LINEAR TRANSFORMATIONS ON GRASSMANN SPACES

ROY WESTWICK

1. Let U denote an n-dimensional vector space over a field F and let $G_{n r}$ denote the set of non-zero decomposable r-vectors of the Grassmann product space $\wedge^{r} U$. Let T be a linear transformation of $\wedge^{r} U$ into itself which maps $G_{n r}$ into itself. If F is algebraically closed, or if T is non-singular, then the structure of T is known. In this paper we show that if T is singular, then the image of $\wedge^{r} U$ has a very special form with dimension equal to the larger of the integers $r+1$ and $n-r+1$. We give an example to show that this can occur.
2. We adopt the notation of (1). We recall that if $z=x_{1} \wedge \ldots \wedge x_{r} \in G_{n r}$, then $[\mathbf{z}]=\left\langle x_{1}, \ldots, x_{r}\right\rangle$ is a well-defined r-dimensional subspace of U. We say that z determines [z]. The two classes of maximal subspaces of $\wedge^{r} U$ whose non-zero elements belong to $G_{n r}$ are denoted by A_{r} and B_{r}. The r dimensional subspaces determined by the non-zero elements of an $X \in A_{r}$ contain a common ($r-1$)-dimensional subspace which we will denote by $\xi(X)$. The r-dimensional subspaces determined by the non-zero elements of a $Y \in B_{r}$ are contained in an $(r+1)$-dimensional subspace of U which we will denote by $\eta(Y)$.

For maps $f: S \rightarrow T$, where S and T are arbitrary, we adopt the following conventions. If $S_{0} \subseteq S$, then $f\left(S_{0}\right)$ denotes $\left\{f(s): s \in S_{0}\right\}$ and if \mathscr{S} is a family of subsets of S, then $f(\mathscr{S})$ is the family $\left\{f\left(S_{0}\right): S_{0} \in \mathscr{S}\right\}$ of subsets of T.

The following elementary facts are used throughout the paper. Distinct elements of A_{τ} or of B_{r} intersect in at most one dimension. On the other hand, if $X \in A_{r}$ and $Y \in B_{r}$, then $\operatorname{dim}(X \cap Y)=0$ or 2 according as $\xi(X) \nsubseteq \eta(Y)$ or $\xi(X) \subseteq \eta(Y)$. The dimensions of the elements of A_{r} and B_{r} are $n-r+1$ and $r+1$, respectively. We note that these are equal only when $n=2 r$. Finally, since $T\left(G_{n r}\right) \subseteq G_{n r}, T$ is one-to-one on each member of $A_{\tau} \cup B_{r}$.

Our main result is the following.
3. Theorem. If $T: \wedge^{r} U \rightarrow \wedge^{r} U$ is a singular linear transformation such that $T\left(G_{n r}\right) \subseteq G_{n r}$, then $T\left(\wedge^{r} U\right) \in A_{r} \cup B_{r}$.

Proof. We first consider the case when $T\left(B_{r}\right) \subseteq B_{r}$. Let k be the maximal integer such that the image of every $\wedge^{r} U_{0}$ with $\operatorname{dim}\left(U_{0}\right)=k$ is a $\wedge^{r} W$ with

[^0]$\operatorname{dim}(W)=k$. Then $r<k<n$, where the latter inequality is strict since T is singular. If U_{1} and U_{2} are an adjacent pair of k-dimensional subspaces of U and $T\left(\wedge^{r} U_{i}\right)=\wedge^{r} W_{i}$, then, since $T\left(\wedge^{r}\left(U_{1} \cap U_{2}\right)\right) \subseteq \wedge^{r}\left(W_{1} \cap W_{2}\right)$ and T is one-to-one on $\wedge^{r}\left(U_{1} \cap U_{2}\right), W_{1}$ and W_{2} are either adjacent or equal. If W_{1} and W_{2} are distinct, then T is one-to-one on $\wedge^{r}\left(U_{1}+U_{2}\right)$ since its image, $\wedge^{r}\left(W_{1}+W_{2}\right)$, then has dimension equal to $\operatorname{dim}\left(\wedge^{r}\left(U_{1}+U_{2}\right)\right)$. Therefore, by the maximality of k, there is a pair of adjacent k-dimensional subspaces U_{1} and U_{2} of U such that $T\left(\wedge^{r}\left(U_{1}+U_{2}\right)\right)=\wedge^{r} W$, where $\operatorname{dim}(W)=k$. Suppose that $k>r+1$. Since $T: \wedge^{r} U_{1} \rightarrow \wedge^{r} W$ is one-to-one and maps B_{r} into B_{r}, it is induced by a linear transformation $A: U_{1} \rightarrow W$. Let $\quad X \in A_{r} \quad$ with $\quad \xi(X)=\left\langle x_{1}, \ldots, x_{r-1}\right\rangle \subseteq U_{1}$. Since $k>r+1$, $\operatorname{dim}\left(X \cap \wedge^{r} U_{1}\right)=k-r+1>2$. If $Y \in A_{r}$ with $\xi(Y)=\left\langle A x_{1}, \ldots, A x_{r-1}\right\rangle$, then $\operatorname{dim}(T(X) \cap Y)>2$. Therefore, $T(X)=Y$. But then $T\left(X \cap \wedge^{r}\left(U_{1}+\right.\right.$ $\left.\left.U_{2}\right)\right) \subseteq Y \cap \wedge^{r} W$ which is impossible since we have $\operatorname{dim}\left(X \cap \wedge^{r}\left(U_{1}+\right.\right.$ $\left.\left.U_{2}\right)\right)=1+\operatorname{dim}\left(Y \cap \wedge^{r} W\right)$. Therefore, $k=r+1$, and for every pair of adjacent $(r+1)$-dimensional subspaces U_{1} and U_{2} of U we have that $T\left(\wedge^{r} U_{1}\right)=T\left(\wedge^{r} U_{2}\right)$. Then $T\left(\wedge^{r} U\right) \in B_{r}$, since for any pair $X, Y \in B_{r}$ there is a finite chain X_{1}, \ldots, X_{m} of elements of B_{r} with X_{i}, X_{i+1} adjacent and $X=X_{1}, Y=X_{m}$.

Next, we suppose that $T\left(A_{\tau}\right) \subseteq A_{r}$ and there is a pair $X \in B_{r}, Y \in A_{r}$ for which $T(X) \subseteq Y$. If $Z \in A_{r}$ with $\xi(Z) \subseteq \eta(X)$, then $\operatorname{dim}(Z \cap X)=2$. Therefore, $\operatorname{dim}(T(Z) \cap Y) \geqq 2$, and since $T(Z) \in A_{r}$ also, we have that $T(Z)=Y$. Let U_{1} be a subspace of largest possible dimension such that for each $Z \in A_{r}$ with $\xi(Z) \subseteq U_{1}$ we have that $T(Z)=Y$. Then $\operatorname{dim}\left(U_{1}\right)>r$. Suppose that $U_{1} \neq U$ and select $U_{2} \supset U_{1}$ such that $\operatorname{dim}\left(U_{2}\right)=1+\operatorname{dim}\left(U_{1}\right)$. Let $Z \in A_{r}$ with $\xi(Z) \subseteq U_{2}$. Then $\operatorname{dim}\left(\xi(Z) \cap U_{1}\right)=r-2$ or $\xi(Z) \subseteq U_{1}$. If the latter, then $T(Z)=Y$. Otherwise, let $\xi(Z)=\left\langle y_{1}, \ldots, y_{r-1}\right\rangle$, where $\left\langle y_{1}, \ldots, y_{r-2}\right\rangle \subseteq U_{1}$. For each $y \in U_{1}, y \notin\left\langle y_{1}, \ldots, y_{r-2}\right\rangle$ there is a $Z_{y} \in A_{r}$ with $\xi\left(Z_{y}\right)=\left\langle y_{1}, \ldots, y_{r-2}, y\right\rangle$. Now, $\operatorname{dim}\left(Z \cap Z_{y}\right)=1$. Choose y and y^{\prime} so that $\left\{y_{1}, \ldots, y_{r-1}, y, y^{\prime}\right\}$ is independent and $y, y^{\prime} \in U_{1}$. Then $Z \cap Z_{y} \neq$ $Z \cap Z_{y^{\prime}}$, and therefore, since $T\left(Z_{y}\right)=T\left(Z_{y^{\prime}}\right)=Y$, we have that $\operatorname{dim}(T(Z) \cap Y)>1$. It follows that $T(Z)=Y$. This contradicts the maximality of U_{1}, and thus $U_{1}=U$. Then $T\left(\wedge^{r} U\right)=Y \in A_{r}$.

If $n<2 r$, then $T\left(B_{r}\right) \subseteq B_{r}$, since $X \in B_{r}$ and $T(X) \subseteq Y$ for some $Y \in A_{r}$ would imply that T is singular on X. If $n>2 r$, then $T\left(A_{\tau}\right) \subseteq A_{r}$ and for some $X \in B_{r}, T(X) \notin B_{r}$; for, $T\left(B_{r}\right) \subseteq B_{r}$ would imply that $T\left(\wedge^{r} U\right) \in B_{r}$, and consequently T would be singular on each member of A_{r}. Therefore, the above paragraphs prove the theorem for the case when $n \neq 2 r$.

When $n=2 r$, we show that either $T\left(B_{r}\right) \subseteq B_{r}$ or $T\left(B_{r}\right) \subseteq A_{r}$. Suppose the contrary. Then we can select $X_{1}, X_{2} \in B_{r}$ with $\eta\left(X_{1}\right)$ and $\eta\left(X_{2}\right)$ adjacent such that $T\left(X_{1}\right)=Y_{1} \in A_{r}$ and $T\left(X_{2}\right)=Y_{2} \in B_{r}$. Let $U_{0}=\eta\left(X_{1}\right) \cap \eta\left(X_{2}\right)$ and let $\mathscr{Y}=\left\{Y \in A_{r}: \xi(Y) \subseteq U_{0}\right\}$. For each $Y \in \mathscr{Y}, \operatorname{dim}\left(Y \cap X_{1}\right)=$ $\operatorname{dim}\left(Y \cap X_{2}\right)=2$, and therefore both $\operatorname{dim}\left(T(Y) \cap Y_{1}\right)$ and $\operatorname{dim}\left(T(Y) \cap Y_{2}\right)$ are at least 2. Since Y_{1} and Y_{2} are of different types, it follows that $T(Y)=Y_{1}$
or $T(Y)=Y_{2}$. Furthermore, since $\cup\{Y: Y \in \mathscr{Y}\} \supseteq X_{1} \cup X_{2}$, not every $Y \in \mathscr{Y}$ is mapped into the same Y_{i}. We select $Y_{i}{ }^{\prime} \in \mathscr{Y}$ such that $T\left(Y_{i}{ }^{\prime}\right)=Y_{i}$, $i=1,2$. Let $X \in B_{r}$ such that $U_{0} \subseteq \eta(X) \subseteq \eta\left(X_{1}\right)+\eta\left(X_{2}\right)$ while $\eta(X)$ is distinct from both $\eta\left(X_{1}\right)$ and $\eta\left(X_{2}\right)$. Then $\operatorname{dim}\left(X \cap Y_{i}{ }^{\prime}\right)=2$, and therefore $T(X)=Y_{1}$ or Y_{2}. However, since $\eta(X)+\eta\left(X_{i}\right)=\eta\left(X_{1}\right)+\eta\left(X_{2}\right)$, we obtain $Y_{1}+Y_{2}=Y_{1}$ or Y_{2}, which is impossible.

To complete the proof of the theorem, we proceed as follows. Since we have already dealt with the possibility that $T\left(B_{r}\right) \subseteq B_{r}$, we may suppose that $T\left(B_{r}\right) \subseteq A_{r}$. Let T_{0} denote a linear transformation of $\wedge^{r} U$ which is induced by a correlation of the r-dimensional subspaces of U. Then $T_{0}\left(A_{r}\right)=B_{r}$ and $T_{0}\left(B_{r}\right)=A_{r}$. Therefore, $T_{0} T\left(B_{r}\right) \subseteq B_{r}$, and consequently $T_{0} T\left(\wedge^{r} U\right) \in B_{r}$. Therefore, $T\left(\wedge^{r} U\right) \in A_{r}$, and the proof is complete.
4. When $\operatorname{dim}(U)=4$ and $r=2$, we can decide for which fields F a singular T exists. In fact, such a T exists if and only if there exist $a_{i} \in F, i=1, \ldots, 6$, such that the only solution in F of

$$
\begin{equation*}
a_{1} x^{2}+a_{2} y^{2}+a_{3} z^{2}+a_{4} x y+a_{5} x z+a_{6} y z=0 \tag{*}
\end{equation*}
$$

is trivial; that is, $x=y=z=0$.
Suppose that there are elements $a_{i} \in F$ such that the only solution of (*) is trivial. Let $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be a basis of U and define

$$
\begin{aligned}
& z_{1}=u_{1} \wedge\left(a_{5} u_{2}+a_{1} u_{4}\right)+u_{2} \wedge u_{3}, \\
& z_{2}=u_{1} \wedge\left(a_{4} u_{4}-a_{2} u_{3}\right)+u_{2} \wedge u_{4}, \\
& z_{3}=u_{1} \wedge\left(a_{3} u_{2}-a_{6} u_{3}\right)+u_{3} \wedge u_{4} .
\end{aligned}
$$

Let $V=\left\langle z_{1}, z_{2}, z_{3}\right\rangle$. Then V contains no non-zero decomposable vectors, since a linear combination $x z_{1}+y z_{2}+z z_{3}=\left(a_{5} x+a_{3} z\right) u_{1} \wedge u_{2}+$ $\left(-a_{2} y-a_{6} z\right) u_{1} \wedge u_{3}+\left(a_{1} x+a_{4} y\right) u_{1} \wedge u_{4}+x u_{2} \wedge u_{3}+y u_{2} \wedge u_{4}+z u_{3} \wedge u_{4}$ is decomposable if and only if $\left(a_{5} x+a_{3} z\right) z-\left(-a_{2} y+a_{6} z\right) y+$ $\left(a_{1} x+a_{4} y\right) x=0$, that is, if and only if $x=y=z=0$. Since $\operatorname{dim}\left(\wedge^{2} U\right)=6$, there exist $T: \wedge^{2} U \rightarrow X$, where $X \in A_{2}$ or B_{2}, and the kernel of T is V. On the other hand, suppose that there is a $T: \wedge^{2} U \rightarrow X$, where $X \in A_{2} \cup B_{2}$. Then $\operatorname{dim}(\operatorname{kernel}(T))=3$. If $\left\{z_{1}, z_{2}, z_{3}\right\}$ is a basis for this kernel, then we can write

$$
z_{i}=\sum_{j<k} a_{i j k} u_{j} \wedge u_{k}
$$

Then

$$
x z_{1}+y z_{2}+z z_{3}=\sum_{j<k} f_{j k} u_{j} \wedge u_{k}
$$

where each $f_{j k}$ is a linear form in x, y, z with coefficients in F. The quadratic p-relation $f_{12} f_{34}-f_{13} f_{24}+f_{14} f_{23}$ is a form $a_{1} x^{2}+\ldots+a_{6} y z$ with the $a_{i} \in F$.

Since the kernel has no decomposable vectors, this form is zero only when $x=y=z=0$.

Reference

1. R. Westwick, Linear transformations on Grassmann spaces, Pacific J. Math. 14 (1964), 1123-1127.

University of British Columbia, Vancouver, B.C.

[^0]: Received November 28, 1967. The results of this paper were obtained while the author was being supported in part by a Canada Council senior fellowship.

