LINEAR TRANSFORMATIONS ON GRASSMANN SPACES

ROY WESTWICK

- 1. Let U denote an n-dimensional vector space over a field F and let G_{nr} denote the set of non-zero decomposable r-vectors of the Grassmann product space $\wedge^r U$. Let T be a linear transformation of $\wedge^r U$ into itself which maps G_{nr} into itself. If F is algebraically closed, or if T is non-singular, then the structure of T is known. In this paper we show that if T is singular, then the image of $\wedge^r U$ has a very special form with dimension equal to the larger of the integers r+1 and n-r+1. We give an example to show that this can occur.
- **2.** We adopt the notation of (1). We recall that if $z = x_1 \wedge \ldots \wedge x_r \in G_{nr}$, then $[z] = \langle x_1, \ldots, x_r \rangle$ is a well-defined r-dimensional subspace of U. We say that z determines [z]. The two classes of maximal subspaces of $\wedge^r U$ whose non-zero elements belong to G_{nr} are denoted by A_r and B_r . The r-dimensional subspaces determined by the non-zero elements of an $X \in A_r$ contain a common (r-1)-dimensional subspace which we will denote by $\xi(X)$. The r-dimensional subspaces determined by the non-zero elements of a $Y \in B_r$ are contained in an (r+1)-dimensional subspace of U which we will denote by $\eta(Y)$.

For maps $f: S \to T$, where S and T are arbitrary, we adopt the following conventions. If $S_0 \subseteq S$, then $f(S_0)$ denotes $\{f(s): s \in S_0\}$ and if $\mathscr S$ is a family of subsets of S, then $f(\mathscr S)$ is the family $\{f(S_0): S_0 \in \mathscr S\}$ of subsets of T.

The following elementary facts are used throughout the paper. Distinct elements of A_τ or of B_τ intersect in at most one dimension. On the other hand, if $X \in A_\tau$ and $Y \in B_\tau$, then $\dim(X \cap Y) = 0$ or 2 according as $\xi(X) \nsubseteq \eta(Y)$ or $\xi(X) \subseteq \eta(Y)$. The dimensions of the elements of A_τ and B_τ are n-r+1 and r+1, respectively. We note that these are equal only when n=2r. Finally, since $T(G_{n\tau}) \subseteq G_{n\tau}$, T is one-to-one on each member of $A_\tau \cup B_\tau$.

Our main result is the following.

3. Theorem. If $T: \wedge^{\tau}U \to \wedge^{\tau}U$ is a singular linear transformation such that $T(G_{n\tau}) \subseteq G_{n\tau}$, then $T(\wedge^{\tau}U) \in A_{\tau} \cup B_{\tau}$.

Proof. We first consider the case when $T(B_r) \subseteq B_r$. Let k be the maximal integer such that the image of every $\wedge^r U_0$ with $\dim(U_0) = k$ is a $\wedge^r W$ with

Received November 28, 1967. The results of this paper were obtained while the author was being supported in part by a Canada Council senior fellowship.

 $\dim(W) = k$. Then r < k < n, where the latter inequality is strict since T is singular. If U_1 and U_2 are an adjacent pair of k-dimensional subspaces of U and $T(\wedge^r U_i) = \wedge^r W_i$, then, since $T(\wedge^r (U_1 \cap U_2)) \subseteq \wedge^r (W_1 \cap W_2)$ and T is one-to-one on $\wedge^r(U_1 \cap U_2)$, W_1 and W_2 are either adjacent or equal. If W_1 and W_2 are distinct, then T is one-to-one on $\wedge^r(U_1 + U_2)$ since its image, $\wedge^{r}(W_1 + W_2)$, then has dimension equal to dim $(\wedge^{r}(U_1 + U_2))$. Therefore, by the maximality of k, there is a pair of adjacent k-dimensional subspaces U_1 and U_2 of U such that $T(\wedge^r(U_1 + U_2)) = \wedge^r W$, where $\dim(W) = k$. Suppose that k > r + 1. Since $T: \wedge^r U_1 \to \wedge^r W$ is one-to-one and maps B_r into B_r , it is induced by a linear transformation $A: U_1 \to W$. $X \in A_r$ with $\xi(X) = \langle x_1, \ldots, x_{r-1} \rangle \subseteq U_1$. Since k > r + 1, $\dim(X \cap \wedge^r U_1) = k - r + 1 > 2$. If $Y \in A_r$ with $\xi(Y) = \langle Ax_1, \dots, Ax_{r-1} \rangle$, then dim $(T(X) \cap Y) > 2$. Therefore, T(X) = Y. But then $T(X \cap \bigwedge^r (U_1 + X))$ $(U_2) \subseteq Y \cap \wedge'W$ which is impossible since we have $\dim(X \cap \wedge'(U_1 + U_2))$ $(U_2) = 1 + \dim(Y \cap \wedge^r W)$. Therefore, k = r + 1, and for every pair of adjacent (r+1)-dimensional subspaces U_1 and U_2 of U we have that $T(\wedge^{\tau}U_1) = T(\wedge^{\tau}U_2)$. Then $T(\wedge^{\tau}U) \in B_r$, since for any pair $X, Y \in B_r$ there is a finite chain X_1, \ldots, X_m of elements of B_r with X_i, X_{i+1} adjacent and $X = X_1$, $Y = X_m$.

Next, we suppose that $T(A_\tau) \subseteq A_\tau$ and there is a pair $X \in B_\tau$, $Y \in A_\tau$ for which $T(X) \subseteq Y$. If $Z \in A_\tau$ with $\xi(Z) \subseteq \eta(X)$, then $\dim(Z \cap X) = 2$. Therefore, $\dim(T(Z) \cap Y) \ge 2$, and since $T(Z) \in A_\tau$ also, we have that T(Z) = Y. Let U_1 be a subspace of largest possible dimension such that for each $Z \in A_\tau$ with $\xi(Z) \subseteq U_1$ we have that T(Z) = Y. Then $\dim(U_1) > r$. Suppose that $U_1 \ne U$ and select $U_2 \supset U_1$ such that $\dim(U_2) = 1 + \dim(U_1)$. Let $Z \in A_\tau$ with $\xi(Z) \subseteq U_2$. Then $\dim(\xi(Z) \cap U_1) = r - 2$ or $\xi(Z) \subseteq U_1$. If the latter, then T(Z) = Y. Otherwise, let $\xi(Z) = \langle y_1, \ldots, y_{r-1} \rangle$, where $\langle y_1, \ldots, y_{r-2} \rangle \subseteq U_1$. For each $y \in U_1$, $y \notin \langle y_1, \ldots, y_{r-2} \rangle$ there is a $Z_y \in A_\tau$ with $\xi(Z_y) = \langle y_1, \ldots, y_{r-2}, y \rangle$. Now, $\dim(Z \cap Z_y) = 1$. Choose y and y' so that $\{y_1, \ldots, y_{r-1}, y, y'\}$ is independent and $y, y' \in U_1$. Then $Z \cap Z_y \ne Z \cap Z_{y'}$, and therefore, since $T(Z_y) = T(Z_{y'}) = Y$, we have that $\dim(T(Z) \cap Y) > 1$. It follows that T(Z) = Y. This contradicts the maximality of U_1 , and thus $U_1 = U$. Then $T(\wedge^r U) = Y \in A_\tau$.

If n < 2r, then $T(B_r) \subseteq B_r$, since $X \in B_r$ and $T(X) \subseteq Y$ for some $Y \in A_r$ would imply that T is singular on X. If n > 2r, then $T(A_r) \subseteq A_r$ and for some $X \in B_r$, $T(X) \notin B_r$; for, $T(B_r) \subseteq B_r$ would imply that $T(\wedge^r U) \in B_r$, and consequently T would be singular on each member of A_r . Therefore, the above paragraphs prove the theorem for the case when $n \neq 2r$.

When n=2r, we show that either $T(B_r) \subseteq B_r$ or $T(B_r) \subseteq A_r$. Suppose the contrary. Then we can select $X_1, X_2 \in B_r$ with $\eta(X_1)$ and $\eta(X_2)$ adjacent such that $T(X_1) = Y_1 \in A_r$ and $T(X_2) = Y_2 \in B_r$. Let $U_0 = \eta(X_1) \cap \eta(X_2)$ and let $\mathscr{Y} = \{Y \in A_r : \xi(Y) \subseteq U_0\}$. For each $Y \in \mathscr{Y}$, $\dim(Y \cap X_1) = \dim(Y \cap X_2) = 2$, and therefore both $\dim(T(Y) \cap Y_1)$ and $\dim(T(Y) \cap Y_2)$ are at least 2. Since Y_1 and Y_2 are of different types, it follows that $T(Y) = Y_1$

or $T(Y) = Y_2$. Furthermore, since $\bigcup \{Y: Y \in \mathscr{Y}\} \supseteq X_1 \cup X_2$, not every $Y \in \mathscr{Y}$ is mapped into the same Y_i . We select $Y_i' \in \mathscr{Y}$ such that $T(Y_i') = Y_i$, i = 1, 2. Let $X \in B_\tau$ such that $U_0 \subseteq \eta(X) \subseteq \eta(X_1) + \eta(X_2)$ while $\eta(X)$ is distinct from both $\eta(X_1)$ and $\eta(X_2)$. Then $\dim(X \cap Y_i') = 2$, and therefore $T(X) = Y_1$ or Y_2 . However, since $\eta(X) + \eta(X_i) = \eta(X_1) + \eta(X_2)$, we obtain $Y_1 + Y_2 = Y_1$ or Y_2 , which is impossible.

To complete the proof of the theorem, we proceed as follows. Since we have already dealt with the possibility that $T(B_r) \subseteq B_r$, we may suppose that $T(B_r) \subseteq A_r$. Let T_0 denote a linear transformation of $\wedge^r U$ which is induced by a correlation of the r-dimensional subspaces of U. Then $T_0(A_r) = B_r$ and $T_0(B_r) = A_r$. Therefore, $T_0T(B_r) \subseteq B_r$, and consequently $T_0T(\wedge^r U) \in B_r$. Therefore, $T(\wedge^r U) \in A_r$, and the proof is complete.

4. When $\dim(U) = 4$ and r = 2, we can decide for which fields F a singular T exists. In fact, such a T exists if and only if there exist $a_i \in F$, $i = 1, \ldots, 6$, such that the only solution in F of

$$(*) a_1x^2 + a_2y^2 + a_3z^2 + a_4xy + a_5xz + a_6yz = 0$$

is trivial; that is, x = y = z = 0.

Suppose that there are elements $a_i \in F$ such that the only solution of (*) is trivial. Let $\{u_1, u_2, u_3, u_4\}$ be a basis of U and define

$$z_1 = u_1 \wedge (a_5 u_2 + a_1 u_4) + u_2 \wedge u_3,$$

$$z_2 = u_1 \wedge (a_4 u_4 - a_2 u_3) + u_2 \wedge u_4,$$

$$z_3 = u_1 \wedge (a_3 u_2 - a_6 u_3) + u_3 \wedge u_4.$$

Let $V = \langle z_1, z_2, z_3 \rangle$. Then V contains no non-zero decomposable vectors, since a linear combination $xz_1 + yz_2 + zz_3 = (a_5x + a_3z)u_1 \wedge u_2 + (-a_2y - a_6z)u_1 \wedge u_3 + (a_1x + a_4y)u_1 \wedge u_4 + xu_2 \wedge u_3 + yu_2 \wedge u_4 + zu_3 \wedge u_4$ is decomposable if and only if $(a_5x + a_3z)z - (-a_2y + a_6z)y + (a_1x + a_4y)x = 0$, that is, if and only if x = y = z = 0. Since $\dim(\wedge^2 U) = 6$, there exist $T: \wedge^2 U \to X$, where $X \in A_2$ or B_2 , and the kernel of T is V. On the other hand, suppose that there is a $T: \wedge^2 U \to X$, where $X \in A_2 \cup B_2$. Then $\dim(\ker(T)) = 3$. If $\{z_1, z_2, z_3\}$ is a basis for this kernel, then we can write

$$z_i = \sum_{j < k} a_{ijk} u_j \wedge u_k.$$

Then

$$xz_1 + yz_2 + zz_3 = \sum_{j \le k} f_{jk} u_j \wedge u_k,$$

where each f_{jk} is a linear form in x, y, z with coefficients in F. The quadratic p-relation $f_{12}f_{34} - f_{13}f_{24} + f_{14}f_{23}$ is a form $a_1x^2 + \ldots + a_6yz$ with the $a_i \in F$.

Since the kernel has no decomposable vectors, this form is zero only when x = y = z = 0.

Reference

 R. Westwick, Linear transformations on Grassmann spaces, Pacific J. Math. 14 (1964), 1123-1127.

University of British Columbia, Vancouver, B.C.