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1. Let U denote an ^-dimensional vector space over a field F and let Gnr 

denote the set of non-zero decomposable r-vectors of the Grassmann product 
space f\rU. Let T be a linear transformation of ArU into itself which maps 
Gnr into itself. If F is algebraically closed, or if T is non-singular, then the 
structure of T is known. In this paper we show that if T is singular, then the 
image of A r U has a very special form with dimension equal to the larger of 
the integers r + 1 and n — r + 1. We give an example to show that this 
can occur. 

2. We adopt the notation of (1). We recall that if z = Xi A . . . A xr £ Gnr, 
then [z] = (xi, . . . , xr) is a well-defined r-dimensional subspace of U. WTe 
say that z determines [z]. The two classes of maximal subspaces of ATU 
whose non-zero elements belong to Gnr are denoted by Ar and Br. The r-
dimensional subspaces determined by the non-zero elements of an X £ A T 

contain a common (r — 1)-dimensional subspace which we will denote by 
£(X). The r-dimensional subspaces determined by the non-zero elements of a 
Y (i Br are contained in an (r + 1)-dimensional subspace of U which we 
will denote by rj(Y). 

For maps / : S —» T, where S and T are arbitrary, we adopt the following 
conventions. If So Q S, then/(So) denotes {f(s): s G S0} and if y is a family 
of subsets of S, then / ( 5 0 is the family {/(So) : S0 6 5^} of subsets of T. 

The following elementary facts are used throughout the paper. Distinct 
elements of A r or of Br inteisect in at most one dimension. On the other hand, 
if X e Ar and Y 6 Br, then dim(X Pi 7) = 0 or 2 according as £(X) g Î ? ( F ) 
or £(X) C 77(F). The dimensions of the elements of Ar and Br are n — r + 1 
and f + 1, respectively. We note that these are equal only when n = 2r. 
Finally, since T(Gnr) C G^̂ , 7" is one-to-one on each member of ^4r \J Br. 

Our main result is the following. 

3. Theorem. If T: ArU —+ ArU is a singular linear transformation such 
that T(Gnr) Ç G W then T(ArU) Ç ArU Br. 

Proof. We first consider the case when T(BT) C J5r. Let ^ be the maximal 
integer such that the image of every A rUo with dim(£/o) = fe is a A rW with 
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dim (IF) = k. Then r < k < n, where the latter inequality is strict since T is 
singular. If Ui and U2 are an adjacent pair of ^-dimensional subspaces of U 
and T(ArUi) = ArWu then, since T(AT(Uin U2)) Ç A ^ i H W2) and 
T is one-to-one on Ar(£7i H 1/2), Wi and PT2 are either adjacent or equal. 
If W\ and W2 are distinct, then 7" is one-to-one on Ar(Ui + 772) since its 
image, A r(IFi + W2), then has dimension equal to dim(A r(£7i + 772)). 
Therefore, by the maximality of k, there is a pair of adjacent ^-dimensional 
subspaces ZJ\ and £72 of U such that r (A r (£7i + U2)) = ArW, where 
dim (IF) = k. Suppose that k > r + 1. Since T: ArUi—> ArW is one-to-one 
and maps Br into 7>r, it is induced by a linear transformation A: Ui—^ W. 
Let X G Ar with £(Z) = (xh , . . , xr_i) C Ui. Since fe > r + 1, 
d i m ( X n ArUi) = k -r+ 1> 2AÎY e i4 rwith£(F) = <4*i, . . . , Axr-i), 
thend im(r (X) H F) > 2. Therefore, r ( X ) = F. But then r ( X O A r ( ^ + 
U2)) Q F Pi A r IF which is impossible since we have dim(X Pi Ar(£7i + 
J/2)) = 1 + d i m ( F H A rIF). Therefore, k = r + 1, and for every pair of 
adjacent (r + 1)-dimensional subspaces Ui and £72 of U we have that 
T(ArUi) = T(ArU2). Then T(ATU) G 5 r , since for any pair X, F G £ r 

there is a finite chain Xi, . . . , Xm of elements of Br with X*, X*+i adjacent 
and X = Xi, F = Xw. 

Next, we suppose that 7\^4r) Ç ^4r and there is a pair X G 7>r, F G ^U for 
which T(X) Q F. If Z G i4r with £(Z) Ç ) j ( I) , then d i m ( Z n i ) = 2. 
Therefore, dim(T(Z) P\ F) ^ 2, and since T(Z) G Ar also, we have that 
T(Z) = F. Let Ui be a subspace of largest possible dimension such that for 
each Z £ Ar with £(Z) C J/i we have that T(Z) = F. Then dim(J7i) > r. 
Suppose that £/i 5̂  [7and select 772 D Ui such that dim(£/2) = 1 + dim(7/i). 
Let Z G AT with £(Z) C £72. Then dim(£(Z) H f/i) = r - 2 or £(Z) C £7L 
If the latter, then T(Z) = F. Otherwise, let £(Z) = (3/1, . . . , y r- i) , where 
(yi, • • , 3^-2) ^ J7i. For each y G Ui, y £ (yif . . . , 3^-2) there is a Z ^ i r 

with £(Zy) = (3/1, . . . , yr-2, y). Now, dim (Z C\ Zy) = 1. Choose y and 3/ 
so that {yi, . . . , y r-i , 3>, y') is independent and 3;, y' G Z7i. Then Z C\ Zv 9^ 
Z C\ Zy>, and therefore, since T(Zy) = T(Zy') = F, we have that 
dim(T(Z) H F) > 1. I t follows that T(Z) = F. This contradicts the 
maximality of C7i, and thus 7/i = [7. Then T(ArU) = F G i r . 

If » < 2r, then r ( B r ) C J5r, since X G Br and T(X) C F for some Y £ Ar 

would imply that T is singular on X. If n > 2r, then T(Ar) Q Ar and for 
some X G Br, T(X) (2 Br\ for, r ( 5 r ) C Br would imply that T(ArU) G 5 r > 

and consequently T would be singular on each member of Ar. Therefore, the 
above paragraphs prove the theorem for the case when n 9^ 2r. 

When n = 2r, we show that either T(BT) C Br or T(BT) Q Ar. Suppose 
the contrary. Then we can select X1} X2 G Br with rj(Xi) and TJ(X2) adjacent 
such that T(X1) = Fi G Ar and T(X2) = F2 G 5 r . Let C70 = 17CX1) H T?(X2) 

and let ^ = {F G ^ r : f(F) C Uo}. For each F G ^ , d i m ( F n X i ) = 
d im(F H X2) = 2, and therefore both dim(T(Y) H Fi) and dim(7(F) n F2) 
are at least 2. Since Fi and F2 are of different types, it follows that T( Y) = Y\ 
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or T(Y) = F2. Furthermore, since U{ Y: F G <&\ ^X±\JX2l not every 
Y G & is mapped into the same Yt. We select F / G ^ such that T( F / ) = Yu 

i = 1, 2. Let X £ Br such that t/0 Q v(X) C ^(Zi) + 77(^2) while r;(X) is 
distinct from both rj(Xi) and ??(X2). Then dim(X Pi F / ) = 2, and therefore 
T(X) = Y1 or F2. However, since T)(X) + 77 (X.) = 77 (Xi) + 77 (X2), we 
obtain Fi + F2 = Fi or F2, which is impossible. 

To complete the proof of the theorem, we proceed as follows. Since we 
have already dealt with the possibility that T{BT) C Br, we may suppose 
that T(Br) Ç Ar. Let T0 denote a linear transformation of ATU which is 
induced by a correlation of the r-dimensional subspaces of U. Then 
To(AT) = Br and T0(Br) = Ar. Therefore, T0T(Br) C BT, and consequently 
T0T(ArU) G J3r- Therefore, T(ArU) G ^4r, and the proof is complete. 

4. When dim(U) = 4 and r = 2, we can decide for which fields Fa. singular 
T exists. In fact, such a T exists if and only if there exist at G F, i = 1, . . . , 6, 
such that the only solution in F of 

(*) d\X2 + d2y
2 + a%z2 + a±xy + d$xz + a 6 ^ = 0 

is trivial; that is, x = y = z = 0. 
Suppose that there are elements at G F such that the only solution of (*) is 

trivial. Let \u\, u2, Uz, u±} be a basis of U and define 

Zi = Hi A (a5u2 + aiUA) + u2 A Uz, 

z2 = iti A (aAUA — a2Uz) + «2 A u±, 

Zz = Ui A (adu2 — aQUz) + Uz A uA. 

Let F = (si, Z2, £3). Then F contains no non-zero decomposable vectors, 
since a linear combination xz\ + 3/Z2 + 223 = (a-sx + dzz)u\ A u2 + 
( —a2;y — aez)ui A u% + (a±x + a^y)u\ A u± + xu2 A Uz + yu2 A U\ + zuz A U\ 
is decomposable if and only if (a5x + cizz)z — ( — a2y + a&z)y + 
(dix + d±y)x = 0, that is, if and only if x = y = z = 0. Since dim( A2L0 = 6, 
there exist T: A2U—*X, where X G A2 or B2, and the kernel of T is F. 
On the other hand, suppose that there is a T: A 2U —» X, where X G ~42 W JB2. 
Then dim (kernel (T)) = 3. If {zi, z2, Zz) is a basis for this kernel, then we can 
write 

Zi =2-s UijkUj A Uk. 
j<k 

Then 

xzi + yz2 + zzz = X) fjkUj A uk, 
j<k 

where each fjk is a linear form in x, y, z with coefficients in F. The quadratic 
^-relation/12/34 — /13/24 +/11/23 is a form dix2 + . . . + a6^s with the a* G i7. 
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Since the kernel has no decomposable vectors, this form is zero only when 
x = y = z = 0. 
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