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ON GENERALIZED THIRD DIMENSION SUBGROUPS

KEN-ICHI TAHARA, L.R. VERMANI AND ATUL RAZDAN

ABSTRACT. Let G be any group, and H be a normal subgroup of G. Then M. Hartl
identified the subgroup G \ (1 + 43(G) + 4(G)4(H)) of G. In this note we give
an independent proof of the result of Hartl, and we identify two subgroups G \
(1 + 4(H)4(G)4(H) + 4([HÒG])4(H)), G \ (1 + 42(G)4(H) + 4(K)4(H)) of G
for some subgroup K of G containing [HÒG].

1. Introduction. Let G be a group, ZG the integral group ring of G and 4(G) the
augmentation ideal of ZG. Let H be a normal subgroup of G and write

D1(GÒH) = G \
�
1 + 43(G) + 4(G)4(H)

�

D2(GÒH) = G \
�
1 + 4(H)4(G)4(H) + 4([HÒG])4(H)

�


Moreover let w: GÛH ! G be a map satisfying ôw= identity on GÛH, where ô: G !
GÛH is the natural projection, and w(1) = 1. Since, for any ãÒ å 2 GÛH,

ô
�
w(ãå)�1w(ã)w(å)

�
= (ãå)�1ãå = 1Ò

there exists a unique element W(ãÒ å) 2 H such that

w(ã)w(å) = w(ãå)W(ãÒ å)(1)

Define K to be the subgroup of H generated by f[HÒG]ÒW(ãÒ å) j ãÒ å 2 GÛHg. Write

D3(GÒH) = G \
�
1 + 42(G)4(H) + 4(K)4(H)

�


Let çn(G), n ½ 1, denote the n-th term of the lower central series of the group G. We
also write ç2(G) = G0. The subgroup D1(GÒH) has been computed by Sandling [9], Passi
[7], Passi-Sharma [8], Khambadkone [3] and Karan-Vermani [4], when H is a certain
special subgroup of G. Recently this subgroup has been computed by Hartl [2] (which
is under circulation in preprint form only) for any normal subgroup H of G. Since we
make use of this result in our investigations, we give here an independent proof of this
result of Hartl and prove

THEOREM A. Let G be any group, and H be a normal subgroup of G. Then

D1(GÒH) = ç3(G)h[xmÒ y] j xmÒ ym 2 HG0 for some m ½ 1Ò xÒ y 2 Gi
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Our proof of this result is via free group rings while Hartl’s proof is based on
homological arguments.

The subgroups G \
�
1 + 42(G)4(H)

�
and G \

�
1 + 4(G)4(H)4(G)

�
have been

computed by Ram Karan and Vermani [5] and also by Vermani, Razdan and Karan [10],
when H is a special normal subgroup of G. We are now able to compute subgroups
D2(GÒH) and D3(GÒH) similar to the above subgroups. We prove

THEOREM B. Let G be any group, and H be any normal subgroup of G. Then

D2(GÒH) = ç3(H)h[xmÒ y] j xmÒ ym 2 [HÒG] for some m ½ 1Ò xÒ y 2 Hi

THEOREM C. Let G be any group, and H be any normal subgroup of G. Then

D3(GÒH) = ç3(H)h[xmÒ y] j xmÒ ym 2 K for some m ½ 1Ò xÒ y 2 Hi

2. Proof of Theorem A. We record the following simple observation

LEMMA 2.1. Let J be an ideal of ZG containing 42(K), K being a subgroup of G.
Then

G \
�
1 + J + 4(K)

�
=
�
G \ (1 + J)

�
ž K

Let F = hx1Ò x2Ò    Ò xri be a free group of rank r and R be the normal closure

R = hxe1
1 ò1Ò x

e2
2 ò2Ò    Ò x

er
r òrÒ òr+1Ò   i

F

where e1je2j Ð Ð Ð jerÒ er ½ 0, òi 2 F0(i ½ 1). We prove

THEOREM 2.2. With notation as in the previous paragraph,

F \
�
1 + 43(F) + 4(F)4(R)

�
= ç3(F)UÒ

where U is the subgroup h[xmÒ y] j xmÒ ym 2 RF0 for some m ½ 1, xÒ y 2 Fi of F.

PROOF. Note that the left hand side in the formula of Theorem 2.2 is D1(FÒR) as
defined previously. By [9], D1(FÒR) � [FÒR]ç3(F).

For uÒ v 2 F, using the identities, modulo 43(F),

(un � 1)(v � 1) � n(u � 1)(v � 1) � (u � 1)(vn � 1)(2)

([uÒ v] � 1) � f(u � 1)(v � 1) � (v � 1)(u � 1)g(3)

in ZF, it follows that

U � F \
�
1 + 43(F) + 4(F)4(R)

�
= D1(FÒR)

Since ç3(F) � D1(FÒR) is clear,

ç3(F)U � F \
�
1 + 43(F) + 4(F)4(R)

�
= D1(FÒR)(4)
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To show reverse inclusion we proceed as follows. Suppose w� 1 2 43(F) +4(F)4(R).
Then by [9], w 2 [FÒR]ç3(F). Since

[FÒR] = h[xei
i òiÒ xj]Ò [òqÒ xk] j 1 � i � rÒ 1 � jÒ k � rÒ q ½ r + 1iFÒ

we can write any w 2 [FÒR], modulo ç3(F), as

w �
Y

1�iÚj�r
[xiÒ xj]

ejaij
Y

1�qÚk�r
[xkÒ xq]eqbkq(5)

where aij, bkq 2 Z.
For w 2 [FÒR] as in (5), define

sk(w) =
Y
iÙk

xaki(eiÛek)�bik

i Ò 1 � k � r � 1(6)

Now it follows from (5) that, modulo ç3(F),

w �
r�1Y
k=1

�Y
iÙk

[xek
k Ò xi](eiÛek)aki�bik

�

w �
r�1Y
k=1

[xek
k Ò sk(w)]Ò sk(w) as in (6)(7)

We now claim that if w � 1 2 43(F) + 4(F)4(R) with w 2 [FÒR]ç3(F), then
�
sk(w)

�ek
2 RF0 for k = 1Ò 2Ò    Ò r � 1Ò

and so, in view of (7),

w 2 h[xmÒ y] j xmÒ ym 2 RF0 for some m ½ 1Ò xÒ y 2 Fiç3(F)

This will complete the proof of Theorem 2.2. We proceed to prove our claim.
Let w, as in (7), be such that

w � 1 2 43(F) + 4(F)4(R)

Expansion of w � 1, modulo 43(F), yields (in view of (7))

w � 1 �
r�1X
k=1

n
(xek

k � 1)
�
sk(w) � 1

�
�
�
sk(w) � 1

�
(xek

k � 1)
o
Ò

Since xek
k òk 2 R, where òk 2 F0, so xek

k 2 RF0 and thus

xek
k � 1 2 42(F) + 4(R)

Whence

w � 1 �
r�1X
k=1

(xek
k � 1)

�
sk(w) � 1

��
mod43(F) + 4(F)4(R)

�

�
r�1X
k=1

(xk � 1)
�
sk(w)ek � 1

��
mod43(F) + 4(F)4(R)

�
(by (2))
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Already w � 1 2 43(F) + 4(F)4(R). It, therefore, follows that

r�1X
k=1

(xk � 1)
�
sk(w)ek � 1

�
2 43(F) + 4(F)4(R)Ò

and consequently,4(F) being free right ZF-module with fxk�1 j 1 � k � rg as a basis,
we get �

sk(w)ek � 1
�
2 42(F) + ZF4(R) = 42(F) + 4(R)Ò

and so,

�
sk(w)

�ek
2 F \

�
1 + 42(F) + 4(R)

�
= RF0Ò 1 � k � r � 1Ò (by Lemma 2.1)

as asserted in our claim.

PROOF OF THEOREM A. Let G be a group and H be a normal subgroup of G. Define
U1 to be the subgroup of [HÒG]ç3(G) generated by f[xmÒ y] j xmÒ ym 2 HG0 for some
m ½ 1, x,y 2 Gg. Then U1 is a normal subgroup of G containing H0. That U1ç3(G) is
contained in D1(GÒH) follows as in (4) above.

For proving the reverse inclusion, using standard arguments, we can assume G to be
a finitely generated group. Let G = FÛTÒH = RÛT, where F is a free group and T, R are
normal subgroups of F with T � R. Then

G \
�
1 + 43(G) + 4(G)4(H)

�
= F \

�
1 + 43(F) + 4(F)4(R) + ZF4(T)

�
ÛT

= F \
�
1 + 43(F) + 4(F)4(R)

�
TÛT(8)

The last equality holds by Lemma 2.1. On the other hand, ç3(G)U1 = UTÛTÒU as in
Theorem 2.2. Hence, in view of (8), the proof of Theorem A follows from Theorem 2.2.

3. Proof of Theorem B. First we have the following:

LEMMA 3.1. If H and K are any subgroups of a group G each contained in the
normalizer of the other, then

4(H)4(K) + 4([HÒK]) = 4(K)4(H) + 4([HÒK])

PROOF. Let x be any element of H, and y be any element of K. Then

(x � 1)(y � 1) = (xyx�1 � 1)(x � 1) + (y � 1)([yÒ x�1] � 1) + ([yÒ x�1] � 1)

and so (x � 1)(y � 1) 2 4(K)4(H) + 4([HÒK]), which implies

4(H)4(K) � 4(K)4(H) + 4([HÒK])

Similarly 4(K)4(H) � 4(H)4(K) + 4([HÒK]), and the result follows.

https://doi.org/10.4153/CMB-1998-017-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1998-017-1


ON GENERALIZED THIRD DIMENSION SUBGROUPS 113

COROLLARY 3.2. Let G be a group, and H be a normal subgroup of G. Then

4(H)4(G)4(H) + 4([HÒG])4(H) = 4(G)42(H) + 4([HÒG])4(H)

Let G be a group, H be a normal subgroup of G, and write N for [HÒG]. Let S denote
a left transversal of H in G. Then each g 2 G can be uniquely written as g = sh for some
s 2 S and h 2 H. Let úH denote the extension to ZG by linearity of the map defined on
G by

g = sh �! h

Then úH: ZG ! ZH is easily seen to be a homomorphism of right ZH-modules, the action
of H on ZG being through multiplication in G. We know that each element u 2 ZG can
be written uniquely as a finite sum of the form

u =
X
s2S

susÒ where us 2 ZHÒ

namely, ZG is a free right ZH-module with the set S as a free basis. Then úH is,in fact,
the map which maps u =

P
s2S sus to

P
s2S us. Consequently we have

úH

�
4(G)4n(H)

�
= 4n+1(H) for all n ½ 1(9)

PROOF OF THEOREM B. Since D2(GÒH) � H0 � H,

G \
�
1 + 4(H)4(G)4(H) + 4(N)4(H)

�
= H \

�
1 + 4(H)4(G)4(H) + 4(N)4(H)

�

= H \
�
1 + 4(G)42(H) + 4(N)4(H)

�

by Corollary 3.2 of Lemma 3.1, and hence

G \
�
1 + 4(H)4(G)4(H) + 4(N)4(H)

�
� H \

�
1 + úH

�
4(G)42(H) + 4(N)4(H)

��

= H \
�
1 + 43(H) + 4(N)4(H)

�
Ò by (9)

� H \
�
1 + 4(G)42(H) + 4(N)4(H)

�


Therefore,
D2(GÒH) = H \

�
1 + 43(H) + 4(N)4(H)

�


The result then follows from Theorem A.

4. The proof of Theorem C. Let G a group, and H be a normal subgroup of G.
Then we can take w(GÛH) as representatives of H in G, and any element of G can be
uniquely written in the form

g = w(ã)x with ã 2 GÛHÒ x 2 H

Let W(ãÒ å) and K be as in the introduction. For any elements w(ã)xÒw(å)y (ãÒ å 2
GÛHÒ xÒ y 2 H),

úH

��
w(ã)x � 1

��
w(å)y � 1

��
= W(ãÒ å)x[xÒw(å)]y � x � y + 1

�
�
W(ãÒ å) � 1

�
+
�
[xÒw(å)] � 1

�
mod42(H)Ò(10)
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and hence
úH

�
42(G)

�
� 42(H) + 4(K)

For h 2 HÒ g 2 G, it follows that

[hÒ g] � 1 = úH([hÒ g] � 1) 2 úH

�
42(G)

�
Ò

and hence 4(N) � úH

�
42(G)

�
. Moreover, by (10),

W(ãÒ å) � 1 � úH
��

w(ã)x � 1
��

w(å)y � 1
��

�
�
[xÒw(å)] � 1

�
mod42(H)Ò

and so
4(K) � úH

�
42(G)

�
Ò

which implies 42(H) + 4(K) � úH

�
42(G)

�
. Thus it follows that

42(H) + 4(K) = úH

�
42(G)

�


Since úH is right ZH-module homomorphism, we have

PROPOSITION 4.1.

úH

�
42(G)4(H)

�
= 43(H) + 4(K)4(H)

PROOF OF THEOREM C.

D3(GÒH) = G \
�
1 + 42(G)4(H) + 4(K)4(H)

�

� G \
�
1 + 4(G)4(H)

�
= H0 � HÒ

and hence

D3(GÒH) = H \
�
1 + 42(G)4(H) + 4(K)4(H)

�

= úH

�
H \

�
1 + 42(G)4(H) + 4(K)4(H)

��

� H \
�
1 + 43(H) + 4(K)4(H)

�

� G \
�
1 + 42(G)4(H) + 4(K)4(H)

�


Thus
D3(GÒH) = H \

�
1 + 43(H) + 4(K)4(H)

�


Thus the result follows from Theorem A.

COROLLARY 4.2. Let H be a normal subgroup of a group G such that W(ãÒ å) 2 H\G0

for any ãÒ å 2 GÛH. Then

G \
�
1 + 42(G)4(H)

�
= ç3(H)h[xmÒ y] j xmÒ ym 2 H \ G0 for some m ½ 1Ò xÒ y 2 Hi
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PROOF. Assume that W(ãÒ å) 2 H \ G0 for any ãÒ å 2 GÛH. Then K =
h[HÒG]ÒW(ãÒ å) j ãÒ å 2 GÛHi � H \ G0, and hence

G \
�
1 + 42(G)4(H)

�
= H \ (1 + úH(42(G)4(H)

= H \
�
1 + 43(H) + 4(K)4(H)

�
by Proposition 4.1

� H \
�
1 + 43(H) + 4(H \ G0)4(H)

�

� G \
�
1 + 42(G)4(H) + 4(H \ G0)4(H)

�

= G \
�
1 + 42(G)4(H)

�


Thus it follows

G \
�
1 + 42(G)4(H)

�
= H \

�
1 + 43(H) + 4(H \ G0)4(H)

�

= ç3(H)h[xmÒ y] j xmÒ ym 2 H \ G0 for some m ½ 1Ò xÒ y 2 Hi

We again obtain an identification of the normal subgroup G \
�
1 + 42(G)4(H)

�
similar to the one in Corollary 4.2 for a suitable normal subgroup H of a group G.

We show easily

LEMMA 4.3 ([5, LEMMA 2.1]). Let G = H ž K where H and K are subgroups of G
with H normal in G. Then

42(G)4(H) = 43(H) + 4([HÒK])4(H) + 4(K)42(H) + 42(K)4(H)

THEOREM 4.4. Let G = H j K, H and K be subgroups of G such that H is normal in
G and H \ K � H \ G0. Then

G \
�
1 + 42(G)4(H)

�
= ç3(H)h[xmÒ y] j xmÒ ym 2 H \ G0 for some m ½ 1Ò xÒ y 2 Hi

PROOF. Let xÒ y be any elements of H with xmÒ ym 2 H \ G0 for some m ½ 1. Then

[xmÒ y] � 1 � �(y � 1)(xm � 1) mod42(G)4(H)

� �m(y � 1)(x � 1) mod42(G)4(H)

� �(ym � 1)(x � 1) mod42(G)4(H)

� 0 mod42(G)4(H)

and hence [xmÒ y] 2 G \
�
1 + 42(G)4(H)

�
. Thus

ç3(H)h[xmÒ y] j xmÒ ym 2 H \ G0 for some m ½ 1Ò xÒ y 2 Hi

is contained in G \
�
1 + 42(G)4(H)

�
. To see the reverse inclusion, let h 2 G \�

1 + 42(G)4(H)
�
� G \

�
1 + 4(G)4(H)

�
= H0 � H. Then

h � 1 2 42(G)4(H) \42(H)

=
�
43(H) + 4([HÒK])4(H) + 4(K)42(H) + 42(K)4(H)

�
\42(H)

= 43(H) + 4([HÒK])4(H) +
��
4(K)42(H) + 42(K)4(H)

�
\ 42(H)

�
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by Lemma 4.3, and hence

h � 1 2 43(H) + 4([HÒK])4(H) +
�
4(K)4(H) \42(H)

�

It follows from [5, Lemma 2.2] that 4(K)4(H) \42(H) = 4(H \K)4(H). We thus
have

h � 1 2 42(H) + 4([HÒK])4(H) + 4(H \ K)4(H)

which is contained in 43(H) + 4(H \ G0)4(H) by our hypothesis. Therefore, by Theo-
rem A

h 2 ç3(H)h[xmÒ y] j xmÒ ym 2 H \ G0 for some m ½ 1Ò xÒ y 2 HiÒ

as desired.

REMARK 4.5. Observe that the hypothesis of Theorem 4.4, for example, is satisfied
if the exact sequence

HG0ÛG0 �! GÛG0 �! GÛHG0

splits. This is true in the following cases, e.g.

(a) if GÛH is free abelian,
(b) if H is a divisible subgroup of G,
(c) if H splits over G.

M. Curzio and C. K. Gupta [1] have obtained an identification of the subgroup
G\

�
1 +42(G)4(H)

�
when G is a finitely generated group and H a normal subgroup of

G. We can conjecture as follows

CONJECTURE 4.6. Let G be a group, and H be a normal subgroup of G. Then

G \
�
1 + 42(G)4(H)

�
= ç3(H)h[xmÒ y] j xmÒ ym 2 H \ G0 for some m ½ 1Ò xÒ y 2 Hi
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