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A class of densely invertible

parabolic operator equations

R. S. Anderssen

Before variational methods can be applied to the solution of an

initial boundary value problem for a parabolic differential

equation, it is first necessary to derive an appropriate

variational formulation for the problem. The required solution is

then the function which minimises this variational formulation,

and can be constructed using variational methods. Formulations

for K-p.d. operators have been given by Petryshyn. Here, we

show that a wide class of initial boundary value problems for

parabolic differential equations can be related to operators which

are densely invertible, and hence, K-p.d. ; and develop a method

which can be used to prove dense invertibility for an even wider

class. In this way, the result of Adler on the non-existence of a

functional for which the Euler-Lagrange equation is the simple

parabolic is circumvented.

1. Introduction

The use of direct methods such as Ritz and Galerkln for the solution of

a (differential) operator equation AM = / , / a n element of some real and

separable Hilbert space II , requires the existence of a functional f(u)

such that the solution of the operator equation and the function which

minimises ?(u) are equivalent. In the classical literature (Courant and

Hilbert [2, Chapter IV] and Mikhlln [3, Chapter III]), such a

correspondence is defined by the energy functional

V(u) = (hi,u) - (u,f) - (f,u) for which the corresponding operator
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364 R-S. Anderssen

equation, in the above sense, is the Euler-Lagrange equation. Adler [/]

showed that such a correspondence, in the classical sense, did not hold for

the first initial boundary value problem for the simple parabolic equation.

A number of authors (Mikhlin [4], Petryshyn [5], [6]) have established

results which allow the extension of the correspondence to a wider class of

operator equations than was possible with the energy functional. In

particular, it follows from Petryshyn [5, Theorem 1.2] that the solution of

the operator equation ku = / , / e | , is equivalent to the function

which minimises the functional

FK(u) = (hu,Ku) - CKM,/; - (f,Ku) ,

and conversely, if A is K-p.d. (Petryshyn [5, §1]).

In this paper, we shall show that a wide class of non-homogeneous

parabolic differential equations, satisfying zero initial and boundary

conditions, can be related to densely invertible operator equations (see

Petryshyn [6, p. 2]), and hence, are K-p.d. with K = A . This bypasses

the difficulty posed by Adler. As is well known, [3, §18], there is no

problem regarding the reduction of homogeneous and non-homogeneous parabolic

equations satisfying non-zero initial and boundary conditions of the first

kind to the above-mentioned form.

An examination of the problem of applying variational methods to

parabolic differential equations which can be reduced to the

above-mentioned form and can be related to densely invertible operator

equations, can be found in Anderssen [£]•

2. Parabolic operator equations and dense invertibility

We consider the parabolic differential equations

(l) A(t)u = Lu + ~ = f(x,t) , u = u(x,t) = u(xi,x2,- • • ,xm,t) ,

where f(x,t) e Lz(il) , « = Q * (0,<») = {(x,t) ; x & Q , 0 < t < <*>} with

Q an open bounded region in m-dimensional Euclidean space, and L is the

following elliptic differential operator of order 2p with real

coefficients
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Parabolic operator equations 365

r-i;|r| if U r r -8 8 s (x't)Du\

(2) " ||
I (-l)'r* if a (x,t)D8u (for brevity) ,

where

a \r I

The coefficients a = a o(x,t) are symmetric, a = a , and real

functions which have max.(r.,8.) continuous derivatives with respect to
3 3

each of the x • , 1 < j < BI , and one continuous derivative with respect
0 ~~

to t .

The closure and boundary of Q will be denoted by Q and 30 , and

the cylindrical surface of fi by S(Q) .

Throughout this paper, (l) will be associated with the initial

condition

(3) u(x,Q) = 0 (x e Q)

and the boundary conditions

(h) ^"7=0 {(x,t) e S(Q) , 3 = 0,1,2 p-l) ,

where V is the outward normal to S(Q) . It is assumed that S(Q) is

sufficiently smooth so that there is no difficulty regarding the

interpretation of (k). This and the above assumptions will hold throughout

the remainder of this paper.

Before associating (l), (3) and {h) with an operator equation

(5) Aw = / , / e H ,

where A maps some appropriate linear manifold of real functions into II ,

a number of preliminary results will be established.

First, let CT(Q) denote the set of functions which have all possible

fe'th continuous derivatives with respect to the x. (i = 1,2,... tm) , and M
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denote the l inear manifold of functions which satisfy the i n i t i a l and

boundary conditions (3) and (h) and which are contained in

where u G C*[[0,<*>)) implies that

(i) TTT exists and is continuous,

(ii) u2 dQ is uniformly bounded,
]Q]Q

(iii) for T sufficiently large,

2 dQ (t > T , K = const. > 0) ,j£ U u2 do\ < -K | u

which implies that u(x,t) •* 0 as *-»•<» for x € Q .

LEMMA 1. If the coefficients a Jx,t) = a (x,t) satisfy
T ,8 8 ,r

(6) T ap (x,t) f CS < 0 (o = 1,2 p ;

for all vectors 5 = ^ j , ? 2 , . . . , £ . ; , t?ien, /o r u e M ,

(7) (LU , |f) > 0 ,

(" , ) denotes the inner product in L2<W and the dot denotes

differentiation with respect to t .

Proof. A simple integration by parts of the left hand side of (7) with

respect to one of the x- , 1 < i < m , yields

[ dt J ?±lf-1{art8D
su)cos{v,x.}d(Z(V

|r|<p Q

where {v,x.} denotes the angle between the outward normal V to Q and

the co-ordinate direction x. . Since u satisfies (k) and ft is a
It

cylindrical region, the first integral on the right hand side of the last

expression vanishes; and hence,
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(iM,ff) - - ̂  r-i;M f at

By repeated integration by parts with respect to the x. , X < i < m ,

and the use of the above result, the last expression becomes

(8) (̂,||) = T f-i;H [ dt\ u fL /(ff)U = Ku) .

Integration of the l.h.s. of (7) by parts once with respect to t

and the use of the fact that u £ M yields

(9) (£u,fp = •

On combining (8) and (9) and then integrating the resulting right hand side

\r|-times with respect to the x. , 1 < i < m , ve obtain

do) f) = - i y
|r[<

which proves the Lemma on using (6).

Note. It is clear from (10) that, if the coefficients a are
r ,o

independent of t , then (Lu,^) = 0 .

We now associate (l), (3) and (k) with the parabolic operator A ,

corresponding to (5), which is defined by Aw = A(t)u with

g(h) = M , RCA; = h(M) , E = L2(&) , where IDfAJ and R/A; denote,

respectively, the domain and range of A . In making this association, we

also define the elliptic operator L such that Lw = Lu with

= Mo , R/U = LC^o-1 » fl = ^ 2 ^ . where Mo is the linear manifold of

functions which are contained in Cr?(Q) n L2(W and satisfy the boundary

conditions (h).

We are now in a position to establish our main result.

THEOREM 1. The parabolic operator A , defined above, is densely

invertible on L2(W if

(a) L is positive definite on Mg for all t e [0,«>J ,
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(b) the coefficients a = a have max(r.,a-l continuous

derivatives with respect to the x. and one continuous derivative

with, respect to t and satisfy (6),

(a) dQ is sufficiently smooth, and

(d) L is uniformly parabolic.

Proof. Following the definition of densely invertible, Petryshyn [6,

p. 2 ] , it is only necessary to prove that IJfA; = M and AfDfAJj =

are dense in L 2 (&)
 an(i A is "bounded on RfA) .

The denseness of M in LiCd.) follows on noting that (?s> {the set

of functions with compact support in £2 which are contained in C"*(W) is

contained in M .

On the basis of Lemma 1 and condition (a) of the Theorem, we have that

n n f°° f f
IAMI2 = (ku,ku) > dt \ < \Lu2

o h <
~ dQ (u &M)

> lul2 > k Iwl2 (k > 0) ,

w h i c h proves that A ~ is bounded on R/A.) (see Mikhlin [ 3 ,

It only remains to prove that k(M) is dense in L 2'W • -'•n fact, we

shall prove that there exists a set M c M such that M and h(M) are

dense in L2W . The existence of a set M CM such that h(M) is dense

in L2(&) can be derived as a consequence of Theorem 19S Chapter 10 of [7]>

if L is uniformly parabolic and the coefficients a and the boundary

dQ are sufficiently smooth. In fact, it follows from the mentioned theorem,

under the cited conditions, that there exists a suitably large integer N

such that if / e C*o(W C L2(W there exists a T , 0 < T < °° , such that

(l), (3) and (U) has a unique classical solution v(x,t) and, further,

v e C^(S x [0.21]) for p > 0 . We identify A(W with C%(W and M

with the corresponding classical solutions v(x,t) . Since v(x,t) e C^(Q)

and satisfies (3) and (h) and -r- exists and is continuous, it only remains
Of

to prove that v(x,t) 6 ijf'H/' and conditions (ii) and (iii) on

v e C*([0,co)) are satisfied in order to show that M C M . It follows from

https://doi.org/10.1017/S000497270004226X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270004226X


Parabolic operator equations 369

the above that v(x,t) is "bounded in Q x [0,2*] and the continuation of

v(x,t) for t > T is defined by the homogeneous parabolic equation

A(t)u = 0 {/ = 0 in (l)}, zero boundary conditions and continuous initial

condition v(x,t) = fix) . Hence, for t > T ,

Since L is positive definite on MQ , it follows that

H {J/2 <*} *-* J/2 * •
In this way, we obtain

f°° ! Kl

(11) V2 dQ dt < -rr- < °° ,

where Kx = F(x)2 dQ . Hence, conditions (ii) and (iii) for
}Q

V eC*([0,<»;) are satisfied and v(x,t) e L2(n) , and thus, M CM . The

denseness of h(M) in L^iW now follows from the denseness of uo(£l) for

arbitrary large N , while the denseness of M follows from the denseness

of k(M) and the boundedness of A

EXAMPLE. Consider the non-homogeneous parabolic equation

(12) Al (t)u - L,u * |f = - £ (Ke^) || + || = f ,

which is defined on S(0,l) = {(x,t) ; 0 < x < l , t > 0 } and satisfies

zero initial and boundary conditions of the first kind with H and K

positive constants and / e L2 (S(0,l)) . Clearly, L\ is uniformly

parabolic. Since Ke~ x+H is a decreasing function of t and Lj is

positive definite on cli^O,!)] for all t , the dense invertibility of

Ai , the parabolic operator corresponding to (12), on L2[S(0,l)) follows

from Theorem 1.

Note. The dense invertibility of the parabolic operator corresponding

to the first initial boundary value problem for the simple heat conduction

equation follows from the example on setting K = 0 .

The use of Theorem 1 of [6] yields the equivalence of all classical
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solutions of (5), corresponding to f £ L2[S(0,l)} , with the functions

which minimise FyXu) , K = A .

3. The extension of dense invertibility to other parabolic operators

Theorem 1 only gives sufficient conditions for the dense invertibility

of operator equations which can be associated with parabolics of the form

(1), (3) and (U).

Consider the parabolic differential equation

(13) P(t)u = Bu + || = / , / e L2(Q) ,

where £2 and u are defined as in §2, and

Bu = - I f-i;1 ' bT p .s g (x.

C-i; | r | bv slf u (for brevity) .f (-
c\<p

The coefficients b are assumed to have the same properties as listed

above for the a and to be such that B is uniformly parabolic and not

reducible to the form (2). We associate with (13), (3) and (k) the

parabolic operator P defined by ?u = P(t)u , D/P; = M , R/PJ = P(M) ,

II = I/2(W , where M now denotes the set of all classical solutions of

(13) corresponding to / 6 ^ 2 ^ • L e t B denote the corresponding

elliptic operator.

THEOREM 2. P is densely imertible on L2W if

(a) |Pu I > k \u I 3 k = const. > 0 3 u BM ,

(b) the backward parabolic equation

where P* and B* denote the adjoint operators corresponding to

P and B , respectively, has only one solution u = 0 3

u

Proof. It is only necessary to show that R/PJ is dense in

It follows from Riesz and Sz. Nagy [9, §115] that there exists a closed
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linear extension P of P . Next, using the closed range theorem of Banach

and the fact that £(?*) D cffi(Q) , R/PJ = N/P*/" - the orthogonal

projection of the null space of the adjoint of P . Finally, since P* is

a closed operator, it is seen that N/P*,) = £(?*) = L2(&) , and hence,

that R/P; is dense in L2(W .

In order to confirm that (b) of Theorem 2 is satisfied in any given

case, Theorem 1.1 of Lions and Malgrange [70] can be used. We first observe

that the bilinear form (-B*u,w)„ , corresponding to B , can be rewritten

as

{-B*u,w)Q = ao(t;u,w) + a\(t;u,w) ,

where

(u,w)n = uwdQ ,
** la

at,(t;u,w) = I \ b lfuD8w dQ ,
\rUo >Q r'8

and

a\(t;u,w) = -

We let ^ = $(Q) and E = L2(Q) , where B%(Q) is the well known Sobolev

space, [7J, Chapter II]. Using the facts that ao(t;u,u) = ao(t;W,u) and

, Theorem 1.1 of [10] can be restated as

LEMMA 2. Let ao(t;u,w) and a\(t;u,w) be continuous bilinear forme

on X x i and satisfy the conditions

(i) for u,w e V , the a.(t;u,w) (j = 0,1,) have one continuous

derivative with respect to t for all t e [0,°°) ,•

(ii) for w e V^ , there exists a X > 0 and a > 0 such that

ao(t;w,w) + X(\w\Q)2 > a(\w\ )2

where

(\w\Q)z = (w,w)
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and \w\ is the norm in Ifo(Q) ;

(Hi) for all u,w G ̂V , there exists a positive constant Cj suah

that

\a\(t;u,w) | < Ci \u\ \w\ .

Then the only solution of P*u = 0 is w = 0 ., u G NP*) .

As an example, we consider the non-homogeneous parabolic equation

(15) V\(t)u = B\u + -JT7 = -{Ke~ x+H) — + -£ = f(x,t) ,

which is defined on S(0,l) and satisfies zero initial and boundary

conditions of the first kind with H and K positive constants and

f G LZ{S(O,1)) .

THEOREM 3. The parabolic operator Px , defined by P\u = P\(t)u

with VJP\) equal to all classical solutions of (15) corresponding to

f GL2(sY0,i;) , is densely invertible, if H
2 > K2 .

Proof. We start by establishing conditions (i), (ii) and (Hi) of

Lemma 2. (i) is obvious; (ii) follows from

,, , , /1 1 Q\ 0 f c... —t rA 9 W 3 W T -. I o - f
ao(t;w,w) + \[\w\*)* = [Ke x+H) T— g— dx + X uz dx

> min(H,\) . (\u\\)2 ',

and (Hi) follows from

\ai(t;u,w)\ = K\\ e~* -^- w dx\
jo ox

where Q is the interval ('Ojl/' . Hence, it only remains to prove (a) of

Theorem 2. Writing H2 = K2 + Ho , Ho > 0 , ve obtain

13u|2
+ 13*1 " ̂  113x1 19* I

* »• BH *
> Ho Ik I2 ,

where the last step depends on the fact that, [3, §21, equation (?)],
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= 1*1 for u eL2
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