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Summary

A modification of the neighbour joining method of Saitou & Nei (1987) is shown to be

applicable to the ordering of genetic markers. This neighbour mapping method is compared with

some other procedures for ordering genetic markers using both real and test data sets. The

limitations and likely errors associated with the use of neighbour mapping are discussed. The speed

and simplicity of this method commend its application, as does its concurrence with other mapping

methods.

1. Introduction

An important problem in the generation of linkage

maps from segregation data is the determination of

marker order. There is a well-developed theoretical

framework which is concerned with this problem, and

several methods have been described for the de-

termination of the order of markers (Lathrop &

Llouel, 1984; Lander & Green, 1987; Lander et al.,

1987; Burr et al., 1988; Morton & Andrews, 1989;

Stam, 1993; reviewed by Bryant, 1996).

A particular marker order is decided upon after

searching among all possible orders for the one which,

given the data, best fits the appropriate theory. An

inherent problem in this approach is that any order

could be compatible with the data, but some suggest

much more recombination than others. For many

purposes, then, the search among orders is for the one

which proposes the least number of recombination

events and}or of double recombination events. Any

such searching procedure is computationally intensive,

because, for n markers there are n !}2 possible linear

orders. Methods for restricting searches to limited

subsets of orders have been exploited in order to speed

up calculation – for example the prior computation of

three-point linkage tests in MAPMAKER (Lander et

al., 1987) or sequential addition of markers and local

reshuffling of orders in JoinMap (Stam, 1993).

Here I describe another approach which can be

used to determine marker orders. This method is

suited to the rapid determination of marker orders

from large sets of data, and can be used in conjunction

with other procedures, or mapping programs, to

generate a linkage map. This method treats a linkage

map in much the same way as a cluster analysis, and

owes much to the neighbour joining method of Saitou

& Nei (1987) from which it is derived. The method

was developed from attempts to consider the con-

sequences for linkage maps of errors in data sets, and

an attempt to display potential errors in the pres-

entation of linkage maps is also discussed.

2. Materials and methods

(i) Segregation data

Pea segregation data are from a recombinant inbred

population derived from the cross JI281¬JI399 which

has been described previously (Ellis et al., 1992, 1993).

(ii) Test data sets

Two data sets were generated for a hypothetical

recombinant inbred population of 100 lines, one with

ten markers and the other with 49 markers, as follows.

A set of scores was created by generating a sequence

of  or ® ‘ scores ’, chosen at random. This simulates

the scores for 100 RI lines for one marker. This set

was copied with occasional changes to generate the

second maker scores. For the larger test data set the

frequency of these changes was selected using the

product of three random variables. The first variable

(v1) was uniformly distributed between 0 and 0±4, and

the second two (v2 and v3) between 0 and 0±7. This

procedure was repeated on the second set of ‘scores ’

to generate the third, and so on to generate the test
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Fig. 1. Graphical illustrations of the methods used to determine marker orders and errors. (a) An unordered group. (b)
A group where two adjacent markers have been identified. (c) A linkage map showing deviation from additivity (see
text).

data set of 49 markers where the ‘ interval distances ’

were variable. For a smaller set of 10 ‘scores ’ a single

random variable was used, so the marker interval

distances were more even. In effect these procedures

simulated the scores corresponding to recombination

without interference, with variable inter-marker dis-

tances where the correct order is known.

(iii) The computational method

(1) This procedure is for determining the order of

markers within a group. It follows that the markers to

be included within the group must first be selected.

This can be done in a variety of ways, such as two-

point linkage tests with some threshold for inclusion.

The group may comprise those markers which show

an association with a LOD score above some value

(usually 3), or for which there is less than a certain

frequency of recombinant types.

(2) Having established the group of markers, a table

of all two-point distances is calculated. These values

could be map distances, frequencies of recombinant

types, or some other function of the raw data. As the

method is based on this table it can be applied to any

population structure for which two-point data can be

calculated, but the procedure is limited to those cases

where the full table can be calculated.

(3) Following Saitou & Nei (1987) we have a

starting group such as that shown in Fig. 1 (a). This

group is unstructured and the markers can be

considered independent branches; the sum of all

branch lengths is given by

S¯ 0 1

n®11 3
n

x!y

D
x,y

(1)

(see Saitou & Nei, 1987, equation 1), where S is the

sum of all the branch lengths, n is the number of

markers and D
xy

is the two-point distance between the

markers x and y.

If a pair of markers (i and j ) are abstracted from

this group, as in Fig. 1 (b), then we can determine the

sum of all remaining branch lengths, together with the

distance between i and j. If these two markers are

genuinely adjacent, then the sum of all branch lengths

for the group will be minimized. The determination of

minimumbranch lengths by this procedure is discussed

by Saitou & Nei (1987). This sum (S
ij
) is given as

S
i,j

¯
A

B

0 1

n®31 3
n

x!y
x1i,j
y1i,j

D
x,y

C

D

D
i,j

, (2)

where S
ij

is the sum of all branch lengths where i and

j are assumed to be adjacent. The sum given in (2) is

a modification of equation 4 of Saitou & Nei (1987),

and takes account of the difference in the shape of a

neighbour joining tree and a linkage map.

Note that in the neighbour joining method the

adjacent pair of OTUs is external to the remaining

group, and can be replaced by a node which is the

point of connection to the remaining unstructured

group. This allows a recalculation of the S
ij

table

replacing i and j by a single node. In the present

method the marker pair remains embedded within the

linear group, so this recalculation is not appropriate.

However, a neighbour joining tree, in the normal

sense, can be calculated from the data, and this is also

informative.

(4) Given a table of two-point linkage distances D
ij
,

the corresponding S
ij

values can be tabulated and

ordered with increasing S
ij
, noting the corresponding

i and j.
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Table 1. Linkage order from S
ij

�alues

S
ij

i j Group S
ij

i j Group

8±79403 1 2 1 :2 8±95331 41 45 x
8±79416 3 4 3:4 8±95759 12 13 10:11 :12:13:14
8±80883 2 3 1 :2 :3 :4 8±95871 7 8 1 :2 :3 :4 :5 :6 :7 :8 :9
8±82899 2 5 x …
8±83194 2 4 x 8±97966 4 7 x
8±84547 4 5 1 :2 :3 :4 :5 8±98378 18 19 18:19
8±84698 42 43 42:43 …
8±85829 1 5 y 8±98812 6 8 x
8±86285 1 4 x 8±98913 36 37 36:37
8±86418 3 5 x …
8±86518 1 3 x 8±99632 10 12 x
8±87401 41 42 41 :42:43 8±99727 16 17 16:17
8±87433 38 39 38:39 …
8±87507 2 6 x 8±99864 6 9 x
8±87991 10 11 10:11 8±99966 31 32 31 :32
8±8818 46 47 46:47 9±00762 15 16 15:16:17
8±88678 5 6 1 :2 :3 :4 :5 :6 …
8±88746 42 47 x 9±01537 40 46 x
8±88946 1 6 y 9±01567 17 18 15:16:17:18:19
8±89358 42 45 x …
8±89497 47 48 46:47:48 9±02212 11 14 x
8±90251 6 7 1 :2 :3 :4 :5 :6 :7 9±02348 35 36 35:36:37
8±9043 41 43 y …
8±90586 8 9 8:9 9±03876 9 10 1 :2 :3 :4 :5 :6 :7 :8 :9 :10:11 :12:13:14
8±90665 13 14 13:14 9±04229 21 22 21 :22
8±90688 45 46 45:46:47:48 9±04543 20 21 20:21 :22
8±90857 44 45 44:45:46:47:48 …
8±90874 43 45 x 9±05575 3 8 x
8±9117 42 46 x 9±05711 19 20 15:16:17:18:19:20:21 :22
8±9177 43 47 x …
8±91803 42 44 x 9±06014 17 21 x
8±92086 4 6 x 9±06034 30 31 30:31 :32
8±92348 40 41 40:41 :42:43 …
8±9274 48 49 44:45:46:47:48:49 9±06234 16 19 x
8±92747 40 42 x 9±0679 28 29 28:29
8±92758 41 47 x 9±06808 22 23 15:16:17:18:19:20:21 :22:23
8±9316 43 44 40:41 :42:43:44:45:46:47:48:49 …
8±93694 5 9 x 9±07022 20 22 x
8±93768 42 48 x 9±07073 37 38 35:36:37:38:39
8±93853 11 12 10:11 :12 9±07113 17 23 x
… 9±0712 33 34 33:34

9±07311 14 15 1 :2 :3 :4 :5 :6 :7 :8 :9 :10:11 :12:13:14:15:16:17:18:19:20:21 :22:23
…
9±21866 26 27 1 :2 :3 :4 :5 :6 :7 :8 :9 :10:11 :12:13:14:15:16:17:18:19:20:21 :22:23:24:25:26:27:28:29:30:

31 :32:33:34:35:36:37:38:39:40:41 :42:43:44:45:46:47:48:49

x, at least one of the markers is already connected to two others.
y, joining these two markers would form a ring.

(5) From the table of S
ij
, i, and j, an order of

markers can be determined as follows; the procedure

is illustrated in Table 1 as applied to the pea linkage

maps shown later.

(a) The lowest value of S
ij

corresponds to the first

pair of markers considered to be adjacent.

(b) The successively higher values of S
ij

correspond to

successive candidates for adjacent markers.

(c) No marker is considered to be adjacent to more

than two other markers.

(d) No two markers are adjacent if they are already

connected through a sequence of other markers.

In the absence of this restriction rings of markers

could be formed.

Simple computer programs which generate and}or

read tables of D
ij

and S
ij

are available on request, and

see Gelfand (1971) for a similar formulation. From

Table 1 it can be seen that there is a possibility for

ambiguity when two values of S
ij

are the same. This is

a problem only in those cases where the particular S
ij

values imply alternative decisions; this can be dis-

covered either by inspection of a table such as Table

1, by a computer search of S
ij

values, or by repeating

the ordering procedure from a different starting
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sequence. Note that the starting sequence is not

relevant if all the S
ij

values are different as in Table 1.

For convenience the marker numbers 1 to 49

correspond to the marker order for the pea linkage

maps shown later.

3. Results

(i) Tests of the procedure

A trial of the neighbour mapping method was

performed on a test data set generated as described

above. The scored data were then jumbled and the

procedure applied. The same data set was used to test

MAPMAKER and the method of computing the

minimum number of recombinants for all possible

marker orders (Ellis, 1994). For a set of 10 markers

these three methods derived the same, correct, marker

order (not shown).

This test was repeated for the data set with 49

markers, and the comparison made with MAP-

MAKER alone. This comparison is shown in Fig. 2.

Four maps are drawn. The first (T) denotes the

interval distances which were set in the generation of

the data set. These were derived from the product of

the three variables discussed above which simulated

variability in map distances. The second map (D) is

the map derived from the data when the markers are

in the correct order, i.e. this is the best possible map

which could be derived from the data. Map D is a

sample of the expected data from T. The third map

(N) shows the map derived from the neighbour

mapping method. This map is indistinguishable from

D, with the exception that unresolved markers cannot

be ordered. The MAPMAKER map (M) is very

similar except that three markers were not included in

the first trial. The intervals to which these were

assigned are marked with an asterisk, and these were

appropriate positions.

From these tests it is clear that the simple procedure

described here is capable of determining the ‘correct ’

marker order. For real data sets the ‘correct ’ order is

not known, and is inferred from the data on the basis

of some assumptions, such as presence or absence of

interference in otherwise random events, additivity of

the mapping function, and a lack of scoring and

sampling errors. If all these hold then the table of D
ij

values will behave so that the present procedure

generates an appropriatemarker order. The interesting

question about any marker-ordering method is how

the procedure behaves with non-ideal data, so the

method has been applied to some experimental data

from pea.

A comparison between the present method and

MAPMAKER is shown in Fig. 3 for pea linkage

group III. This group has the same number of

markers as the test data set. The time taken to

compute the marker orders by the present method was

just under 3 min. MAPMAKER, which recognized

this as a single linkage group with the default

thresholds of LoD 4 and max distance of 20

centimorgans, took a little over 3 min to compute

three-point linkage data, and then about 9 min to

derive the larger partial order shown in Fig. 3. The

time taken to generate the smaller partial group was

not noted. The two methods used different computing

systems; MAPMAKER was run using a UNIX

operating system on a DEC workstation, while the

present method used simple, compiled BASIC pro-

grams run on a VAX. Both machines were used in a

network, so it is likely that faster times could be

achieved. Nevertheless, it seems clear that the method

presented here requires less computation.

It can be seen from Fig. 3 that these two methods

are not exactly equivalent, although the marker orders

are in broad agreement. MAPMAKER has failed to

place some of the markers, but suggested an interval

where each marker might lie, as was the case for the

test data set. The linkage group was not assembled as

a single contiguous linkage map at the first attempt.

The 14 markers at the top in Fig. 3 were not ordered

in the first trial, although they were assigned to the

upper exterior of the large linkage segment. A separate

attempt with these 14 markers alone generated the

smaller linkage map which is included in the figure. In

addition MAPMAKER did not suggest a location for

the two markers (C2}1® and G12}4) where the

arrows are drawn in Fig. 3.

The discrepancies between the methods are in-

formative. There are several local inversions of the

order of closely linked markers – for example the

segment between cDNA40}7 and A7}11. Presum-

ably this reflects the fact that this is a tight cluster of

markers flanked by two large distances devoid of

markers. Arrangements of this type have little in-

formative data on the orientation of the internal

cluster with respect to the flanking pair.

Two of the local inversions between the two maps

flank the break in the contiguous group and are

presumably the reason why MAPMAKER did not

assemble a single map. This probably also accounts

for the failure to place the markers designated

cDNA331 and C2}1 (a cDNA RFLP and an AFLP

respectively). A similar type of argument could explain

the loss of the marker G12}4.

Neither of the maps shown in Fig. 3 is claimed to be

‘correct ’, and clearly the MAPMAKER analysis is

preliminary. However, as a first approximation to a

map the present method is fast, simple, and in broad

agreement with the more complex MAPMAKER

analysis. For these reasons the method would seem to

be of some general interest.

(ii) Errors on maps

The method described here coalesces a group of

markers around pairs which have a strong tendency to

co-segregate. The reliability of this procedure depends
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Fig. 2. Comparison of linkage maps from a test data set determined by different methods. T, the Theoretical model from
which the test data set was generated; D, the Data set derived from the model ; N, the New method described here; M,
the MAPMAKER-derived map. Scale bar represents 50 centimorgans. * Suggested intervals for missing markers.
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N M

Fig. 3. Comparison between a MAPMAKER-derived map and the new method for pea linkage group III.
Corresponding marker loci are connected by diagonal lines ; suggested intervals according to MAPMAKER are mapped
as open triangles. The two diagonal lines which do not connect to the MAPMAKER map were suggested to lie external
to the MAPMAKER map at the end indicated. The two arrows indicate markers excluded from the MAPMAKER
map. Scale bar represents 100 centimorgans.

on the markers having been scored accurately. If a

marker is scored with frequent error, then it is possible

that any procedure will mis-place the marker. How-

ever, the present mapping method gives most weight

to the most closely linked marker pairs (by identi-

fyinging these first), which should minimize the

influence of error-prone markers for the map as a

whole. Closely-linked markers could be considered

independent tests for (non-)recombination in a larger

interval.

The neighbour mapping method was developed

from attempts to understand the consequences of data

errors ; this was what suggested an approach related to

cluster analysis. A simple graphical method for the
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N M

Fig. 4. The maps of Fig. 3 redrawn to indicate local
non-additivity.

representation of error is shown in Fig. 4, cor-

responding to the pea maps already presented. Note

that this diagram is intended to present potential

problems with the map, not the data. Different maps

from the same data will appear different. However,

highlighting potential problems with the map directs

attention to problematic markers.

If we consider three markers which have been

placed on a linkage map in the order … a, b, c, …, we

have three two-point map distances d
ab

, d
bc

and d
ac
. If

the mapping function is appropriate, then we expect

d
ab

d
bc

¯ d
ac
. If the scores for b were error-prone we

might expect d
ab

d
bc

" d
ac

; i.e. an excess of double

recombinants flanking marker b appears. If there are

fewer double recombinants than anticipated by the

mapping function, then d
ab

d
bc

" d
ac
. The deviation

of d
ac

from its expected value is simple to calculate,

and can be used to calculate an offset of the position

of the marker from the map. This offset, x
b
, is given as

x
b
¯ "

#
(d

ab
d

bc
®d

ac
) and represents the deviation of

the map from local additivity. The interval distances

d
ab

and d
bc

can be replaced by y
ab

and y
bc
, respectively,

where y
ab

¯ d
ab

®x
b

and y
bc

¯ d
bc
®x

b
respectively

(Fig. 1 (c)). Thus the total map length assumes an

absolute interference in adjacent intervals, with all

close doubles treated as error. For linkage group III

this modified linear map has been reduced in overall

length by about 12%.

(iii) Errors in data

Problems arising from inaccurate data can be esti-

mated by considering the frequency distribution of

lengths of linkage segments bounded by double

exchange. For an individual, a linkage map can be

considered to be a sequence of two types of intervals :

those with an exchange (E), and those without an

exchange (W). An isolated marker flanked by an

exchange on either side can be considered to be two

adjacent intervals carrying an exchange (EE). Two

adjacent markers of the same allelic type flanked by

exchanges can be considered to be a run of three

intervals : exchange, non-exchange, exchange (EWE).

In general this type of distribution has been described

by Mood (1940), and an approximation to this has

been used in the study of repetitive DNAs by Slack

(1974) and Southern (1975). If the probability of an

interval having an exchange is p
e
and the probability

of an interval lacking an exchange is (1®p
e
), then a

run of z intervals without an exchange, bounded by

intervals with an exchange (EW
z
E) will have an

expected frequency (F) of p
e
#(1®p

e
)z. From this

relationship p
e

can be determined by plotting log(F)

against z. Note that these estimates of p
e

should

approximate to, but may be different from, the fraction

of intervals with an exchange. The estimates of p
e

from this regression can be used to estimate the value

of p
e
when there is no error contributing to the z¯ 0

class.

Following this procedure for the data used to

generate the linkage maps of Figs. 3 and 4 shows that

there is an excess of the classes where z¯ 0 or 1. If

these classes are eliminated from analysis p
e

can be

determined by a regression analysis from the longer

exchange segments. This treatment also suggests that

the length of the linkage map of group III shown in

Fig. 3 is probably exaggerated by about 10%. This

treatment suggests that the errors presented by the

map in Fig. 4 are consistent with the expected data

errors, rather than errors in the map per se.

4. Discussion

A simple method for deducing the orders of molecular

markers in linkage maps has been presented. This

method is based on the neighbour joining method of

Saitou & Nei (1987), and has two main advantages : it

is fast because the amount of calculation required is

fairly small for a given data set, and it always returns

a map which places all the markers for a given group.
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The second advantage is also an inherent problem

with the method, because the inclusion of an in-

appropriate marker will be tolerated whereas MAP-

MAKER, for example, would exclude such a marker.

However, there are two likely outcomes from such an

erroneous inclusion. The first is that the marker will

be placed at the end of the map, and at a considerable

distance. The second is that the marker will be placed

at an internal position in the map, and will be flanked

by large intervals. These could break the map if it is

drawn in such a way as to forbid intervals greater than

some predetermined size. Large intervals signal a

problem with the map and warrant further investi-

gation.

The neighbour mapping method has some simil-

arities with ‘seriation’ as described by Gelfand (1971)

and Buetow & Chakravarti (1987). The rules given for

the derivation of marker order are essentially those

described as ‘method I’ by Gelfand (1971). The

significant difference between the two procedures is

that seriation operates on the D
ij

matrix while

neighbour mapping, like neighbour joining (Saitou &

Nei, 1987) operates on the S
ij

matrix. When the D
ij

matrix is not purely additive (or a Robinson matrix as

defined by Gelfand, 1971) then these two procedures

are not necessarily equivalent, the neighbour mapping

method finds those close pairs of markers which,

when joined, cause the other markers to be least

disturbed, and this is the essential difference between

the procedures.

The suggestion for the presentation of linkage maps

is an attempt to highlight such problems in a graphical

way. The difference in the errors associated with the

markers C2}8® and A7}4® in the two orders

presented in Fig. 4 are clearly associated with the

different marker orders proposed by these two maps.

The single contiguous map minimizes these particular

errors in the present case, but this simply says that the

map is compatible with the data, not that it is correct.

The maps in Fig. 2 show clearly that different ordering

methods produce similar results, but that the mere

fact of dealing with a finite population size has a large

effect.

One objective of the present study was to test the

possibility that close double exchanges (or errors

which have this appearance) may be responsible for

the discrepancy between cytogenetic data and linkage

maps (Nilsson et al., 1993; and see Sherman & Stack,

1995). For pea linkage group III as illustrated in Figs.

3 and 4 the total map length has been reduced from

278 to 244 centimorgans (using Haldane’s function:

Haldane, 1919). This corresponds to a reduction in

the expected average number of chiasmata from 5±6 to

4±9 for the chromosome corresponding to linkage

group III. Other estimates of probable exaggeration

of the length of the linkage map, based on exchange

segment length, suggest a similar reduction. Average

chiasma counts for pea are in the range 10–20 per

meiosis, (see Nilsson et al., 1993) and the frequency of

crossing-over in both arms suggests that the number

of crossovers does not differ greatly between chromo-

somes (these are expected to be in the range two or

three per chromosome per meiosis). The map remains

excessively long compared with the cytogenetic data.

In the examples discussed here, the method which

has been described generated convincing maps di-

rectly, but it would be unwise to assume that this is

always the case, especially when there are large gaps

and clusters of tightly linked markers to be included in

the map. Removal of the data corresponding to the

markers between the segments arrowed in Fig. 2 led to

a reordering of the top segment of the map with

respect to the lower portion. A similar, but different

reorganization occurred when MAPMAKER was

used on this restricted data set. Segmental inversions

are a likely error associated with the neighbour

mapping method, and large gaps need to be treated

with caution. Other ordering methods generate a

different spectrum of likely errors, suggesting that the

method described here could be used profitably in

conjunction with other mapping procedures – for

example by seeding a starting order in MAPMAKER

or in suggesting orders for the addition of markers to

JoinMap.

I thank R. Hellens for many useful discussions, R. Casey,
J. Hofer, G. Moore and J. Snape for their comments on this
manuscript, and one anonymous referee for attracting my
attention to the similarities between this method and
seriation.
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