ON GENERALIZED THIRD DIMENSION SUBGROUPS

KEN-ICHI TAHARA, L.R. VERMANI AND ATUL RAZDAN

Abstract

Let G be any group, and H be a normal subgroup of G. Then M. Hartl identified the subgroup $G \cap\left(1+\triangle^{3}(G)+\triangle(G) \triangle(H)\right)$ of G. In this note we give an independent proof of the result of Hartl, and we identify two subgroups $G \cap$ $(1+\triangle(H) \triangle(G) \triangle(H)+\triangle([H, G]) \triangle(H)), G \cap\left(1+\triangle^{2}(G) \triangle(H)+\triangle(K) \triangle(H)\right)$ of G for some subgroup K of G containing $[H, G]$.

1. Introduction. Let G be a group, $Z G$ the integral group ring of G and $\triangle(G)$ the augmentation ideal of $Z G$. Let H be a normal subgroup of G and write

$$
\begin{gathered}
D_{1}(G, H)=G \cap\left(1+\triangle^{3}(G)+\triangle(G) \triangle(H)\right) \\
D_{2}(G, H)=G \cap(1+\triangle(H) \triangle(G) \triangle(H)+\triangle([H, G]) \triangle(H)) .
\end{gathered}
$$

Moreover let $w: G / H \rightarrow G$ be a map satisfying $\pi w=$ identity on G / H, where $\pi: G \longrightarrow$ G / H is the natural projection, and $w(1)=1$. Since, for any $\alpha, \beta \in G / H$,

$$
\pi\left(w(\alpha \beta)^{-1} w(\alpha) w(\beta)\right)=(\alpha \beta)^{-1} \alpha \beta=1,
$$

there exists a unique element $W(\alpha, \beta) \in H$ such that

$$
\begin{equation*}
w(\alpha) w(\beta)=w(\alpha \beta) W(\alpha, \beta) . \tag{1}
\end{equation*}
$$

Define K to be the subgroup of H generated by $\{[H, G], W(\alpha, \beta) \mid \alpha, \beta \in G / H\}$. Write

$$
D_{3}(G, H)=G \cap\left(1+\triangle^{2}(G) \triangle(H)+\triangle(K) \triangle(H)\right)
$$

Let $\gamma_{n}(G), n \geq 1$, denote the n-th term of the lower central series of the group G. We also write $\gamma_{2}(G)=G^{\prime}$. The subgroup $D_{1}(G, H)$ has been computed by Sandling [9], Passi [7], Passi-Sharma [8], Khambadkone [3] and Karan-Vermani [4], when H is a certain special subgroup of G. Recently this subgroup has been computed by Hartl [2] (which is under circulation in preprint form only) for any normal subgroup H of G. Since we make use of this result in our investigations, we give here an independent proof of this result of Hartl and prove

Theorem A. Let G be any group, and H be a normal subgroup of G. Then

$$
\left.D_{1}(G, H)=\gamma_{3}(G)\left\langle\left[x^{m}, y\right]\right| x^{m}, y^{m} \in H G^{\prime} \text { for some } m \geq 1, x, y \in G\right\rangle .
$$

Received by the editors August 16, 1996.
The first author was supported in part by Grant-in-Aid for Science Research, Ministry of Education.
The second author was supported in part by National Board for higher Mathematics.
The third author was supported by Council of Scientific \& Industrial Research.
AMS subject classification: Primary 20C07; Secondary 16S34.
(C)Canadian Mathematical Society 1998.

Our proof of this result is via free group rings while Hartl's proof is based on homological arguments.

The subgroups $G \cap\left(1+\triangle^{2}(G) \triangle(H)\right)$ and $G \cap(1+\triangle(G) \triangle(H) \triangle(G))$ have been computed by Ram Karan and Vermani [5] and also by Vermani, Razdan and Karan [10], when H is a special normal subgroup of G. We are now able to compute subgroups $D_{2}(G, H)$ and $D_{3}(G, H)$ similar to the above subgroups. We prove

THEOREM B. Let G be any group, and H be any normal subgroup of G. Then

$$
\left.D_{2}(G, H)=\gamma_{3}(H)\left\langle\left[x^{m}, y\right]\right| x^{m}, y^{m} \in[H, G] \text { for some } m \geq 1, x, y \in H\right\rangle .
$$

THEOREM C. Let G be any group, and H be any normal subgroup of G. Then

$$
\left.D_{3}(G, H)=\gamma_{3}(H)\left\langle\left[x^{m}, y\right]\right| x^{m}, y^{m} \in K \text { for some } m \geq 1, x, y \in H\right\rangle
$$

2. Proof of Theorem A. We record the following simple observation

LEMMA 2.1. Let J be an ideal of $Z G$ containing $\triangle^{2}(K)$, K being a subgroup of G. Then

$$
G \cap(1+J+\triangle(K))=(G \cap(1+J)) \bullet K
$$

Let $F=\left\langle x_{1}, x_{2}, \ldots, x_{r}\right\rangle$ be a free group of rank r and R be the normal closure

$$
R=\left\langle x_{1}^{e_{1}} \xi_{1}, x_{2}^{e_{2}} \xi_{2}, \ldots, x_{r}^{e_{r}} \xi_{r}, \xi_{r+1}, \ldots\right\rangle^{F}
$$

where $e_{1}\left|e_{2}\right| \cdots \mid e_{r}, e_{r} \geq 0, \xi_{i} \in F^{\prime}(i \geq 1)$. We prove
THEOREM 2.2. With notation as in the previous paragraph,

$$
F \cap\left(1+\triangle^{3}(F)+\triangle(F) \triangle(R)\right)=\gamma_{3}(F) U
$$

where U is the subgroup $\left\langle\left[x^{m}, y\right]\right| x^{m}, y^{m} \in R F^{\prime}$ for some $\left.m \geq 1, x, y \in F\right\rangle$ of F.
Proof. Note that the left hand side in the formula of Theorem 2.2 is $D_{1}(F, R)$ as defined previously. By [9], $D_{1}(F, R) \subseteq[F, R] \gamma_{3}(F)$.

For $u, v \in F$, using the identities, modulo $\triangle^{3}(F)$,

$$
\begin{gather*}
\left(u^{n}-1\right)(v-1) \equiv n(u-1)(v-1) \equiv(u-1)\left(v^{n}-1\right) \tag{2}\\
\quad([u, v]-1) \equiv\{(u-1)(v-1)-(v-1)(u-1)\} \tag{3}
\end{gather*}
$$

in $Z F$, it follows that

$$
U \subseteq F \cap\left(1+\triangle^{3}(F)+\triangle(F) \triangle(R)\right)=D_{1}(F, R)
$$

Since $\gamma_{3}(F) \subseteq D_{1}(F, R)$ is clear,

$$
\begin{equation*}
\gamma_{3}(F) U \subseteq F \cap\left(1+\triangle^{3}(F)+\triangle(F) \triangle(R)\right)=D_{1}(F, R) \tag{4}
\end{equation*}
$$

To show reverse inclusion we proceed as follows. Suppose $w-1 \in \triangle^{3}(F)+\triangle(F) \triangle(R)$. Then by [9], $w \in[F, R] \gamma_{3}(F)$. Since

$$
[F, R]=\left\langle\left[x_{i}^{e_{i}} \xi_{i}, x_{j}\right],\left[\xi_{q}, x_{k}\right] \mid 1 \leq i \leq r, 1 \leq j, k \leq r, q \geq r+1\right\rangle^{F}
$$

we can write any $w \in[F, R]$, modulo $\gamma_{3}(F)$, as

$$
\begin{equation*}
w \equiv \prod_{1 \leq i<j \leq r}\left[x_{i}, x_{j}\right]^{e_{j} a_{i j}} \prod_{1 \leq q<k \leq r}\left[x_{k}, x_{q}\right]^{e_{q} b_{k q}} \tag{5}
\end{equation*}
$$

where $a_{i j}, b_{k q} \in Z$.
For $w \in[F, R]$ as in (5), define

$$
\begin{equation*}
s_{k}(w)=\prod_{i>k} x_{i}^{a_{k}\left(e_{i} / e_{k}\right)-b_{i k}}, \quad 1 \leq k \leq r-1 . \tag{6}
\end{equation*}
$$

Now it follows from (5) that, modulo $\gamma_{3}(F)$,

$$
\begin{gather*}
w \equiv \prod_{k=1}^{r-1}\left(\prod_{i>k}\left[x_{k}^{e_{k}}, x_{i}\right]^{\left(e_{i} / e_{k}\right) a_{k i}-b_{i k}}\right) \\
w \equiv \prod_{k=1}^{r-1}\left[x_{k}^{e_{k}}, s_{k}(w)\right], s_{k}(w) \quad \text { as in (6) } \tag{7}
\end{gather*}
$$

We now claim that if $w-1 \in \triangle^{3}(F)+\triangle(F) \triangle(R)$ with $w \in[F, R] \gamma_{3}(F)$, then

$$
\left(s_{k}(w)\right)^{e_{k}} \in R F^{\prime} \quad \text { for } k=1,2, \ldots, r-1
$$

and so, in view of (7),

$$
\left.w \in\left\langle\left[x^{m}, y\right]\right| x^{m}, y^{m} \in R F^{\prime} \text { for some } m \geq 1, x, y \in F\right\rangle \gamma_{3}(F)
$$

This will complete the proof of Theorem 2.2. We proceed to prove our claim.
Let w, as in (7), be such that

$$
w-1 \in \triangle^{3}(F)+\triangle(F) \triangle(R) .
$$

Expansion of $w-1$, modulo $\triangle^{3}(F)$, yields (in view of (7))

$$
w-1 \equiv \sum_{k=1}^{r-1}\left\{\left(x_{k}^{e_{k}}-1\right)\left(s_{k}(w)-1\right)-\left(s_{k}(w)-1\right)\left(x_{k}^{e_{k}}-1\right)\right\}
$$

Since $x_{k}^{e_{k}} \xi_{k} \in R$, where $\xi_{k} \in F^{\prime}$, so $x_{k}^{e_{k}} \in R F^{\prime}$ and thus

$$
x_{k}^{e_{k}}-1 \in \triangle^{2}(F)+\triangle(R)
$$

Whence

$$
\begin{aligned}
w-1 & \equiv \sum_{k=1}^{r-1}\left(x_{k}^{e_{k}}-1\right)\left(s_{k}(w)-1\right)\left(\bmod \triangle^{3}(F)+\triangle(F) \triangle(R)\right) \\
& \equiv \sum_{k=1}^{r-1}\left(x_{k}-1\right)\left(s_{k}(w)^{e_{k}}-1\right)\left(\bmod \triangle^{3}(F)+\triangle(F) \triangle(R)\right) \quad(\text { by }(2))
\end{aligned}
$$

Already $w-1 \in \triangle^{3}(F)+\triangle(F) \triangle(R)$. It, therefore, follows that

$$
\sum_{k=1}^{r-1}\left(x_{k}-1\right)\left(s_{k}(w)^{e_{k}}-1\right) \in \triangle^{3}(F)+\triangle(F) \triangle(R)
$$

and consequently, $\triangle(F)$ being free right $Z F$-module with $\left\{x_{k}-1 \mid 1 \leq k \leq r\right\}$ as a basis, we get

$$
\left(s_{k}(w)^{e_{k}}-1\right) \in \triangle^{2}(F)+Z F \triangle(R)=\triangle^{2}(F)+\triangle(R),
$$

and so,

$$
\left(s_{k}(w)\right)^{e_{k}} \in F \cap\left(1+\triangle^{2}(F)+\triangle(R)\right)=R F^{\prime}, \quad 1 \leq k \leq r-1, \quad(\text { by Lemma 2.1) }
$$

as asserted in our claim.
Proof of Theorem A. Let G be a group and H be a normal subgroup of G. Define U_{1} to be the subgroup of $[H, G] \gamma_{3}(G)$ generated by $\left\{\left[x^{m}, y\right] \mid x^{m}, y^{m} \in H G^{\prime}\right.$ for some $m \geq 1, x, y \in G\}$. Then U_{1} is a normal subgroup of G containing H^{\prime}. That $U_{1} \gamma_{3}(G)$ is contained in $D_{1}(G, H)$ follows as in (4) above.

For proving the reverse inclusion, using standard arguments, we can assume G to be a finitely generated group. Let $G=F / T, H=R / T$, where F is a free group and T, R are normal subgroups of F with $T \subseteq R$. Then

$$
\begin{align*}
G \cap\left(1+\triangle^{3}(G)+\triangle(G) \triangle(H)\right) & =F \cap\left(1+\triangle^{3}(F)+\triangle(F) \triangle(R)+Z F \triangle(T)\right) / T \\
& =F \cap\left(1+\triangle^{3}(F)+\triangle(F) \triangle(R)\right) T / T \tag{8}
\end{align*}
$$

The last equality holds by Lemma 2.1. On the other hand, $\gamma_{3}(G) U_{1}=U T / T, U$ as in Theorem 2.2. Hence, in view of (8), the proof of Theorem A follows from Theorem 2.2.
3. Proof of Theorem B. First we have the following:

LEMMA 3.1. If H and K are any subgroups of a group G each contained in the normalizer of the other, then

$$
\triangle(H) \triangle(K)+\triangle([H, K])=\triangle(K) \triangle(H)+\triangle([H, K]) .
$$

Proof. Let x be any element of H, and y be any element of K. Then

$$
(x-1)(y-1)=\left(x y x^{-1}-1\right)(x-1)+(y-1)\left(\left[y, x^{-1}\right]-1\right)+\left(\left[y, x^{-1}\right]-1\right)
$$

and so $(x-1)(y-1) \in \triangle(K) \triangle(H)+\triangle([H, K])$, which implies

$$
\triangle(H) \triangle(K) \subseteq \triangle(K) \triangle(H)+\triangle([H, K])
$$

Similarly $\triangle(K) \triangle(H) \subseteq \triangle(H) \triangle(K)+\triangle([H, K])$, and the result follows.

Corollary 3.2. Let G be a group, and H be a normal subgroup of G. Then

$$
\triangle(H) \triangle(G) \triangle(H)+\triangle([H, G]) \triangle(H)=\triangle(G) \triangle^{2}(H)+\triangle([H, G]) \triangle(H)
$$

Let G be a group, H be a normal subgroup of G, and write N for $[H, G]$. Let S denote a left transversal of H in G. Then each $g \in G$ can be uniquely written as $g=s h$ for some $s \in S$ and $h \in H$. Let τ_{H} denote the extension to $Z G$ by linearity of the map defined on G by

$$
g=s h \longrightarrow h .
$$

Then $\tau_{H}: Z G \rightarrow Z H$ is easily seen to be a homomorphism of right $Z H$-modules, the action of H on $Z G$ being through multiplication in G. We know that each element $u \in Z G$ can be written uniquely as a finite sum of the form

$$
u=\sum_{s \in S} s u_{s}, \quad \text { where } u_{s} \in Z H,
$$

namely, $Z G$ is a free right $Z H$-module with the set S as a free basis. Then τ_{H} is,in fact, the map which maps $u=\sum_{s \in S} s u_{s}$ to $\sum_{s \in S} u_{s}$. Consequently we have

$$
\begin{equation*}
\tau_{H}\left(\triangle(G) \triangle^{n}(H)\right)=\triangle^{n+1}(H) \quad \text { for all } n \geq 1 \tag{9}
\end{equation*}
$$

Proof of Theorem B. Since $D_{2}(G, H) \subseteq H^{\prime} \subseteq H$,

$$
\begin{aligned}
G \cap(1+\triangle(H) \triangle(G) \triangle(H)+\triangle(N) \triangle(H)) & =H \cap(1+\triangle(H) \triangle(G) \triangle(H)+\triangle(N) \triangle(H)) \\
& =H \cap\left(1+\triangle(G) \triangle^{2}(H)+\triangle(N) \triangle(H)\right)
\end{aligned}
$$

by Corollary 3.2 of Lemma 3.1, and hence

$$
\begin{aligned}
G \cap(1+\triangle(H) \triangle(G) \triangle(H)+\triangle(N) \triangle(H)) & \subseteq H \cap\left(1+\tau_{H}\left(\triangle(G) \triangle^{2}(H)+\triangle(N) \triangle(H)\right)\right) \\
& =H \cap\left(1+\triangle^{3}(H)+\triangle(N) \triangle(H)\right), \quad \text { by }(9) \\
& \subseteq H \cap\left(1+\triangle(G) \triangle^{2}(H)+\triangle(N) \triangle(H)\right) .
\end{aligned}
$$

Therefore,

$$
D_{2}(G, H)=H \cap\left(1+\triangle^{3}(H)+\triangle(N) \triangle(H)\right) .
$$

The result then follows from Theorem A.
4. The proof of Theorem C. Let G a group, and H be a normal subgroup of G. Then we can take $w(G / H)$ as representatives of H in G, and any element of G can be uniquely written in the form

$$
g=w(\alpha) x \quad \text { with } \alpha \in G / H, x \in H .
$$

Let $W(\alpha, \beta)$ and K be as in the introduction. For any elements $w(\alpha) x, w(\beta) y(\alpha, \beta \in$ $G / H, x, y \in H)$,

$$
\tau_{H}((w(\alpha) x-1)(w(\beta) y-1))=W(\alpha, \beta) x[x, w(\beta)] y-x-y+1
$$

$$
\begin{equation*}
\equiv(W(\alpha, \beta)-1)+([x, w(\beta)]-1) \bmod \triangle^{2}(H) \tag{10}
\end{equation*}
$$

and hence

$$
\tau_{H}\left(\triangle^{2}(G)\right) \subseteq \triangle^{2}(H)+\triangle(K)
$$

For $h \in H, g \in G$, it follows that

$$
[h, g]-1=\tau_{H}([h, g]-1) \in \tau_{H}\left(\triangle^{2}(G)\right)
$$

and hence $\triangle(N) \subseteq \tau_{H}\left(\triangle^{2}(G)\right)$. Moreover, by (10),

$$
W(\alpha, \beta)-1 \equiv \tau_{H}((w(\alpha) x-1)(w(\beta) y-1))-([x, w(\beta)]-1) \bmod \triangle^{2}(H)
$$

and so

$$
\triangle(K) \subseteq \tau_{H}\left(\triangle^{2}(G)\right)
$$

which implies $\triangle^{2}(H)+\triangle(K) \subseteq \tau_{H}\left(\triangle^{2}(G)\right)$. Thus it follows that

$$
\triangle^{2}(H)+\triangle(K)=\tau_{H}\left(\triangle^{2}(G)\right)
$$

Since τ_{H} is right ZH -module homomorphism, we have
Proposition 4.1.

$$
\tau_{H}\left(\triangle^{2}(G) \triangle(H)\right)=\triangle^{3}(H)+\triangle(K) \triangle(H)
$$

Proof of Theorem C.

$$
\begin{aligned}
D_{3}(G, H) & =G \cap\left(1+\triangle^{2}(G) \triangle(H)+\triangle(K) \triangle(H)\right) \\
& \subseteq G \cap(1+\triangle(G) \triangle(H))=H^{\prime} \subseteq H
\end{aligned}
$$

and hence

$$
\begin{aligned}
D_{3}(G, H) & =H \cap\left(1+\triangle^{2}(G) \triangle(H)+\triangle(K) \triangle(H)\right) \\
& =\tau_{H}\left(H \cap\left(1+\triangle^{2}(G) \triangle(H)+\triangle(K) \triangle(H)\right)\right) \\
& \subseteq H \cap\left(1+\triangle^{3}(H)+\triangle(K) \triangle(H)\right) \\
& \subseteq G \cap\left(1+\triangle^{2}(G) \triangle(H)+\triangle(K) \triangle(H)\right)
\end{aligned}
$$

Thus

$$
D_{3}(G, H)=H \cap\left(1+\triangle^{3}(H)+\triangle(K) \triangle(H)\right)
$$

Thus the result follows from Theorem A.
COROLLARY 4.2. Let H be a normal subgroup of a group G such that $W(\alpha, \beta) \in H \cap G^{\prime}$ for any $\alpha, \beta \in G / H$. Then

$$
\left.G \cap\left(1+\triangle^{2}(G) \triangle(H)\right)=\gamma_{3}(H)\left\langle\left[x^{m}, y\right]\right| x^{m}, y^{m} \in H \cap G^{\prime} \text { for some } m \geq 1, x, y \in H\right\rangle
$$

Proof. Assume that $W(\alpha, \beta) \in H \cap G^{\prime}$ for any $\alpha, \beta \in G / H$. Then $K=$ $\langle[H, G], W(\alpha, \beta) \mid \alpha, \beta \in G / H\rangle \subseteq H \cap G^{\prime}$, and hence

$$
\begin{aligned}
G \cap\left(1+\triangle^{2}(G) \triangle(H)\right) & =H \cap\left(1+\tau_{H}\left(\triangle^{2}(G) \triangle(H)\right.\right. \\
& =H \cap\left(1+\triangle^{3}(H)+\triangle(K) \triangle(H)\right) \quad \text { by Proposition } 4.1 \\
& \subseteq H \cap\left(1+\triangle^{3}(H)+\triangle\left(H \cap G^{\prime}\right) \triangle(H)\right) \\
& \subseteq G \cap\left(1+\triangle^{2}(G) \triangle(H)+\triangle\left(H \cap G^{\prime}\right) \triangle(H)\right) \\
& =G \cap\left(1+\triangle^{2}(G) \triangle(H)\right)
\end{aligned}
$$

Thus it follows

$$
\begin{aligned}
G \cap\left(1+\triangle^{2}(G) \triangle(H)\right) & =H \cap\left(1+\triangle^{3}(H)+\triangle\left(H \cap G^{\prime}\right) \triangle(H)\right) \\
& \left.=\gamma_{3}(H)\left\langle\left[x^{m}, y\right]\right| x^{m}, y^{m} \in H \cap G^{\prime} \text { for some } m \geq 1, x, y \in H\right\rangle .
\end{aligned}
$$

We again obtain an identification of the normal subgroup $G \cap\left(1+\triangle^{2}(G) \triangle(H)\right)$ similar to the one in Corollary 4.2 for a suitable normal subgroup H of a group G.

We show easily
Lemma 4.3 ([5, Lemma 2.1]). Let $G=H \bullet K$ where H and K are subgroups of G with H normal in G. Then

$$
\triangle^{2}(G) \triangle(H)=\triangle^{3}(H)+\triangle([H, K]) \triangle(H)+\triangle(K) \triangle^{2}(H)+\triangle^{2}(K) \triangle(H)
$$

ThEOREM 4.4. Let $G=H \mid K$, H and K be subgroups of G such that H is normal in G and $H \cap K \subseteq H \cap G^{\prime}$. Then

$$
\left.G \cap\left(1+\triangle^{2}(G) \triangle(H)\right)=\gamma_{3}(H)\left\langle\left[x^{m}, y\right]\right| x^{m}, y^{m} \in H \cap G^{\prime} \text { for some } m \geq 1, x, y \in H\right\rangle
$$

PROOF. Let x, y be any elements of H with $x^{m}, y^{m} \in H \cap G^{\prime}$ for some $m \geq 1$. Then

$$
\begin{aligned}
{\left[x^{m}, y\right]-1 } & \equiv-(y-1)\left(x^{m}-1\right) \bmod \triangle^{2}(G) \triangle(H) \\
& \equiv-m(y-1)(x-1) \bmod \triangle^{2}(G) \triangle(H) \\
& \equiv-\left(y^{m}-1\right)(x-1) \bmod \triangle^{2}(G) \triangle(H) \\
& \equiv 0 \bmod \triangle^{2}(G) \triangle(H)
\end{aligned}
$$

and hence $\left[x^{m}, y\right] \in G \cap\left(1+\triangle^{2}(G) \triangle(H)\right)$. Thus

$$
\left.\gamma_{3}(H)\left\langle\left[x^{m}, y\right]\right| x^{m}, y^{m} \in H \cap G^{\prime} \text { for some } m \geq 1, x, y \in H\right\rangle
$$

is contained in $G \cap\left(1+\triangle^{2}(G) \triangle(H)\right)$. To see the reverse inclusion, let $h \in G \cap$ $\left(1+\triangle^{2}(G) \triangle(H)\right) \subseteq G \cap(1+\triangle(G) \triangle(H))=H^{\prime} \subseteq H$. Then

$$
h-1 \in \triangle^{2}(G) \triangle(H) \cap \triangle^{2}(H)
$$

$$
=\left(\triangle^{3}(H)+\triangle([H, K]) \triangle(H)+\triangle(K) \triangle^{2}(H)+\triangle^{2}(K) \triangle(H)\right) \cap \triangle^{2}(H)
$$

$$
=\triangle^{3}(H)+\triangle([H, K]) \triangle(H)+\left(\left(\triangle(K) \triangle^{2}(H)+\triangle^{2}(K) \triangle(H)\right) \cap \triangle^{2}(H)\right)
$$

by Lemma 4.3, and hence

$$
h-1 \in \triangle^{3}(H)+\triangle([H, K]) \triangle(H)+\left(\triangle(K) \triangle(H) \cap \triangle^{2}(H)\right)
$$

It follows from [5, Lemma 2.2] that $\triangle(K) \triangle(H) \cap \triangle^{2}(H)=\triangle(H \cap K) \triangle(H)$. We thus have

$$
h-1 \in \triangle^{2}(H)+\triangle([H, K]) \triangle(H)+\triangle(H \cap K) \triangle(H)
$$

which is contained in $\triangle^{3}(H)+\triangle\left(H \cap G^{\prime}\right) \triangle(H)$ by our hypothesis. Therefore, by Theorem A

$$
\left.h \in \gamma_{3}(H)\left\langle\left[x^{m}, y\right]\right| x^{m}, y^{m} \in H \cap G^{\prime} \text { for some } m \geq 1, x, y \in H\right\rangle
$$

as desired.
REMARK 4.5. Observe that the hypothesis of Theorem 4.4, for example, is satisfied if the exact sequence

$$
H G^{\prime} / G^{\prime} \longrightarrow G / G^{\prime} \longrightarrow G / H G^{\prime}
$$

splits. This is true in the following cases, e.g.
(a) if G / H is free abelian,
(b) if H is a divisible subgroup of G,
(c) if H splits over G.
M. Curzio and C. K. Gupta [1] have obtained an identification of the subgroup $G \cap\left(1+\triangle^{2}(G) \triangle(H)\right)$ when G is a finitely generated group and H a normal subgroup of G. We can conjecture as follows

CONJECTURE 4.6. Let G be a group, and H be a normal subgroup of G. Then
$G \cap\left(1+\triangle^{2}(G) \triangle(H)\right)=\gamma_{3}(H)\left\langle\left[x^{m}, y\right]\right| x^{m}, y^{m} \in H \cap G^{\prime}$ for some $\left.m \geq 1, x, y \in H\right\rangle$.

References

1. M. Curzio and C. K. Gupta, Second Fox subgroup of arbitrary groups. Canad. Math. Bull. 38(1995), 177-181.
2. M. Hartl, On relative polynomial construction of degree 2 and application. (preprint).
3. M. Khambadkone, On the structure of augmentation ideals in group rings. J. Pure Appl. Algebra 35(1985), 35-45.
4. R. Karan and L. R. Vermani, A note on polynomial maps, J. Pure Appl. Algebra 51(1988),169-173.
5. \longrightarrow Augmentation quotients of integral group rings. J. Indian Math. Soc. 54(1989), 107-120.
6. W. Magnus, A. Karass and A. Solitar, Combinatorial Group Theory. 2nd Ed. Dover, 1974.
7. I. B. S. Passi, Polynomial maps on groups-II. Math. Z. 135(1974), 137-141.
8. I. B. S. Passi and S. Sharma, The third dimension subgroup $\bmod n$. J. London Math. Soc. 9(1974), 176-182.
9. R. Sandling, The dimension subgroup problem. J. Algebra 21(1972), 216-231.
10. L. R. Vermani, A. Razdan and R. Karan, Some remarks on subgroups determined by certain ideals in integral group rings. Proc. Indian Acad. Sci. Math. Sci. 103(1993), 249-256.

Department of Mathematical Science	Department of Mathematics
Aichi University of Education	Kurukshetra University
Kariya-shi	Kurukshetra 136119 (Haryana)
Japan 448	India
e-mail: tahara@auems.aichi-edu.ac.jp	e-mail: kuru@doe.ernet.in
School of Sciences	
IGNOU, Maidan Garhi	
New Dehli 110068	
India	
e-mail: ignou@giasdl01.vsnl.net.in	

