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THE MAXIMUM GENUS OF CARTESIAN PRODUCTS
OF GRAPHS

JOSEPH ZAKS

The maximum genus v, (G) of a connected graph G has been defined in [2]
as the maximum g for which there exists an embedding % : G — S(g), where
S(g) is a compact orientable 2-manifold of genus g, such that each one of the
connected components of S(g) — k£(G) is homeomorphic to an open disk;
such an embedding is called cellular. If G is cellularly embedded in S(g),
having V vertices, E edges and F faces, then by Euler’s formula

V—E+4+F=2-2.

Let 3(G) = E — V 4+ 1 be the 1-dimensional Betti number of G (see [1]);
since F = 1 and g is an integer, the following holds (see [2, Theorem 3]).

THEOREM A. If G is a connected graph, then v, (G) =< [B(G)/2], with equality
holding if and only if the embedding has one or two faces according to B(G) being
even or odd, respectively ([x] is the largest integer < x).

The following results are known:
THEOREM B. (see [2]). The maximum genus of the complete graph K, on n
vertices is given by

e (Ky) = [(&:_1{1@—_2)]

TueorEM C. (see [4]). The maximum genus of the complete bipartite graph

K, . on n and m vertices is given by
'YM(Kn,m) = [W] .

A connected graph G is called upperembeddable (see [5]) if v (G) = [B(G)/2].
Theorems B and C state that both K, and K, , are upperembeddable, for
allz =2 1land m = 1.

In the recent Conference on Graph Theory and Applications, held at
Kalamazoo, Michigan, May 1972, E. A. Nordhaus raised the conjecture that
the graph Q, of the n-cube is upperembeddable. It is the purpose of this paper

to present an affirmative answer to this conjecture (Corrollary 1, here),
together with some more general results.

Received September 11, 1972 and in revised form, March 18, 1974. This research was
presented to the American Mathematical Society, August 1973, in Missoula, Montana.
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Recall [7] that a 1-factor F of a graph G is a subgraph of G that contains all
the vertices of G, each one with valence 1; a maximum matching F of a graph
G is a subgraph of G that contains all the vertices of G, each one with valence
0 or 1, and has the maximum possible number of edges; a vertex of valence 0
in a maximum matching is called isola‘ed (see [10]).

The Cartesian product G X H of the two graphs G and H has been defined
in [6] (see also [8] and [9]) as follows: Let V(K) and E(K) denote the set of
vertices and the set of edges of the graph K; then

V(G X H) = V(G) X V(H) = {(g,h)|g € G, h € H};
E(G X H) = {(g1, 1) (g2, h2)|g:1 = g2and hshy € E(H) or else
hi = he and gig: € E(G)}.
Observe that Q; = K, and that inductively Qn,+1 = Q, X K,. Let A denote

the cardinality of the set 4.
The following are our main results.

THEOREM 1. If G and H are nonempty connected graphs and G has a 1-factor,
then

vu(G X H) 2 V(H) v4(G) + 3 EH)V(G) — VH) + 2,

provided that e:'her

(1) V(H) = 3, or else

(2) H = K, and G has a cellular embedding into S(yux(G)) such that one
edge of G that belongs to two different faces is an edge of some 1-factor of G; in this
case vy (G X K3) Z 27,4 (G) + 3V(G).

Observe that if B3(G) is odd and every edge of G belongs to some 1-factor
of G, then G satisfies the condition as described in part 2 of Theorem 1; as a
particular case of part 2 of Theorem 1, applied to G = Q,_; and H = K,, we
get the following.

COROLLARY 1. v4(Q,) = (n — 2)2*2, for all n = 2.
THEOREM 2. If a nonempty connected graph G has a 1-factor, then
Tu(G X K») 2 2vu(G) + 3V(G) — 1.

THEOREM 3. If G and H are nonempty connected graphs and G has a maximum
matching that has exactly one isolated vertex, then

vu(G X H) 2 V(H) - vx(G) + 3EH) (VG) — 1).

For similar results concerning the (minimum) genus of the Cartesian
products of graphs, see [8; 9].

Four main lemmas. The following are the main tool for proving the stated
theorems.
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LemMA 1. If G, and Gy are connected graphs, E; = up, € E(G,), 1= 1,2,
and h;:G,— Si(n;) are cellular embeddings, © = 1,2, then there exists a
S(n1 + n2) and a cellular embedding h: G,\J Ga\J uyus \J 0195 — S(ny + ns),
such that

@) S(ny + ne) N Si(ny) = Ty(ny) is just S;(n,) minus an open disk, 1 = 1,2;

(b) E(G.' =hyi=1,2;

©)if yi € Ti(ny) — hi(Gy), © = 1,2, then y1 and y. are not in one face of
h(...)in S(n + ns).

LemMA 2. If b : G — S(n) is a cellular embedding, E; = up; € E(G), 1 =
1,2, with E1 N\ Es = 0, and uwue ¢ E(G), viwv: ¢ E(G), then there exists a
S(n + 1), and a cellular embedding h: G \J uius \J viw, — S(n + 1), such that

@) Stn + 1) N\ Sn) = T (n) is just S(n) minus two disjoint open disks;

(b) EIG =h;

(c) of y1 and y, € T(n) — h(G) and they belong to two different faces of
k(G), then they belong to two different faces of h( ... ) in S(n + 1).

LemMA 3. If h:G—S(n) is a cellular embedding, E; = uw; € E(G),
1 =1,2,uus ¢ E(G),vw: ¢ E(G) and both k(E,) and h(E,) are in the boundary
of two different faces of h(G), then there exists a S(n + 2) and a cellular embedding
h: G\J uus \J v19s — S + 2), such that

@) S(n + 2) N\ S(n) s just S(n) less four pairwise disjoint open disks;

(b) hlg = h.

LeEMMA 4. (compare with [3, Theorem 2]). If G, and G» are connected graphs,
v; € V(Gy), 1 =1,2, and hy: G, — S;(n;) are cellular embeddings, 1 = 1, 2,
then there exists a S(ny + ns) and a cellular embedding h : G,\J Gy \J 195 —
S(ny + n2), such that

@) Sty + n2) N Sy(n;) is just S;(n;) less an open disk, 1 = 1, 2;

(b) klg; = hyy i =1,2.

Remark 1. These Lemmas are similar to {3, Theorem 2], and [4, Theorem,
p. 101], quoted from [2]; however we need them in these forms so as to be
able to continue our constructions in the proofs of our theorems.

Proof of Lemma 1. Let E,’ and E,’ be simple paths in S1(n;) and Sz (%2) such
that E/ \JU k,(E;) is a simple closed curve, z = 1, 2, meeting %,(G;) at h;(E,).
E/ has its interior in one of the connected components 4 ; of S;(n;) — h:(G,),
i = 1,2. 4, is simply connected since %, is a cellular embedding; let B; be the
disk in 4 ;, bounded by E/ U h(E,), 7 =1, 2.

Let S! denote a simple closed curve and let I denote the closed unit interval;
the topological Cartesian product S* X 71 is, of course, a cylinder. Letx, y € S,
with x £ y.

Let

0 : ST X {0, 1} = (E/ U hi(Ey)) U (B \J he(Es))
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be an orientation preserving hocmeomorphism (between two pairs of disjoint
simple closed curves), such that ¢(x, 0) = u1, ¢(y,0) = vy, ¢(x, 1) = us and
ﬂ"(y’ 1) = 2.

We assume, without loss of generality, that S;(n;) N S2(n2) = 0. S(n; +
n2) is defined as follows: remove the interiors of B; and B, from S;(n;) U
Sa(n2) and then attach to it the cylinder S* X I by identifying z of St X {0, 1}
with ¢(z).

Clearly, S(n; + n2) N\ S;(n;) = Ti(n;) = S;(n;) — By, © = 1,2. The em-
bedding % of G, \U Gy \J uyus \J 0195 into S(n; + n,) is defined as follows:

hle, = 1 and h(g,—z,) = h2 as maps, while on Es, uus and v19, % is defined
in such a way that (as sets)

W(ES) = Eo, h(uyus) = {x} X ICS*X ITand k(vw,) = {y} X I CS' X I.

To show that % is cellular, observe that the 2-cell 4; of %:(G;) in S;(#,) is
changed into (4; — intB;) U« X {0, 1), where « is the arc of .S from x to y
for which ¢(a X {0}) = E,’. As for the change in 4., let 4.* be the other
(with the possibility that 4.* = 4,) 2-cell of %3(Gs) in Ss(n.) that has E, on
its boundary; if As* % A,, then 4,* is replaced by 4.* U ((S* — «) X (0, 1])
and A, becomes A, — Bj; while if A,* = A,, then A4, is replaced by
(Ay — Ba) U ((S* — a) X (0,1]); the rest of the 2-cells of S(n, + n2) —
7 (G1\J Gy\Juguz \J vyw,) are among the 2-cells of (S1(n1) — k1(G1)) \J (S2(n2) —
h2(G2)). It follows that % is cellular. In addition, no face of 7°;(#,) is joined to
a face of T'5(n,) so as to form part of a face of 2(G;\J Go \J uyus \J v1v5) in
S(n1 + n).

This completes the proof of Lemma 1.

Proof of Lemma 2. The proof is similar to the proof of Lemma 1 (hence the
details are omitted), and it amounts to deleting two open disks B; and B,
from S(#), adding a cylinder S' X I with the use of a similar identification,
and shifting one edge (E.) around the cylinder. This shifting assures that the
two halves of the cylinder are attached to two faces 4; and A4.* (using similar
notations; with 4; = A4,* possible), such that one of them is attached along
a X {0} and the other — along (S' — «) X {1}; therefore each face is cellular
and no two facesof 7'(n) = S(n) — (B1 U B,) merge into one face of S(n + 1).

Proof of Lemma 3. Let h(E1) be on the boundary of the two different faces
F; and Fy of £(G) in S(n), and let A (E;) be on the boundary of the two dif-
ferent faces P, and P, of A(G) in S(n). ({Fi, Fo} M {P1, Py} need not be
empty!). Let D; be adisk in F;, ¢ =1, 2, and let Dy ; be adisk in P;,j =1, 2,
such that bdD; N bdF; = k(u,), bdD: M bdF; = k(vy), bdD; N\ bdP; =
h(us2), bdDys M bdP, = k(v:), and all the disks have pairwise disjoint interiors.
Since F; # Fy and P; # P,, we may assume without loss of generality that
F, # P;and Fy # P..

First operation. Let ¢y : ST X {0, 1} — bdD; U bdD; be a homeomorphism,
such that for some point x of S, ¢i1(x,0) = k(u1) and ¢;(x, 1) = k(us).
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Remove the interiors of D; and D; from S(n) and attach a handle St X I by
identifying z of S' X {0, 1} with ¢;(z); an S(z + 1) is obtained (adjust
#1] s1xt0) and s s1x (03, if necessary, togetan orientable surface), by : G\U uyus —
S(n + 1) is defined by ko|l¢ = & as maps, where S(z 4 1) N\ S(n) = S(n) —
(intD, \J intD;), and ho(uius) = {x} X I as sets. The only changes in the
faces are to replace Fy and P; by exactly one face that has

(F1 — intD;) U (Py — intDs) U ((S' — {x}) X I)

for its interior; therefore &, is cellular.

Second operation. Let o5 : S X {0, 1} — bdDy\U bdD,be a homeomorphism,
such that for some pointy of S', ¢2(y, 0) = k(v:) and ¢2(y, 1) = k(v;). Remove
the interiors of Dy and D4 from S(n + 1) and attach a handle S' X I by
identifying z of S* X {0, 1} with ¢s(2); an S(n + 2) is obtained. A map
h:G\Jus\Jvws > S(n + 2) is defined by &|guuw, = ho as maps and
h(vws) = {y} X I assets (where {y} X I is taken, of course, along the second
added handle). F, # P, implies, as in the previous case, that % is cellular.,

This completes the proof of Lemma 3.

Proof of Lemma 4. Add one handle S* X I to the disjoint union of S (n;)
and S:(n:), with a suitable deleting of two open disks and a corresponding
identification, as done in the proof of the previous lemma. The new edge
vz is embedded as {x} X I, where {x} X {0} of S! X I is identified with
hi(v1) and {x} X {1} is identified with ks (v,).

We are ready for the proofs of the main results.

Proof of Theorem1.Incase 1,let V(H) = {vy, ..., v}, 2 = 3, and v (G) = .
Let h;: G—S:i(\) be cellular embeddings, where S;(\) is a S(\) for all
1 =i =k Let E =uxwx; be an edge of a 1-factor F of G, and let 7, C
T1 C ... C T be subtrees of a spanning tree T" of H, with E(T,) = j, for
al0 ==k — 1.

Use Lemma 1 k — 1 times to get a cellular embedding of (G X V(H)) \U
(E X T') into a S(k)), as follows: if y1yy € E(T), then apply Lemma 1 with
G, =G X {yi,2 =1,2 E; = E X {y4} to get a particular cellular embedding
of (G X V(TI1)) Y (E X T) into S(2)\), and continue inductively as follows:
if (GXV(T-1))\Y (E X Ty-1) has been cellularly embedded into S(N),
J 2 2, apply Lemma 1 once more with G, = (G X V(T,1)) U (E X T,_,)
and Ga = G X {22}, where 212, € E(T;) — E(T;;) and 2, ¢ V(T 1), and
with E; = E X {24}, ¢ = 1, 2; this yields a particular cellular embedding of
(GXV(TH)Y (EXTy) intoaS((F+ 1)N).

To the embedding of (G X V(H)) U (E X T) into S(k\) we apply, again
one at a time, Lemma 2 for each one of the possible E(F) - E(H) — (k — 1)
choices of an edge X of F and an edge Y of H, except for those 2 — 1 combi-
nations of the edge E of F and an edge of 7. The two edges E; and E, of
Lemma 2 are, of course, X X {y1} and X X {y.}, where y,y, = V.
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We have just cellularly embedded G X H into S(¢), where

t="k\+EF)EH) — (k- 1)

VH) - vu(G) + 3V(G) - EH) — V(H) + 1;

Il

Il

therefore

vu(G X H) =z V(H) - vu(G) + 3V(G) - EH) — V(H) + 1.

This embedding has the additional property that if z is a vertex of H of
valence = 2 (the existence of which follows from the connectivity of H and
the requirement that V(H) 2 3), then {v} X {2z} (where v is a vertex of G) is
a vertex of G X H that belongs to at least three faces; to see this, consider the
two edges of H incident to z and follow the construction of Lemmas 1 and/or 2.
By a theorem of Duke [1] (see also [3, Theorem 3]), it follows that G X H is
cellularly embeddable in a sphere with one more handle; this completes the
proof of case 1 of our Theorem.

In case 2, let V(H) = {x1, %} and let 2 : G — S(yx(G)) be a cellular
embedding with #(4,) belonging to two different faces of #(G), for some edge
A, of G; let F be a 1-factor of G that contains 4;.

Leth;: G— S;(vx(G)),7 = 1, 2, be two reproductions of , where S; (v (G))
are disjoint spheres with v,,(G) handles.

In this case V(G) 2 4, and hence E(F) = 2; let 4, € E(F) — A4,, and
apply Lemma 1 to G; = h;(G), + = 1,2, with E; = h;(4,), ¢ = 1, 2; succes-
sively apply Lemma 2 E(F) — 2 times for the edges 4; X {x:} and 4; X {x.}
of

j—1
(G X V(Ky)) U (U2 V) X E(Kz)) ,

forj = 3,..., E(F), where {4,, 43, ..., Azm} = E(F) — A4,. The last step
is to apply Lemma 3 to (G X V(K,)) U [(V(G) — V(4:)) X E(K.)], where
the two edges E; and E, are of course 4; X {x:} and 4; X {x.}; both of
A1 X {x1} and 4,1 X {x.} belong each to two different faces, since this property
is preserved under each one of the applications of Lemmas 1 and 2.

The edge A, of F was used to connect S;(vx#(G)) to Sz(vx(G)); the re-
maining E(F) — 2 edges of F were adding one handle each, while 4; was used
last to add two more handles; therefore

')'M(G X K2) = 2’YM(G) + %V(G),

and the proof of Theorem 1 has been completed.

Proof of Theorem 2. The proof is similar to the proof of case 2 of Theorem 1
(hence the details are omitted), the only difference being that in the last step
we apply again Lemma 2 rather than Lemma 3, so as to get one less handle.
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Proof of Theorem 3. Let T be a spanning tree of H and let M be a maximum
matching of G with the only isolated vertexv. Let Ty C T2 C ... C Tenp = T
be subtrees of 7" with E(T,) = jfor all1 < j < E(T). Let & : G — S(yx(G))
be a cellular embedding, and take h;: G — Si(yx(G)), for i = 1,..., V(H),
V(H) copies of h, with S;(vx(G)) N S;(yu(G)) = 0, foralll =i < j < V(H)
Apply Lemma 4 to get a particular cellular embedding of (G X V(T,)) U
({v} X T4) into S(2v(G)) and continue applying it E(I) — 1 more times to
get a particular cellular embedding of G X V(H) U {v} X T into a S(V(H) *
’)’M(G))-

If A = awa, € E(H) — E(T), then we add the new edge {v} X 4 as follows:
if {v} X {ai} and {9} X {a.} belong to the same face of the embedding (of
G X V(H) U {v} X T into S(V(H) - vu(G))), then take a simple arc a in
that face, connecting these two end points, to be the image of {#} X A4; if they
belong to different faces, then delete two open disks, one in each of the faces,
and attach a handle so as to merge the two faces into one, while embedding
the extraarc {9} X 4 along that handle. Do it E(H) — E(T) = E(H) — V(H)
+ 1 times to get a particular cellular embedding of G X V(H) U {v} X H
into a S(¢), for some integer ¢ = V(H) * v (G).

Apply Lemma 2 E(M) - E(H) successive times, one for each possible choice
of an edge of M and an edge of H, as in the proof of Theorem 1, and a cellular
embedding is obtained, taking G X H into S(r), where r = V(H) - vx(G) +
1(V(G) — 1) E(H). It follows that

vu(G X H) 2 V(H) - vu(G) + 3(V(G) — 1) E(H),

and Theorem 3 has been proven.

Proof of Corollary 1. The proof is by induction on #, starting with n = 2:
by Theorem A, v (Q:2) < [(4 — 4 + 1)/2] = 0, hence v,,(Q:2) = 0, as needed.
Suppose, inductively, that for some #, n = 2, v, (Q,) = (n — 2)2" 2. As is
well-known, Q.11 = Q, X Ks, V(Q,) = 2" and E(Q,) = n2"'; both of these
two numbers are even; therefore it follows that in every cellular embedding of
Q. in S(\), the number of faces (by Euler’s formula) is E(Q,) — V(Q.) +
2(1 — \), which is even and = 2. Consider a cellular embedding of Q,
into S((n — 2)2"?); it has at least two faces; hence at least one edge E of Q,
in that embedding belongs to two different faces of the embedding. Every
edge of Q, belongs, quite elementarily, to a 1-factor of Q,. Therefore case 2
of Theorem 1 is applicable to Q, X K, and it follows that

’YM(Qn+1) = ’YM(Qn X Kz)
V(Ks) » vu(Qn) + 3E(KS) - V(Qn) — V(K3) + 2
2(n — 2)2-2 4 1on
(n — 2)2%1 4 on—1

(n — 1)2m1,

v
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On the other hand, Theorem A implies that

Yar(Quy1) = —E(Q"“} _ g(Qn+1) -+ 1]

[(n + 1)2" — o*' & 1]
2

[ — 1) + 1]
L 2

= (n— 1)2"

as a result vy (Qut1) = (r — 1)2"1, and the proof of Corollary 1 is complete.

Corollaries.

COROLLARY 2. If G is a connected graph and every edge of G belongs to a
1-factor of G, then G X Q, is upperembeddable for all n = 1, provided G is
upperembeddable.

Proof. Suppose, first, that E(G) is even, G being an upperembeddable graph
with a 1-factor; any cellular embedding of G into a S(A) (hence, in particular,
into a S(yx(G))) has an even number of faces, as follows from Euler’s Formula.
Applying part 2 of Theorem 1 to G X K., we get

13(G X K2) Z 2vx(G) + 3V(G)-

G is upperembeddable, E(G) and V(G) are even; therefore

1 (G) = I:B(2G)] kG V@)
and hence
1@ X Ky 2 22O =V 4 47765
_2EG) — V(G)
2
_ | B(G XKy
- [aexm ],

On the other hand, v, (G X K») £ [B(G X K.)/2], by Theorem A; therefore
G X K, is upperembeddable. Clearly, every edge of G X K, belongs to some
1-factor of G X K, and both E(G X Kz) and V(G X K:) are even; hence
G X Q, is, by induction on #, upperembeddable for all n = 1.

In case E(G) is odd vx(G) = 3(E(G) — V(G) + 1) and it follows by
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Theorem 2 that

vu(G X Ki) Z 2vu(G) + 3V(G) — 1

E(G) — V(G) + 3V(G)
}(2E(G) + V(G) — 2V(G))
1(E(G X K2) — V(G X Kz))
[8(G X K,)/2],

where the last equality is due to the eveness of both E(G X K:)and V(G X Ka).
Since the other inequality isgiven by Theorem A, it follows that v, (G X K3) =
[B(G X K;)/2], and G X K» = G X Q; is upperembeddable. The rest of the
proof is as in the first case; hence Corollary 2 has been proven.

Il

As particular cases, we have

CoroLLARY 3. Ks, X Q, and K, ,, X Q,, are upperembeddable for all n = 1
and m = 1.

COROLLARY 4. K411 X Qp is upperembeddable and

2m=2(16n% + 12n + 4mn -+ 3m)

if m is even

2m=2(16n* + 12n + 4mn + 3m + 1)
iof m 1s odd,

27=2(16n2 + 12n + 4mn + 2m) 5
= Y (Kanrs X Qm) él

foralln =z 1and m = 1.

Proof of Corollary 4. Using Theorems A and 3, it follows that K,,;1 X K is
upperembeddable, with vy, (K441 X K2) = 8n%; Corollary 2 applied to
K1 X Ko (= Kyppr X Q) shows that Ky,41 X Q,, is upperembeddable for
all # =21 and m = 1. The inequalities for v (K3 X Qn) follow from
Theorem A and Theorem 3.

COROLLARY 5. If G is a connected upperembeddable graph with an even number
of edges and o maximum matching that has exactly one isolated vertex, then for
every connected graph H

BGXH) B o x5 [ﬁ(G ;< H)] ;

in particular, G X T is upperembeddable for all trees T (and G as stated).

Proof. 1t follows from Theorem 3 that
yu(G X H) = V(H) - vu(G) + 3E(H) - (V(G) — 1).
Since E (G) is even, V(G) is odd and G is upperembeddable, we have v, (G) =
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(E(G) — V(G) + 1);hence

16 x 1) 2 V) HA=T@O 41

=3lVGEH) + EG)VH) - VH)V(G) +1]
— 3EED - V@ + 1)

_BGXH) BH)
2 2

The other inequality is obtained, again, by Theorem A.
If H is a tree, B8(H) = 0; hence

B(G X H)
2

D=

+ 3EH)(V(G) — 1)

B(G X H):l
2 ’

and since [x] =< x for all x, equality holds and G X H is upperembeddable

(observe that 8(G X H) is an even number in the last case). This completes

the proof of Corollary 5.

< vu(G X H) é[

As particular cases, we have

COROLLARY 6. Ko,i3 X T and K, n+1 X T are upperembeddable for all n = 1
and all trees T.

Remark 2. If G and H are connected graphs and a maximum matching of G
has m isolated vertices, m = 1, then

vu(G X H) = m ~vu(G) + %m(v(—G—) — m).

The proof is similar to the proof of Theorem 3 and is omitted.

Remark 3. The appearance of the term V(G) - yx(G) in our theorems is
quite natural, since G X H contains a connected subgraph G’ of the form
G X V(H)U {9} X T, where v € V(G) and T is a spanning tree in H;
vu(G') = V(H) - yu(G), by [3, Theorem A]; hence v, (G X H) = V(H) -
v (G) by [2, Theorem 2].

Remark 4. The strong Cartesian product G X H of G and H has been
defined in [6] (see also [9]), as G X H \J {(u1, vs) (42, v1)|urus € E(G) and
vws € E(H)}. Treating each pair of edges of G X H of the form (u1, v2) (%2, v;)
and (u1, v1) (s, v2) (which, of course, are not edges of G X H), we get, bya
procedure similar to that of Theorem 1, that the following holds:

“If G and H are connected graphs and G has a 1-factor, then

vu(GX H) Z V(H) - v (G) + $EH) V(G) — V(H) + 2 + E(H) E(G)".

Apology. In trying to keep the geometric flavor of the subject, we did not use

Edmond’s technique (see [1; 2; 3]), except, of course when using results from
[1;2;3;4].
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