‖ri→j‖ , (6.3)

where ui,j represents the flow speed between cell i and j, should be lower than 1 for
all pairs of computational cells. In order to achieve this, an adaptive time stepping is
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used to keep the Courant number at a given threshold value; however, additionally,
a minimum number of iterations is also preset to maintain high accuracy.

After each groundwater solver step for each cell with a face on the land surface, we
compute the total volume of the water (surface and subsurface) divided by the total area of
the top/bottom face (�x�y). Let us denote this ratio as fi,j, where i and j are the given cell’s
indices. In each iteration of the surface solver, hs (and hc in 3-D simulations) is computed
for each cell as hi,j = fi,j − f max

i,j for fi,j > f max
i,j and hi,j = 0 otherwise. Here, f max

i,j is the
maximum possible value of fi,j, corresponding to a saturated cell with hg = 0. Then fi,j is
updated using the following explicit scheme for flow given by the discretised form of the
2-D Saint Venant equation (B5)

f t+1
i,j = f t

i,j + 1
�x

(
h5/3

i+1,j − h5/3
i,j
)√

Sx
�t
ns

+ Reff . (6.4)

After the last iteration of the overland flow scheme, fi,j values are used to calculate the
pressure head hg in the subsurface cells bordering the land surface, after which the next
time step for subsurface flow is computed. After each step we evaluate the output flow. In
the case of the 3-D model, we calculate the river flow at the outlet Q(t) = qc(ŷ = 0, t),
and in the case of the 2-D model, we calculate the river inflow qin(t). These functions can
then be presented in the form of a hydrograph.

In addition to the above time-dependent solver, a steady-state solver was also
implemented. It is based on the discretisation in (6.2), where the left-hand side (temporal
term) is equal to 0. The overland flow is included as an additional flow component between
the surface cells and is solved simultaneously with the Richards equation.

The implementation described in this section was verified by successfully replicating
the benchmark results by Sulis et al. (2010) obtained for a hillslope using the ParFlow
integrated catchment model, and by Maxwell et al. (2014) for the V-shaped catchment
using the process-based adaptive watershed simulator (PAWS) model (and other coupled
surface–subsurface models). The results of this comparison are presented in Appendix D.

6.2. Example three-dimensional solution
Before proceeding to the quantitative analysis, we dedicate this section to a qualitative
discussion of the general properties of a typical solution for the presented model. Let
us consider a scenario of an intensive rainfall over the V-shaped catchment that initially
remains in equilibrium with the mean precipitation characterising the given region. In the
experiments, we find a steady-state solution for a mean precipitation r0, which is set as the
initial condition. We then simulate the reaction of the system to a constant precipitation
r > r0, and analyse the resulting river flow.

In the simulations, unless stated otherwise, all catchment parameters will be set to the
typical values characterising UK catchments extracted in Part 1, which are summarised
in table 1. For the catchment length, Ly, we took the average length of the river between
consecutive tributaries, Ltrib

y = 945 m, since at this scale, the drainage network no longer
exhibits its fractal-like finger pattern. This way, we can treat our benchmark model
as a representation of a single first-order catchment (Dietrich & Dunne 1993), or a
first-/higher-order stream, forming the base element of more complex drainage networks
(Strahler 1957). The simulation results, covering a 24 hour rainfall, are collected and
presented in figure 8.
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ŷ

ˆ

x̂

ŷ  = 0
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Figure 8. The illustration summarises the key properties of the 3-D solution obtained for the default values
of parameters from table 1. Panel (a) depicts the initial condition (steady state for mean rainfall r0 = 2.95 ×
10−8 m s−1). During the subsequent rainfall r = 2.36 × 10−7 m s−1, the water level in the channel rises, as
presented in (b), causing the flow at the river outlet to increase, as depicted by the hydrograph (c). We observe
slightly different solution profiles depending on the location along the ŷ axis – their main features are outlined
in cross-sections (d,e). The surface water height hs was magnified 5000 times, to make it visible.

Initially, the system remains in a steady state, in which the pressure head hg increases
with depth following an approximately hydrostatic profile (figure 8a). The interesting
dynamics responsible for generating the flow occurs near the surface (ẑ = 1).

The surface water is present near the channel and extends further away from it for lower
ŷ values (figure 8d– f ). However, around ŷ = 1, we do not observe surface water at all. This
is caused by a non-zero gradient Sy along the ŷ direction, forcing the groundwater flow in
that direction. We will refer to the zone in which the groundwater reaches the surface and
forms an overland flow as the seepage zone (see figure 6).
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Two distinct effects are observed when the intensive rainfall starts. Firstly, the rainfall
over the seepage zone starts to accumulate, causing the surface water to quickly rise (as
highlighted in figure 8e). Increased overland flow, leads to a rapid rise of the channel water
and resulting outflow from the catchment within the first hour (figure 8b,c).

Secondly, the rainfall outside the seepage zone starts to infiltrate the unsaturated section
of the soil, forming a characteristic wetting front (as highlighted in figure 8d). After the
infiltrating water reaches the groundwater, its level starts to rise. The rising groundwater
eventually reaches the surface, causing the growth of the seepage zone (as in figure 8 f ),
increasing the area from which overland flow reaches the river.

An essential observation for this time-dependent solution is that the characteristic
time scale of overland flow dynamics is much shorter than the characteristic time of
groundwater flow (their ratio is given by the dimensionless parameter τs ≈ 2.8 × 10−4).
This time scale separation is reflected in the shape of the hydrograph in figure 8(c), which
shows the dependence between river flow at the outlet Q(t) = qc(ŷ, t) and time t.

A multiscale behaviour can be observed, with an early-time fast rise of total flow
dominated by a rising overland flow fed by the rainfall over the seepage zone, and a
late-time slow rise of total flow caused by rising groundwater and the resulting slow
expansion of the seepage zone over time. This observation allows us both to understand
the importance of model parameters (§ 8.2) and to further simplify the problem in Part
3. Note that, for the typical parameters studied in this work, the outlet flow will continue
rising, eventually reaching a new steady state with limt→∞ Q(t) = rA. However, in case of
the default simulation settings discussed above, it requires months of constant high rainfall
for the solution to approach the new steady state. Thus, this effect is not observable over
the typical day-long scales of the presented simulations.

7. Verification of 3-D to 2-D reduction

The time-dependent simulations presented in the previous section demonstrate some of
the 3-D features that are visible in the simulations. In this section, we further investigate
these features, and show how they depend on two model parameters characterising the
catchment geometry along the ŷ direction, namely the catchment length Ly and the slope
parallel to the channel Sy. Alternatively, in terms of the non-dimensional quantities, this
corresponds to βzy and ε.

7.1. Three-dimensional features of steady-state solution
In order to develop a better understanding of the 3-D effects, we performed a series
of numerical experiments in which we found a steady state for varying values of Ly
and Sy, while keeping other parameters constant with the values provided in table 1.
The groundwater table shape corresponding to the selected steady states is presented in
figure 9.

In all cases we observe that the solution becomes less ŷ-dependent as ε → 0, as expected
from § 5. However, the dependence on βzy = Lz/Ly is more complex. The phase space can
be divided into three regions:

(i) When Ly � Lx̂/ε, the lines of constant elevation are approximately perpendicular
to the hillslope (e.g. ε = 0.1, Ly = 100). As shown in § 5, in such a case, the
leading-order (2-D) solution of the governing equations for small ε also satisfies
the boundary conditions in the leading order. In this case, we observe that the
leading-order solution follows the lines of constant elevation over the entire domain.
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0.070.060.050.040.030.020.010

βzy = 5

Groundwater depth
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ŷ

Figure 9. Groundwater table depth in steady states obtained for varying catchment length Ly = β−1
zy Lz and

slope Sy = εSx. Dashed lines represent lines of constant elevation. The entry with ε = 0.1 and βzy = 0 is the
same figure as presented in figure 5.

(ii) When Ly � Lx̂/ε, the lines of constant elevation are approximately parallel to the
hillslope (e.g. ε = 0.1, Ly = 106). In such a case, the leading-order (2-D) solution for
the governing equations does not satisfy the flow boundary condition at ŷ = 0 and
ŷ = 1. As a consequence, a boundary layer is developed near these two boundaries,
in which the lines of constant groundwater table depth become parallel to lines of
constant elevation, while in the outer solution they become perpendicular to the
hillslope. The thickness of these boundary layers δ decreases inversely proportional
to Ly (see figure 10), which is consistent with the theoretical scaling derived in § 5.3.

(iii) In the intermediate region, when Ly = O(Lx̂/ε) and δ = O(1) (e.g. ε = 0.1 and Ly =
3000), the leading-order solution does not satisfy the boundary conditions, and the
‘boundary layer’ thickness becomes large enough to impact the solution over a major
part or even effectively the entire domain. In such cases, the solution does not seem
to satisfy the 2-D approximation unless ε is small enough.

7.2. Analysis of 3-D to 2-D reduction error
Here, we follow the qualitative discussion from the previous section by quantifying the
difference between the full solution and its 2-D approximation.

In § 5, we argued that the solution for the 3-D problem can be represented as
hg(x̂, ŷ, ẑ, t) = hg,0(x̂, ŷ, t) + εhg,1(x̂, ŷ, ẑ, t) + O(ε2), where hg,0 is a 2-D solution for
ε = 0. In this section, we verify this theoretical result numerically in the case of a
steady-state solution, to which the same argument also applies.
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Figure 10. Boundary layer thickness at ŷ = 0 (a) and ŷ = 1 (b) as a function of βzy. The boundary thickness
was measured based on the groundwater depth profile along x̂ ≈ 0.46. The boundary was defined as ŷ, for
which the groundwater depth H(0.46, ŷ) is further than ±5 % from the groundwater depth evaluated in the
middle of the domain, H(0.46, ŷ = 0.5). For small βzy values, the boundary width follows δ ∝ βzy scaling. As
βzy increases, δ reaches 0.5, for which the boundary condition affects effectively the entire domain.

Finally, we estimated the mean absolute difference between hg and hg,0 by averaging
its values for all computational cells weighted by their volume. The dependence of this
mean error on Ly and ε is presented in figure 11. It confirms the asymptotic analysis from
§ 5 and the qualitative observations from § 7.1. Firstly, it confirms that the error of the 2-D
approximation increases proportionally to ε for large values of ε. However, for small values
of ε, the error increases, because the effect of y-dependent water height at the channel is
no longer negligible (see § 5.2). Secondly, it shows that the error is small for very small
values of Ly (2D solution is satisfied everywhere) and very large Ly values (2-D solution
is satisfied everywhere apart from a thin boundary layer at ŷ = 0 and ŷ = 1), but the error
is the highest for intermediate values (here around Ly = 3000).

8. Impact of physical parameters on the 2-D model

Following § 5, the inflow to the river in our benchmark scenario for Sy � Sx can be
approximated by a 2-D model. In this section, we use the numerical procedure described
in § 6 to quantify the impact of model parameters on the peak flows observed after an
intensive rainfall and link them to the key physical processes accounting for the flow
generation.

8.1. Structure of typical hydrographs
In this section, we examine, in more detail, the hydrographs that correspond to two
representative simulations. Under many sensible parameter choices, we have observed
that many flow experiments can be roughly described into these two prototypical classes.
Although this is only described qualitatively in this work, we shall justify it more
rigorously using the reduced model of Part 3.

For these simulations, we use the same parameter values as in § 6.2, with a catchment
initially remaining in a steady state with rainfall r0. The rainfall then rises to r > r0 at
t = 0. Additionally, we set Sy = 0 to reduce the problem dimension.

The numerical simulations are based on two experiments differentiated by their
r0 values: experiment (A) with r0 = 2.95 × 10−8 m s−1; and experiment (B) with

982 A29-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1032


Asymptotic analysis of catchment models

–4

–3.5
–3

–3

–2
.5

–2.5

–2

–2

–1
.5

–1.5

–1.5

–1

–1

–1

–0
.5

–0.5

0

0

0.
5

0
.5

1

101

100

10–1

10–2

10–6 10–5 10–4 10–3 10–2 10–1

log10 ‖hg – hg,0‖

βzy

ε

Figure 11. The mean absolute difference between the full 3-D solution and its 2-D approximation for small ε

as a function of ε and βzy.

r0 = 2 × 10−9 m s−1. The two corresponding hydrographs, Q(t) vs t, are presented in
the top-left insets of figures 12 and 13. For each hydrograph, solutions are presented at
four times and given in insets (a) through (d). In the insets, areas shaded blue represent
the saturated groundwater zone (with hg > 0), while shaded green areas represent the
unsaturated zone. Surface water height was magnified 2000 times, and its initial height
was highlighted in a darker blue. Only a small part of the catchment near the river is
presented.

The main difference between these two hydrographs is the existence of surface water in
the initial condition. We observe that in the case presented in figure 12, the groundwater
flow is not sufficient to transfer rainwater to the channel, and a fraction of the catchment
area (namely the seepage zone) is initially covered with surface water. In contrast, in
figure 13, initially there is no overland flow, i.e. the groundwater never reaches the surface
(except for the channel boundary). There is a significant qualitative difference between
these two cases.

8.1.1. Experiment (A): a case with an initial seepage zone
In experiment (A), we observe that the hydrograph can be roughly divided into two phases.
We propose that in these two phases, the flow increase is determined by different physical
mechanisms (similar to the 3-D case presented in figure 8).

During an early time phase (roughly first 12 minutes), we observe a significant rise in
total flow reaching the river. This corresponds to evolution between states (a) and (b) in
figure 12. We may interpret this early-time rise as a result of rainfall accumulating over the
seepage zone, enhancing the already existing overland flow. This causes the river flow to
rise by the rainfall excess over the initial seepage zone (r − r0)As, where As is the initial
area of the seepage zone (which can be measured in the simulation).
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Figure 12. Numerical solution of 2-D model for r0 = 2.95 × 10−8 m s−1 with an initial seepage zone. All
other parameters were set to the default values presented in table 1.

As a result, in a short time, we define the flow

Qcrit ≡ r0A + (r − r0)As. (8.1)

The above quantity we shall refer to as the critical flow. Here, r0A represents the initial
flow, and A = LxLy is the catchment’s area. In fact, the dashed line plotted in the
hydrograph of figure 12 is calculated via (8.1) and seems to coincide with the change
in gradient of the hydrograph.

At later times, we observe a slow growth of the total flow as a result of rising
groundwater. Within this regime, the groundwater flow increases and the seepage zone
slowly grows; consequently, there is an increased area over which an overland flow is
generated. These effects cause the river flow, Q(t), to exceed the critical flow Qcrit. If
Q(t) � Qcrit, then the river flow is mostly caused by the early-time mechanism, while if
Q(t) � Qcrit, then the late-time mechanism dominates.

It should be noted that, here, we have introduced the intuition of the critical flow in
(8.1) as a way to better interpret the numerical results. Shortly in § 8.2, we will justify
based on sensitivity analysis of the model that many numerical solutions in the phase
space do exhibit this behaviour (saturation to the critical flow). Moreover, in Part 3 of our
work, we will derive Qcrit in a more rigorous way based on the asymptotic analysis based
on a shallow-water approximation. For this case, the analogue to (8.1) will be developed
asymptotically.
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Figure 13. Numerical solution of 2-D model for r0 = 2 × 10−9 m s−1 without an initial seepage zone. All
other parameters were set to the default values presented in table 1.

8.1.2. Experiment (B): case with no initial seepage zone
In experiment (B), there is no initial seepage zone. If the rainfall, r, is smaller than a
certain value (dependent on soil geometry and properties around the channel), we may
observe a slow rise in the groundwater table gradient around x = 0, leading to an increase
in the groundwater flow. If the rainfall is higher than this threshold value (as in the case
presented in figure 12), then the gradient of the groundwater table eventually reaches the
elevation gradient.

For typical values of rainfall much higher than the threshold value, this initial phase
is very short and, in practice, not noticeable in the presented hydrograph. After that
moment, a seepage zone starts to grow, giving rise to the overland flow, which slowly
increases as the saturation front propagates. This is similar to the late-time behaviour of
the first hydrograph. Additionally, we observe a rise in the groundwater flow as a result
of the growing pressure head in the groundwater around the stream forced by the rising
groundwater table. In the first case, the rise of the groundwater table was taking place far
from the channel (relatively to its dimension), and so its effect on the groundwater recharge
to the channel is not observable.

8.2. Sensitivity analysis
In order to understand the relations between the described dynamics and model
parameters, we conducted a sensitivity analysis. We chose eight physical parameters:
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Figure 14. Results of the sensitivity analysis, showing the dependence of model parameters on the peak flow
(light blue) and initial flow (dark blue). The y-axis on each figure represents the flow expressed in m2 s−1. The
peak flow is measured for a rainfall of duration of t = 24 hours. The critical flow, represented with a dashed
line, is defined by (8.1).

catchment width Lx, aquifer depth Lz, elevation gradient along the hillslope Sx, hydraulic
conductivity Ks, precipitation rates r and r0, Manning’s constant ns and the αMvG
parameter. Each parameter was varied within the range of its typical values presented in
table 1 following Morawiecki & Trinh (2024), while keeping other parameters constant. In
figure 14, we present the peak flow and its components after 24 hours, each as a function
of the different parameter values. The critical flow calculated using (8.1) is also shown on
the graphs as a dashed line.

Based on this analysis and the investigation of the numerical solutions, the following
conclusions can be drawn:

(i) The critical flow generated by the precipitation accumulating over the initial seepage
zone is a significant component of the peak flow; this description is consistent over
the different model parameters.

(ii) The size of this seepage zone depends on the difference between (a) the total
precipitation in the initial condition, and (b) the total groundwater flow. The former,
(a), is a product of the precipitation rate, r0, and the catchment area, A = LxLy,
both of which are positively correlated with the seepage zone size. The latter, (b),
following Darcy’s law, depends on hydraulic conductivity Ks, pressure gradient
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(dependent on slope Sx) and the aquifer depth Lz, all of which are negatively
correlated with the size of the seepage zone.

(iii) The precipitation rate, r, has a significant impact on both the critical flow as given
by (8.1), and on the further growth of the overland flow. This is because it is
responsible for the speed of groundwater rising and for surface water accumulation
in the growing seepage zone.

(iv) The speed of the seepage zone growth is slower for higher slope, Sx, values, since
Sx determines how deeply the groundwater table is located beneath the surface and
how much rainwater it can absorb before reaching the surface. Also, αMvG has a
small effect on the seepage zone growth, since it determines the soil saturation above
the groundwater table. A higher αMvG causes the soil saturation to drop faster with
height, allowing it to absorb more rainwater before it saturates. A similar effect is
observed when varying other MvG model parameters (θS, θR, n). The impact of other
model parameters on the hydrograph shape after reaching critical flow is very small.

(v) The soil depth, Lz, has a significant impact on the groundwater flow only for small
values (comparable to the depth of the channel). Increasing Lz above 30 m has little
impact on the solution, since the flow at such depths is insignificant.

(vi) Manning’s constant, ns, seems to have almost no impact on the hydrograph. Its main
contribution is in affecting the overland flow speed via Manning’s law (3.4), and
so it affects the characteristic time scale given by the τs parameter. This time scale,
however, is shorter than the duration of the simulated rainfall. The effect of the ns
parameter can be significant if the rainfall duration is shorter than the time required
to reach the critical flow (which is dependent on ns). We will derive an analytical
expression for this time in Part 3 of our work.

9. Discussion

The central question presented in our work is quite simple: What is the simplest 3-D model
of coupled surface–subsurface flow on a hillslope?

Despite the fundamental nature of the above question, we have been surprised at
the lack of mathematical and fluid dynamical research on issues of this nature in the
literature. As mentioned throughout, we have been strongly motivated by the recent work
of Maxwell et al. (2014), who designed benchmark scenarios for the purpose of comparing
computational catchment models. Here, our philosophy has been more comprehensive in
nature, and we are interested in the analytical and computational properties of the model
rather than using it as a means to an end. Our benchmark involves several improvements
over those proposed previously, allowing us to replicate hydrographs similar to the ones
observed in real-world systems.

This work provides deeper insight into the mathematical structure of coupled
surface–subsurface models. We extract and interpret nine key dimensionless parameters.
As we show using asymptotic methods, under certain initial and geometric conditions
(Sy � Sx, Ly � Lx or Ly � Lx), the original formulation of the 3-D model can be reduced
to a 2-D form. We then numerically investigated the shape and scale of the 3-D features,
which subsequently allows us to quantify the error in the 3-D-to-2-D reduction.

Our sensitivity analysis of the key physical parameters reveals several interesting
dependencies. As we demonstrate, the peak flows observed during sufficiently long
rainfalls are usually caused by two mechanisms. First, there is an early-time rise due
to surface water accumulating in the part of the catchment already saturated before the
rainfall was initiated. Second, there is a late-time effect due to the slow propagation of the
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seepage zone. This two-scale behaviour can be rigorously justified based on asymptotic
analysis of the governing equations. In the accompanying Part 3 of our work, we study
the situation of aquifers with a depth much smaller than the catchment width (the
shallow aquifer scenario in figure 2). There, we shall demonstrate that a shallow-water
approximation allows us to derive analytical scaling laws for the hydrograph, and hence
precise quantification of the peak flows mentioned above.

We note some potential consequences of our benchmark model for future research.
The (relative) simplicity of our benchmark, and the clear isolation of properties such as
peak flow formation and their parametric dependencies, means that the benchmark can be
used in future studies for intermodel comparison. For example, data-based methods, such
as conceptual and statistical models, may exhibit a different dependence on catchment
properties. Then, by isolating the reasons for such discrepancies, we may better understand
the limitations of different classes of models. This potentially leads to the development
of more theoretically justified models in the future, which may offer improvements in
accuracy over a wider range of scenarios.
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Appendix A. List of symbols

For convenience, we provide a list of symbols in tables 2 and 3. The definitions of the
dimensionless parameters are provided in Appendix C.

Appendix B. Governing equations in tilted coordinates

B.1. Dimensional form
Here, we write down the governing equations introduced in § 2 in (x̂, ŷ, ẑ) coordinates as
given by transformation (2.1a–c).

The Richards equation (3.1) becomes

1
Ks

dθ

dh

∣∣∣∣
h=hg

∂hg

∂t
=
[

1 −
(

Sy

Sx

)2
]

∂

∂ x̂

[
Kr(hg)

∂hg

∂ x̂

]

+ Sy

Sx

∂

∂ x̂

[
Kr(hg)

(
Sy

Sx

∂hg

∂ x̂
+ ∂hg

∂ ŷ

)]
+ ∂

∂ ŷ

[
Kr(hg)

(
Sy

Sx

∂hg

∂ x̂
+ ∂hg

∂ ŷ

)]
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Group Symbol Description

Independent variables t time
x, y, z catchment coordinates
x̂, ŷ, ẑ tilted coordinates

Groundwater flow hg pressure head
hg,0, hg,1 terms of asymptotic expansion of hg

Ks saturated soil conductivity
Kr relative hydraulic conductivity
θ volumetric water content
θs residual water content
θr saturated water content

αMvG Mualem–van Genuchten model α parameter
n, m MvG model parameters quantifying pore size

distribution
Overland and channel flow hs, hc water height on the land surface and in the channel

hs,0, hs,1 terms of asymptotic expansion of hs
qg , qs, qc groundwater, overland, and channel flow

vs, vc velocity of overland and channel flow
Sf friction slope for the overland flow

Sriver
f friction slope for 1-D channel flow
R rainfall rate

ET evapotranspiration rate
I surface water infiltration rate

reff effective rainfall (defined as R − ET)
ns, nc Manning’s n coefficient for surface and channel

g gravitational acceleration
qin total surface and subsurface flow to the channel
A area of channel cross-section
P channel wetted perimeter

Catchment geometry Lx, Lx̂, Ly, Lz catchment/hillslope dimension along x, x̂, y, and z
Hsurf (x̂, ŷ) elevation of the land surface

S0 = −∇Hsurf elevation gradient (slope)
Sx, Sy slope measured along x̂ and y direction

φ angle between the direction of the steepest descent
and the x direction

w channel width
Scaling factors t0 characteristic time scale

Ls, Lc characteristic overland and channel water height
vx̂

s,0, v
ŷ
s,0, vc,0 characteristic scale of overland and channel flow

velocity

Table 2. First list of symbols.

+ Sx
∂

∂ x̂

[
Kr(hg)

(
Sx

∂hg

∂ x̂
+ Sy

∂hg

∂ ŷ
+ ∂hg

∂ ẑ
+ 1
)]

+ Sy
∂

∂ ŷ

[
Kr(hg)

(
Sx

∂hg

∂ x̂
+ Sy

∂hg

∂ ŷ
+ ∂hg

∂ ẑ
+ 1
)]

+ ∂

∂ ẑ

[
Kr(hg)

(
Sx

∂hg

∂ x̂
+ Sy

∂hg

∂ ŷ
+ ∂hg

∂ ẑ
+ 1
)]

. (B1)
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Group Symbol Description

Dimensionless parameters α dimensionless αMvG parameter
βzx, βzy aspect ratio of cross-section along the hillslope and

channel
ε ratio of Sy to Sx slope
γ aspect ratio of the stream’s cross-section
λs, λc ratio between surface/channel characteristic water

height and aquifer thickness Lz
ρ dimensionless rainfall defined as ρ = r

Ks
τs, τc ratio of overland/channel flow and groundwater time

scale
Numerical method Nx, Ny, Nz number of mesh cells along the x, y, and z axes

�t time step duration
Vi volume of cell i
Si,j face area between cell i and j
ri→j vector from the centroid of cell i to the centroid of cell

j
β vector of β parameters, β = (β2

zx, β
2
zy, 1)

K′
i,j hydraulic conductivity of the face between cell i and j

ui,j function returning the index of the uplift cell (i or j)
f t
i,j water volume in surface cell (i, j) divided by its base

area
�x, �y extent of the cell in the x and y direction

Table 3. Second list of symbols.

The Saint Venant equation (3.3), together with (3.4) in transformed coordinates x̂ and ŷ
becomes

∂hs

∂t
= 1

ns

∂

∂ x̂
(h5/3

s

√
Sx) + Reff , (B2)

where Reff = R − ET is the effective precipitation.
The channel flow is given by (3.6) and (3.9) combined, which for our simplified

catchment gives the last governing equation

∂hc

∂t
= qin

w
− 1

nc

∂

∂ ŷ
(h5/3

c
√

Sy). (B3)

All boundary conditions in the dimensional form are listed in § 3.4.

B.2. Dimensionless form
Now, we rewrite equations (B1)–(B3) using the dimensionless quantities introduced in
§ 4.1. Here and henceforth, we shall drop the primes, and assume that all subsequent
quantities are dimensionless. The dimensionless governing equations are as follows. First,
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the 3-D Richards equation for pressure head, hg(x̂, ŷ, ẑ)

dθ

dh

∣∣∣∣
h=hg

∂hg

∂t︸ ︷︷ ︸
≈1

= ∂

∂ ẑ

[
Kr(hg)

(
∂hg

∂ ẑ
+ 1
)]

︸ ︷︷ ︸
≈1

+ βzxSx
∂

∂ x̂

[
Kr(hg)

(
2
∂hg

∂ ẑ
+ 1
)]

︸ ︷︷ ︸
≈10−1

+ β2
zx(1 + S2

x)
∂

∂ x̂

[
Kr(hg)

∂hg

∂ x̂

]
︸ ︷︷ ︸

≈1

+ β2
zy(1 + S2

y)
∂

∂ ŷ

[
Kr(hg)

∂hg

∂ ŷ

]
︸ ︷︷ ︸

≈1†

+ 2βzxβzy
Sy

Sx
(1 + S2

x)
∂

∂ x̂

[
Kr(hg)

∂hg

∂ ŷ

]
︸ ︷︷ ︸

≈10−1†

+ βzySy
∂

∂ ŷ

[
Kr(hg)

(
2
∂hg

∂ ẑ
+ 1
)]

︸ ︷︷ ︸
≈10−2†

.

(B4)

The 2-D Saint Venant equation for overland water height hs(x̂, ŷ)

τs
∂hs

∂t︸ ︷︷ ︸
≈10−4

= ∂

∂ x̂
(h5/3

s )︸ ︷︷ ︸
≈1

+ Reff − I︸ ︷︷ ︸
≈1

. (B5)

Finally, the 1-D Saint Venant equation for channel water height hs(ŷ)

τc
∂hc

∂t︸ ︷︷ ︸
≈10−3

= qin︸︷︷︸
≈1

− ∂

∂ ŷ
(h5/3

c )︸ ︷︷ ︸
≈1

. (B6)

The definition of dimensionless parameters (βzx, βzy, τs, τc, γ ), their interpretation and
estimated values are presented in Appendix C. Numerical values under the equations
represent the typical order of magnitude of parameters multiplying the given term.
However, note that terms marked with ‘†’ symbol include the ŷ-derivative of the solution,
which, as was discussed in § 5, is ŷ-independent in the leading order. The effect of the
relative size of these terms is much smaller (by approximately one order of magnitude)
than indicated by the provided values of prefactors.

In the above equations, the dimensionless θ(h) and Kr(h) functions are given by

dθ(h)

dh
=
⎧⎨
⎩

mn(θs − θr)

h
(αh)n

(1 + (αh)n)m+1 h < 0

0 h ≥ 0
, (B7a)

Kr(h) =
⎧⎨
⎩

(1 − (αh)n−1(1 + (αh)n)−m)2

(1 + (αh)n)m/2 h < 0

1 h ≥ 0
, (B7b)

where α = αMvGLz is a dimensionless MvG α parameter.
Finally, as divided into the enumerations of § 3.4, the non-dimensional boundary

conditions are now as follows:

(i) On the catchment boundary, ΓB:

qg · n = 0, qs · n = 0 on ΓB. (B8a)
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(ii) On the land surface, Γs:

hs|Γs =
{

0 if hg < 0
λ−1

s hg if hg > 0
and qg · n|Γs = ρI. (B8b)

(iii) At the channel, ΓR:
hg|ΓR = λchc − z. (B8c)

(iv) Finally, in the river inlet, ΓI :

∂qc

∂ ŷ

∣∣∣∣
ΓI

= q′
input(t) on ΓI . (B8d)

In the above boundary conditions, we have introduced three new dimensionless
parameters: ρ = r/Ks, λs = Ls/Lz and λc = Lc/Lz. The river inflow terms in (3.11) and
(B8d) are converted to non-dimensional form, yielding

qin = qs · n|ΓR + βzx

ρ

∫
ΓR

qg · n dl. (B9)

q′
input(t) =

(√
Sy

nc
L5/3

c

)−1

qinput(t). (B10)

Two dimensionless quantities introduced above can be expressed using other quantities

λs = ρτs and λc =
√

γρτc

βzx
. (B11a,b)

Note that we have reduced eleven physical parameters, (Lx, Ly Lz, Sx, Sy, Ks, r, w, ns, nc,
αMvG) to nine independent dimensionless parameters (βzx, βzy, σx, σy, τs, τc, γ , α, ρ). This
is in agreement with the Buckingham π theorem (Buckingham 1914), which states that the
number of dimensionless parameters, p, should be equal to p = n − k, where n = 11 is the
number of physical variables and k = 2 is the number of independent physical units (here
metres and seconds).

For convenience, in § 5, we rewrote equations (B4) and (B5) in the form

dθ

dh

∣∣∣∣
h=hg

∂hg

∂t
= N1(hg) + β2

zyN2(hg) + εβzyN3(hg), (B12a)

τs
∂hs

∂t
= ∂

∂ x̂
(h5/3

s ) + Reff − I, (B12b)

where the nonlinear operators N are defined as follows:

N1(hg) = ∂

∂ ẑ

[
Kr(hg)

(
∂hg

∂ ẑ
+ 1
)]

+ βzxSx
∂

∂ x̂

[
Kr(hg)

(
2
∂hg

∂ ẑ
+ 1
)]

+β2
zx(1 + S2

x)
∂

∂ x̂

[
Kr(hg)

∂hg

∂ x̂

]
− dθ

dh

∣∣∣∣
h=hg

∂hg

∂t
, (B13a)

N2(hg) = (1 + S2
y)

∂

∂ ŷ

[
Kr(hg)

∂hg

∂ ŷ

]
, (B13b)

N3(hg) = 2βzx(1 + S2
x)

∂

∂ x̂

[
Kr(hg)

∂hg

∂ ŷ

]
+ Sx

∂

∂ ŷ

[
Kr(hg)

(
2
∂hg

∂ ẑ
+ 1
)]

. (B13c)
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Parameter Typical size Physical interpretation

Sx 7.5 × 10−2 slope in the x direction
Sy 1.4 × 10−2 slope in the y direction
βzx = Lz

Lx̂
5.3×10−3 aspect ratio of the cross-section along the hillslope

7.7 × 10−6 †

βzy = Lz
Ly

1.1 aspect ratio of the cross-section along the channel
1.6 × 10−3 †

τs = Ls
t0r 2.8 × 10−4 ratio of the overland and groundwater time scales

τc = Lcw
t0rLx̂

2.9 × 10−3 ratio of the channel and groundwater time scales

γ = Lc
w 4.0 × 10−2 aspect ratio of the stream’s cross-section

α = αMvGLz 2.5 × 102 dimensionless α parameter from the MvG model
3.7 †

Table 4. List of dimensionless parameters. In reference to the mark (†), if two values are presented for a single
parameter, the top value refers to the V-shaped catchment and deep aquifer scenarios and the bottom one to the
shallow aquifer scenario. Otherwise, the parameter value is the same for all scenarios.

Appendix C. List of dimensionless parameters and sizes

For ease of reference, we include a listing of non-dimensional parameters and their typical
sizes in table 4.

Appendix D. Code verification using external benchmarks scenarios

D.1. Test of overland solver
Here, we test the overland submodel of the numerical solver described in § 6 using the
V-shaped catchment scenario from the intercomparison study by Maxwell et al. (2014).

In this scenario, the catchment geometry presented in figure 1(a) is used. Only surface
flow is allowed, which includes both overland flow along the hillslope and channel
flow, each characterised by a different value of Manning’s roughness coefficient. In this
scenario, a 90 minute rainfall at a uniform intensity of r = 1.8 × 10−4 m3 min−1 is
simulated, followed by a 90 minute period of drainage with no rainfall. All numerical
values of simulation parameters can be found in Maxwell et al. (2014).

To test our solver, we compare the hydrograph computed for this scenario with the
results from the other coupled surface–subsurface models presented by Maxwell et al.
(2014). Since the raw data used to generate the plots are not available, we use an image
processing tool in order to reconstruct their data based on the published graphics.

As shown in figure 15, our solver yields almost identical predictions during both the
rainfall and drying periods compared with predictions made by PAWS, developed by Shen
& Phanikumar (2010). Maxwell et al. (2014) demonstrated in their intercomparison study
that six other tested coupled surface–subsurface software produce similar hydrographs.

D.2. Test of 2-D solver
The coupling of surface and subsurface flow in the numerical model described in § 6
was tested based on the 2-D saturation-excess and infiltration-excess scenarios presented
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Figure 15. Comparison of the V-shaped catchment scenario. The solid line represents the hydrograph obtained
by Maxwell et al. (2014) using PAWS, and the dashed lines represent the results obtained by our 3-D
solver.
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Figure 16. Comparison of (a) infiltration-excess (Ks = 6.94 × 10−5 m min−1, wt = 1 m), and
(b) saturation-excess scenarios (Ks = 6.94 × 10−4 m min−1, wt = 0.5 m) with two different surface
slopes Sx. The solid lines represent the hydrograph obtained using ParFlow by Sulis et al. (2010), and the
dashed lines represent the results obtained by our 2-D solver.

in the benchmarking study by Sulis et al. (2010), which were also used in the model
intercomparison study by Maxwell et al. (2014).

In both scenarios, we have a catchment constructed from a uniform hillslope (as in
figure 1b) made of homogeneous soil, subjected to a constant 200 minute rainfall, followed
by a 100 minute period with no precipitation. In the saturation-excess scenario, the
precipitation rate (3.3 × 10−4 m min−1) is lower than the hydraulic conductivity of the
soil, allowing the rain to fully infiltrate through the soil, until the soil is fully saturated.
In the infiltration-excess scenario, the precipitation rate is higher than the hydraulic
conductivity of the soil. In this case, only a part of the rainwater infiltrates through the
ground, while the remaining part forms a so-called Horton overland flow.

All the necessary model parameters are presented in the aforementioned publications,
so no calibration is required. However, information about initial and boundary conditions
is missing from the works. We used the same boundary conditions as presented in § 2,
while for the initial condition, we assumed a constant depth of the groundwater table, with
pressure head h decreasing linearly with depth z (this corresponds to no initial vertical
flow through the soil).

982 A29-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1032


Asymptotic analysis of catchment models

100 200 3000

3

6

9

12

Time (min)

O
u
tf

lo
w

 r
at

e 
(m

3
 m

in
–
1
)

100 200 3000

3

6

9

12

Time (min)

	z = 0.2 m ∆z = 0.1 m
	z = 0.0125 m

(b)(a)

Figure 17. Comparison of infiltration-excess scenario with two different vertical mesh resolutions by Sulis
et al. (2010). The solid lines represent the hydrograph obtained using ParFlow by Sulis et al. (2010), and the
dashed lines represent the results obtained by our 2-D solver. (a) Results for Ks = 6.94 × 10−6 m min−1 and
(b) Ks = 6.94 × 10−5 m min−1.

We compared the results obtained using the finite volume solver described in § 6 with
the results obtained using ParFlow presented by Sulis et al. (2010). As before, we used an
image processing tool to extract the data from the graphs presented in these publications.

Figure 16 demonstrates that the solver very accurately reproduces the results from
the original paper in both scenarios for a dense computational mesh (�z = 0.0125 m).
Figure 17 additionally shows that the solver also produces almost identical output for
lower resolution (�z = 0.1 m, �z = 0.2 m), which demonstrates the similarity of our
discretisation and numerical artefacts. Since Maxwell et al. (2014) showed that ParFlow
results are consistent with other currently used physical catchment models, we conclude
that our solver properly represents all their assumptions within the framework of the
considered simple scenario.
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