Ergod. Th. & Dynam. Sys. (1988), 8, 111-131 Printed in Great Britain

Asymptotic behaviour of iterated piecewise monotone maps

JÜRGEN WILLMS

Universität Bielefeld, Fakultät für Mathematik, 4800 Bielefeld 1, West Germany

(Received 22 November 1986)

Abstract. In this paper the asymptotic behaviour of piecewise monotone functions $f: I \rightarrow I$ with a finite number of discontinuities is studied (where $I \subseteq \mathbb{R}$ is a compact interval). It is shown that there is a finite number of f-almost-invariant subsets $C_1, \ldots, C_r, R_1, \ldots, R_s$, where each C_i is a disjoint union of closed intervals and each R_j is a Cantor-like subset of I, such that if x is a 'typical' point in I (in a topological sense) then exactly one of the following three possibilities will happen:

(1) ${f^n(x)}_{n\geq 0}$ eventually ends up in some C_i .

(2) $\{f^n(x)\}_{n\geq 0}$ is attracted to some R_j .

(3) $\{f^n(x): n \ge 0\}$ is contained in an open, invariant set $Z \subseteq I$, which is such that for each $n \ge 1$ f^n is monotone and continuous on each connected component of Z.

Moreover, f acts topologically transitively on each C_i and minimally on each R_j . Furthermore, it is shown how the sets $C_1, \ldots, C_r, R_1, \ldots, R_s$ can be constructed. Finally, our results are applied to some examples.

1. Introduction

In the last few years there has been considerable interest in the qualitative behaviour of iterates of maps on an interval into itself (see, for instance, [2], [6], [9], [11], [12], [14]). Although they are the simplest examples of non-linear (discrete) dynamical systems their asymptotic behaviour can exhibit a surprisingly complex structure. One-dimensional maps have been used as models for various systems (see, for instance, the models of density dependent population growth studied in [10]). It is known that in certain cases the asymptotic behaviour of higher-dimensional (discrete as well as continuous) dynamical systems can be, at least partly, described by iterates of maps on an interval into itself. For instance, in [19] the Lorenz attractor is described as the inverse limit of a semi-flow on a two-dimensional branched manifold. The Poincaré map of this semi-flow is a function on a bounded interval [a, b]into itself which has a single discontinuity at c = (a+b)/2 and is strictly increasing on [a, c] and (c, b]. Interval exchange transformations, Newton's method for determining the zeros of a polynomial (identifying \mathbb{R} with the unit interval) and the β -transformations discussed in [17] are some more examples for discrete dynamical systems on a compact interval, having a finite number of discontinuities.

In [15] Preston studied the asymptotic behaviour of iterates of piecewise monotone continuous functions on a compact interval I into itself, i.e. continuous functions

 $f: I \to I$ with only a finite number of points at which f is not strictly monotone (an improved and much simplified version of [15] is contained in §§ 2, 3 and 4 of [16]). The present work generalizes his main result in that a finite number of discontinuities is allowed. More exactly, let $a, b \in \mathbb{R}$ with a < b and let I be the closed interval with endpoints a and b. For technical reasons we consider a point ω not contained in \mathbb{R} and put $I' = I \cup \{\omega\}$. We call a map $f: I' \to I'$ piecewise monotone on I if there exist $m \ge 1$ and $a = d_0 < d_1 < \cdots < d_m = b$ such that $f^{-1}(\{\omega\}) = \{d_0, d_1, \ldots, d_m, \omega\}$ and, for all $0 \le k \le m-1$, f is continuous and strictly monotone on each of the intervals (d_k, d_{k+1}) . $\mathcal{N}(I)$ will denote the set of piecewise monotone maps on I. For $f \in \mathcal{N}(I)$ put $S(f) = f^{-1}(\{\omega\}) \cap I$. Now let $f \in \mathcal{N}(I)$ be fixed. We define $f^n \in \mathcal{N}(I)$, the *n*th. iterate of f, inductively by $f^0(x) = x$ and $f^{n+1}(x) = f(f^n(x))$ for all $x \in I'$ and $n \ge 0$. Unlike in [7] where the structure of the non-wandering set is studied (using symbolic dynamics) our aim is to analyse the asymptotic behaviour of $\{f^n(x)\}_{n\ge 0}$ for a 'typical' point x of I (in a topological sense).

After some preliminaries in § 2 we study in § 3 some basic properties of sinks and homtervals of f. § 4 is concerned with some elementary properties of topologically transitive f-cycles and f-register-shifts. The main result is stated and proved in § 5. It says that there are only a finite number of topologically transitive f-cycles C_1, \ldots, C_r and f-register-shifts R_1, \ldots, R_s and that for all points x lying in some residual subset of I exactly one of the following three things will happen:

(1) $\{f^n(x)\}_{n\geq 0}$ eventually ends up in some topologically transitive f-cycle C_i .

(2) $\{f^n(x)\}_{n\geq 0}$ is attracted to some *f*-register-shift R_j .

(3) $\{f^n(x)\}_{n\geq 0}$ eventually ends up in some sink or some homterval of f (in particular, $\{f^n(x): n\geq 0\}$ is contained in an open, invariant set $Z\subseteq I$, which is such that for each $n\geq 1$, f^n is monotone and continuous on each connected component of Z).

In § 6 we study some more properties of *f*-register-shifts and topologically transitive *f*-cycles. In particular, we show that each *f*-register-shift *R* is a Cantor-like set, that $R - Q \subseteq f(R - S(f)) \subseteq R$ where *Q* is a finite subset of *I* and that for each $x \in R$ either $\{f^n(x): n \ge 0\}$ contains a singular point of *f*, i.e. an element of S(f), or $\{f^n(x): n \ge 0\}$ is dense in *R*. Moreover, we prove that each topologically transitive *f*-cycle is in fact strongly transitive. Finally, in § 7 we apply our results to some examples.

Acknowledgement. I would like to thank Professor Chris Preston for his helpful suggestions and comments, and in particular for his improvements to the clarity of the definition of register-shifts. I am also grateful to the referee for his remarks and recommendations.

This paper is a shortened and revised version of the author's Dissertation (Bielefeld 1985) with the same title.

2. Piecewise monotone functions

Let $a, b \in \mathbb{R}$ with a < b and let ω be some point not contained in \mathbb{R} . Put I = [a, b]and $I' = I \cup \{\omega\}$; we consider I' as a topological space by calling a subset A of I'open if there exists an open subset U of \mathbb{R} such that $U \cap I = A \cap I$. A function $f: I' \to I'$ is called *piecewise monotone* on I if there exists $m \ge 1$ and $a = d_0 < d_1 < \cdots < d_m = b$ such that

(2.1) f is continuous and strictly monotone on each of the open intervals (d_k, d_{k+1}) , k = 0, 1, ..., m-1, and

(2.2) $f^{-1}(\{\omega\}) = \{d_0, d_1, \ldots, d_m, \omega\}.$

 $\mathcal{N}(I)$ will denote the set of piecewise monotone functions on *I*. Throughout this paper we assume that *f* is a fixed element of $\mathcal{N}(I)$.

For $n \ge 0$ define $f^n: I' \to I'$ inductively by $f^0(x) = x$ and $f^{n+1}(x) = f(f^n(x))$ for all $x \in I'$. It is easy to check that the composition of two elements of $\mathcal{N}(I)$ is again an element of $\mathcal{N}(I)$; hence we have $f^n \in \mathcal{N}(I)$ for each $n \ge 1$. Let S(f) denote the set of singular points of f in I, *i.e.* $S(f) = f^{-1}(\{\omega\}) \cap I$. Put $S(f^0) = \emptyset$; it is not difficult to show that for all $n, k \ge 0$ and $A \subseteq I$ we have

$$S(f^n) = \{x \in I : f^j(x) \in S(f) \text{ for some } 0 \le j < n\}$$
$$= \{x \in I : f^n(x) = \omega\},$$
$$f^n(A - S(f^n)) = f^n(A) \cap I$$

and

$$f^{n}(f^{k}(A-S(f^{k}))-S(f^{n}))=f^{n+k}(A-S(f^{n+k})).$$

Let $n \ge 1$; note that f^n is continuous and monotone on an open interval $J \subseteq I$ if and only if $J \cap S(f^n) = \emptyset$ and that $J \cap S(f^n) = \emptyset$ if and only if $f^n(J) \subset I$. Note also that if $f^n(x) \in I$ for some $x \in I$ then there exists $\varepsilon > 0$ such that f^n is continuous and monotone on $(x - \varepsilon, x + \varepsilon)$; in particular, $f^n(A - S(f^n))$ and $f^{-n}(A)$ are open whenever A is an open subset of I (where $f^{-n}(A) = \{x \in I : f^n(x) \in A\}$). Moreover, if A is an open interval contained in I then $f^n(A - S(f^n))$ is a finite union of open intervals.

A subset $A \subseteq I$ is called *f*-almost-invariant if $f(A - S(f)) \subseteq A$. The union and the intersection of any number of *f*-almost-invariant subsets of *I* are *f*-almost-invariant. Furthermore, it is easy to show that if $A \subseteq I$ is *f*-almost-invariant then int (A) and \overline{A} are both *f*-almost-invariant and that for each $n \ge 1$, A is also f^n -almost-invariant.

We call $A \subseteq I$ f-biinvariant if A is f-almost-invariant and $f^{-1}(A) \subseteq A$. Again the union and the intersection of f-biinvariant subsets of I are f-biinvariant.

3. Sinks and homtervals

All results and proofs in this section are almost identical with the ones in [16]. For the convenience of the reader we give the proofs below.

A non-empty, open interval $J \subseteq I$ is called a *sink* of f if there exists $m \ge 1$ such that $f^m(J) \subseteq J$. Note that if J is a sink of f then $f^n(J) \cap S(f) = \emptyset$ and hence $J \cap S(f^n) = \emptyset$ for all $n \ge 0$; thus for each $n \ge 0$, f^n is continuous and monotone on J.

LEMMA 3.1 (cf. [16, lemma 4.1]). Let $U \subseteq I$ be a non-empty open interval such that $f^n(U) \subseteq I$ for each $n \ge 0$. If $U \cap f^m(U) \neq \emptyset$ for some $m \ge 1$ then U is contained in a sink of f.

Proof. Put $J = \bigcup_{k \ge 0} f^{km}(U)$; then $U \subseteq J \subseteq I$ and J is a non-empty open interval with $f^m(J) \subseteq J$.

We call a non-empty open interval $L \subseteq I$ a homterval of f if for each $n \ge 0$ we have $f^n(L) \subseteq I$ and $f^n(L)$ is not contained in any sink of f. Note that if L is a homterval of f then $f^n(L) \cap S(f) = \emptyset$ and hence $L \cap S(f^n) = \emptyset$ for all $n \ge 0$; thus f^n is continuous and monotone on L for each $n \ge 0$. We emphasize that by proposition 3.3 (3) our definition of a homterval is equivalent to the usual one (see for instance [5]). For the construction of functions having homtervals see for example [5] or [16].

PROPOSITION 3.2 (cf. [16, proposition 4.3]). (1) If J_1 , J_2 are sinks (resp. homtervals) of f with $J_1 \cup J_2 \neq \emptyset$ then $J_1 \cup J_2$ is also a sink (resp. homterval) of f.

(2) If J is a sink (resp. homterval) of f then for each $n \ge 0$, $f^n(J)$ is also a sink (resp. homterval) of f.

(3) Each sink of f is contained in a maximal sink of f; if J_1 and J_2 are maximal sinks of f then either $J_1 = J_2$ or $J_1 \cap J_2 = \emptyset$.

(4) Each homterval of f is contained in a maximal homterval of f; if L_1 and L_2 are maximal homtervals of f then either $L_1 = L_2$ or $L_1 \cap L_2 = \emptyset$.

Proof. (1) and (2) are clear.

(3) Let J be a sink of f and let U be the largest open interval with $J \subseteq U \subseteq I$ such that $f^n(U) \subseteq I$ for all $n \ge 0$. The maximality of U and lemma 3.1 ensure that U is the maximal sink of f containing J. If J_1 and J_2 are maximal sinks of f with $J_1 \ne J_2$ then by (1) we have $J_1 \cap J_2 = \emptyset$.

(4) Let L be a homterval of f and let U be the largest open interval with $L \subseteq U \subseteq I$ such that $f^n(U) \subseteq I$ for all $n \ge 0$. U cannot be contained in a sink of f since L is a homterval of f. Hence U is the maximal homterval of f containing L. If L_1 and L_2 are maximal homtervals of f with $L_1 \ne L_2$ then by (1) we have $L_1 \cap L_2 = \emptyset$. \Box

Put

Sink
$$(f) = \{x \in I : f^m(x) \in J \text{ for some sink } J \text{ of } f \text{ and some } m \ge 0\}$$

and

Homt $(f) = \{x \in I : f^m(x) \in L \text{ for some homterval } L \text{ of } f \text{ and some } m \ge 0\};$

then Sink (f) and Homt (f) are both open and by proposition 3.2 (2) we have $f(\text{Sink }(f)) \subseteq \text{Sink }(f)$ and $f(\text{Homt }(f)) \subseteq \text{Homt }(f)$. Moreover, it is easy to see that Sink (f) and Homt (f) are both f-biinvariant.

PROPOSITION 3.3 (cf. [16, proposition 4.3]). (1) Sink $(f) \cap \text{Homt}(f) = \emptyset$.

- (2) If $L \subseteq \text{Homt}(f)$ is a non-empty open interval then L is a homterval of f.
- (3) If L is a homterval of f then $f^n(L) \cap f^k(L) = \emptyset$ whenever $0 \le k < n$.
- (4) If $x \in \text{Sink}(f)$ then there exists $q \ge 1$ such that $\lim_{n \to \infty} f^{nq}(x)$ exists.

Proof. (1) Suppose that Sink $(f) \cap$ Homt $(f) \neq \emptyset$. Then there exist a sink J of f and a homterval L of f such that $L \cap J \neq \emptyset$. Lemma 3.1 gives us then that $J \cup L$, and thus also L, is contained in a sink of f. But this is not possible since L is a homterval of f.

(2) Let $L \subseteq \text{Homt}(f)$ be a non-empty open interval. Then for each $n \ge 0$ we have $f^n(L) \subseteq I$ and by (1) $f^n(L)$ is not contained in any sink of f. Hence L is a homterval of f.

(3) Let $0 \le k \le n$; applying lemma 3.1 with $U = f^k(L)$ and m = n - k shows that if L is a homeerval of f then $f^k(L) \cap f^n(L) = \emptyset$.

(4) Suppose that $x \in \text{Sink}(f)$; then by proposition 3.2(2) there exist $k \ge 0$, $m \ge 1$ and a sink J of f such that $f^{km}(x) \in J$ and $f^m(J) \subseteq J$. Since f^m is continuous and monotone on J this gives us that for each $n \ge k$, $f^{nm}(x) \in J$ and that the sequence $\{f^{2nm}(x)\}_{n\ge k}$ is monotone. Hence $\lim_{n\to\infty} f^{2nm}(x)$ exists.

Put $M(f) = \{x \in I: f^m(x) = \omega \text{ for some } m \ge 0\}$. Note that M(f) and thus also $\overline{M(f)}$ are f-almost-invariant and that $I - \overline{M(f)}$ is the largest open set $U \subseteq I$ such that $f^n(U) \cap S(f) = \emptyset$ for all $n \ge 0$.

PROPOSITION 3.4 (cf. [16, proposition 4.2]). $I - \overline{M(f)} = \operatorname{Sink}(f) \cup \operatorname{Homt}(f)$.

Proof. Suppose that $x \in \text{Sink}(f) \cup \text{Homt}(f)$; then there exists $m \ge 0$ such that $f^m(x) \in J$ where J is either a sink or a homterval of f. Thus $f^m((x-\varepsilon, x+\varepsilon)) \subseteq J$ for some $\varepsilon > 0$ and hence $f^n((x-\varepsilon, x+\varepsilon)) \subseteq I$ for each $n \ge 0$. This shows that $x \in I - \overline{M(f)}$. On the other hand, let $U \subseteq I - \overline{M(f)}$ be a non-empty open interval. Then $f^n(U) \subseteq I$ for all $n \ge 0$. Thus either U is a homterval of f or there exists $m \ge 0$ such that $f^m(U)$ is contained in some sink of f. Hence $U \subseteq \text{Sink}(f) \cup \text{Homt}(f)$. \Box

The following lemma will be useful later.

LEMMA 3.5. If $U \subseteq \overline{M(f)}$ is non-empty, open and f-almost-invariant then $U \cap S(f) \neq \emptyset$. Proof. Suppose that $U \subseteq \overline{M(f)}$ is non-empty, open and f-almost-invariant. Since $U \cap M(f) \neq \emptyset$ we have $\varphi \in f^n(U) = f^n(U - S(f^n)) \subseteq U$ for some $\varphi \in S(f)$ and $n \ge 0$.

4. Topologically transitive cycles and register-shifts

This section is concerned with the definitions and some elementary properties of topologically transitive *f*-cycles and *f*-register-shifts.

We call $C \subseteq I$ an *f*-cycle if C is *f*-almost-invariant and is the disjoint union of non-trivial closed intervals B_1, \ldots, B_m $(m \ge 1)$ such that whenever $1 \le j \le m$ and $U \subseteq C$ is non-empty and open then $f^n(U) \cap B_j \ne \emptyset$ for some $n \ge 1$. B_1, \ldots, B_m are then called the *components* of C.

Clearly, I is an f-cycle. Note that C being an f-cycle does not necessarily mean that f cyclically permutes or even permutes the components of C. But if $f_{|C}$ is really 'continuous' in that there exists a continuous function $g: C \to C$ with g(x) = f(x) for all $x \in I - S(f)$, then we can label the components B_1, \ldots, B_m of the f-cycle C in such a way that $f(B_i - S(f)) \subseteq B_{i+1}$ for $i = 1, \ldots, m-1$ and $f(B_m - S(f)) \subseteq B_1$. In general however, the situation is much more complicated since, for a component B of C, f(B - S(f)) is not necessarily contained in a single component of C.

For an f-cycle C let A(C, f) denote the set of points in I which eventually 'end up' in the interior of C, i.e.

 $A(C, f) = \{x \in I : f^m(x) \in int(C) \text{ for some } m \ge 0\}.$

Clearly, A(C, f) is open and f-biinvariant.

LEMMA 4.1. Let C and K be f-cycles. Then:

(1) If int $(B \cap K) = \emptyset$ for some component B of C then int $(C \cap K) = \emptyset$.

(2) $A(C, f) \cap A(K, f) = \emptyset$ if and only if int $(C \cap K) = \emptyset$.

Proof. (1) Let B be a component of C. If $\operatorname{int} (C \cap K) \neq \emptyset$ then by definition we have $\emptyset \neq f^n(\operatorname{int} (C \cap K)) \cap B = f^n(\operatorname{int} (C \cap K) - S(f^n)) \cap B$ for some $n \ge 1$. But since for each $m \ge 1$, $f^m(\operatorname{int} (C \cap K) - S(f^m))$ is an open subset of K it follows that $\operatorname{int} (B \cap K) \neq \emptyset$.

(2) Let $x \in A(C, f) \cap A(K, f)$; then $f^n(x) \in int(C)$ and $f^m(x) \in int(K)$ for some $n, m \ge 0$. Putting $k = \max\{n, m\}$ we have $f^k(x) \in int(C \cap K)$. The proof of the converse is trivial since $\emptyset \neq int(K') \subseteq A(K', f)$ for each f-cycle K'. \Box

In order to analyse the structure of $\overline{M(f)}$ we will be interested in *f*-cycles contained in $\overline{M(f)}$. Looking for *f*-cycles which are 'minimal' leads us to the following definition. We say that an *f*-cycle *C* is *topologically transitive* if whenever *F* is a closed, *f*-almost-invariant subset of *C* then either F = C or $int(F) = \emptyset$.

For $x \in I$ put $O_f(x) = \{f^n(x): n \ge 0\}$; $O_f(x)$ is called the *orbit* of x (under f).

PROPOSITION 4.2 (cf. [18, theorem 5.8]. Let $C \subseteq I$ be an f-cycle. Then the following are equivalent:

- (1) C is a topologically transitive f-cycle.
- (2) If $U \subseteq C$ is non-empty, open and f-almost-invariant then $\overline{U} = C$.
- (3) If $U, V \subseteq C$ are non-empty and open then $f^n(U) \cap V \neq \emptyset$ for some $n \ge 0$.
- (4) If $U, V \subseteq C$ are non-empty and open then $f^{-n}(U) \cap V \neq \emptyset$ for some $n \ge 0$.
- (5) $\{x \in C : \overline{O_f(x)} \neq C\}$ is of the first category.
- (6) $\overline{O_f(x)} = C$ for some $x \in C$.

Proof. (1) \Rightarrow (2) Suppose that $U \subseteq C$ is non-empty, open and f-almost-invariant. Then $\overline{U} \subseteq C$ is closed and f-almost-invariant; hence since C is topologically transitive we have $\overline{U} = C$.

 $(2) \Rightarrow (3)$ Suppose that $U, V \subseteq C$ are non-empty and open. Put $A = \bigcup_{n \ge 0} f^n (U - S(f^n))$. Then A is a non-empty, open and f-almost-invariant subset of C, and thus by $(2) \ \overline{A} = C$. Hence $f^n(U) \cap V \neq \emptyset$ for some $n \ge 0$.

 $(3) \Rightarrow (4)$ This is clear.

(4) \Rightarrow (5) Let U_1, U_2, \ldots be a countable base for the relative topology on C and let $x \in C$. Then $\overline{O_f(x)} \neq C$ if and only if $O_f(x) \cap U_n = \emptyset$ for some $n \ge 1$. Thus

$$\{x \in C \colon \overline{O_f(x)} \neq C\} = C \cap \bigcup_{n \ge 1} \bigcap_{m \ge 0} f^{-m} (I' - U_n)$$
$$\subseteq \bigcup_{n \ge 1} \left(I - \left(\bigcup_{m \ge 0} f^{-m} (U_n) \cap \operatorname{int} (C) \right) \right) \cap C$$

Since $\bigcup_{m\geq 0} f^{-m}(U_n) \cap \text{int}(C)$ is open and by (4) dense in C the set of points $\{x \in C : \overline{O_f(x)} \neq C\}$ is of the first category.

 $(5) \Rightarrow (6)$ This is clear since C is a set of the second category.

(6) \Rightarrow (1) Let $x \in C$ with $\overline{O_f(x)} = C$ and let $F \subseteq C$ be closed and f-almost-invariant with int $(F) \neq \emptyset$. Then we have $f^k(x) \in F$ for some $k \ge 0$, and thus $\{f^n(x) : n \ge k\} \subseteq F$. Since C has no isolated points it follows that $C = \overline{O_f(x)} = \overline{\{f^n(x) : n \ge k\}} = F$. \Box

116

PROPOSITION 4.3 (cf. [16, proposition 2.1]). Let C and K be topologically transitive f-cycles. Then:

(1) $A(C, f) \cap (\text{Sink}(f) \cup \text{Homt}(f)) = \emptyset$.

(2)
$$C \subseteq \overline{M(f)}$$
.

(3) int $(C) \cap S(f) \cap (a, b) \neq \emptyset$.

(4) Either C = K or $A(C, f) \cap A(K, f) = \emptyset$.

Proof. (1) Suppose that $A(C, f) \cap \text{Homt}(f) \neq \emptyset$. Then there exists a homterval L of f with $L \subseteq C$. By proposition 3.3(3) we would then have $L \cap f^n(f(L)) = \emptyset$ for all $n \ge 0$ which by proposition 4.2 is not possible.

Suppose next that $A(C, f) \cap \text{Sink}(f) \neq \emptyset$. Then $\text{int}(C) \cap \text{Sink}(f) \neq \emptyset$ and by proposition 3.3(4) we would have

int
$$(C) \cap \text{Sink}(f) \subseteq \{x \in C : \overline{O_f(x)} \neq C\}.$$

Again this contradicts proposition 4.2.

(2) By (1) and proposition 3.4 we have

$$A(C, f) \subseteq I - (\operatorname{Sink}(f) \cup \operatorname{Homt}(f)) = \overline{M(f)}.$$

Hence $C \subseteq \overline{M(f)}$.

(3) Since int $(C) \cap (a, b)$ is an *f*-almost-invariant subset of $\overline{M(f)}$, lemma 3.5 gives us that int $(C) \cap S(f) \cap (a, b) \neq \emptyset$.

(4) Suppose that $A(C, f) \cap A(K, f) \neq \emptyset$. Then by lemma 4.1(2) we have int $(C \cap K) \neq \emptyset$. Since $C \cap K$ is closed and f-almost-invariant it follows from the topological transitivity of C and K that $C = C \cap K = K$.

Examples of piecewise monotone functions having topologically transitive cycles are easily found. For instance, let $g \in \mathcal{N}(I)$ be given by g(x) = 2x - a if a < x < (a+b)/2 and g(x) = 2x - b if (a+b)/2 < x < b. As it is shown in corollary 7.2, I is then a topologically transitive g-cycle. In general we cannot describe the asymptotic behaviour of elements of $\mathcal{N}(I)$ in terms of sinks, homtervals and topologically cycles alone. For $\mu \in (0, 4)$ let $f_{\mu} \in \mathcal{N}([0, 1])$ be given by $f_{\mu}(x) = \mu x(1-x)$ for all $x \in (0, 1) - \{\frac{1}{2}\}$. Then for a certain value of μ ($\mu \approx 3.56994$) we have Sink (f_{μ}) = Homt (f_{μ}) = \emptyset and there is no topologically transitive f_{μ} -cycle. (See for instance [6] and [3, theorem 2.6]). In [16, § 7] a function $g \in \mathcal{N}(I)$ is explicitly constructed having neither sinks, homtervals nor topologically transitive g-cycles. In both cases there exists a decreasing sequence of cycles $\{K_n\}_{n\geq 1}$ such that int ($\bigcap_{n\geq 1} K_n$) = \emptyset . This suggests the following definition.

We call $R \subseteq I$ an *f*-register-shift if int $(R) = \emptyset$ and if there exists a decreasing sequence $\{K_n\}_{n\geq 1}$ of *f*-cycles K_n contained in $\overline{M(f)}$ such that $R = \bigcap_{n\geq 1} K_n$ $(\{K_n\}_{n\geq 1} \text{ is said to be decreasing if } K_{n+1} \subseteq K_n \text{ for each } n\geq 1)$; we then say that $\{K_n\}_{n\geq 1}$ is a generator for the *f*-register-shift *R*.

PROPOSITION 4.4. Let $\{K_n\}_{n\geq 1}$ be a generator for some f-register-shift R and let $\{K'_n\}_{n\geq 1}$ be a generator for some f-register-shift R'. Then:

(1) If C is a topologically transitive f-cycle then $A(C, f) \cap A(K_m, f) = \emptyset$ for some $m \ge 1$.

(2) $S(f) \cap (a, b) \cap \bigcap_{n \ge 1} \operatorname{int} (K_n) \neq \emptyset$.

(3) $R \neq R'$ if and only if $A(K_m, f) \cap A(K'_m, f) = \emptyset$ for some $m \ge 1$.

Proof. (1) Suppose that C is a topologically transitive f-cycle and assume that $A(C, f) \cap A(K_n, f) \neq \emptyset$ for all $n \ge 1$. Then by lemma 4.1(2) we would have int $(C \cap K_n) \neq \emptyset$ and thus $C \subseteq K_n$ for all $n \ge 1$ (because C is topologically transitive). But this is not possible since int $(\bigcap_{n\ge 1} K_n) = \emptyset$.

(2) Since int $(K_n) \cap (a, b)$ is an *f*-almost-invariant subset of $\overline{M(f)}$ we have by lemma 3.5, int $(K_n) \cap S(f) \cap (a, b) \neq \emptyset$ for each $n \ge 1$. Hence

$$S(f) \cap (a, b) \cap \bigcap_{n \ge 1} \operatorname{int} (K_n) \neq \emptyset$$

(because S(f) is finite).

(3) Let $x \in R - R'$; then $x \in R - K'_j$ for some $j \ge 1$. For $n \ge 1$ let B_n be the unique component of K_n with $x \in B_n$. Since int $(R) = \emptyset$ we have $\{x\} = \bigcap_{n\ge 1} B_n$; hence $B_m \cap K'_j = \emptyset$ for some $m \ge j$. Now lemma 4.1 gives that

$$\operatorname{int} (K_m \cap K'_m) \subseteq \operatorname{int} (K_m \cap K'_j) = \emptyset,$$

and thus $A(K_m, f) \cap A(K'_m, f) = \emptyset$. Conversely, if $A(K_m, f) \cap A(K'_m, f) = \emptyset$ for some $m \ge 1$ then int $(K_m) \cap int (K'_m) = \emptyset$, and thus by (2) $R \ne R'$.

Let R be an f-register-shift; put $A(R, f) = \bigcap_{C \in \mathscr{C}(R)} A(C, f)$ where $\mathscr{C}(R)$ is the set of f-cycles C with $R \subseteq C$. Let $\{K_n\}_{n\geq 1}$ be a generator for R. One can show that in general $A(R, f) = \bigcap_{n\geq 1} A(K_n, f)$ is not true. However, we will prove in § 5 (theorem 5.9(2)) that there exists a generator $\{K_n\}_{n\geq 1}$ for R such that $A(R, f) = \bigcap_{n\geq 1} A(K_n, f)$. In particular, this shows that A(R, f) is a G_{δ} -set (i.e. A(R, f) can be written as a countable intersection of open sets).

In § 6 we will study some more properties of *f*-register-shifts. We will show that each *f*-register-shift *R* is a Cantor-like set, that $R - Q \subseteq f(R - S(f)) \subseteq R$ where *Q* is a finite set of points in *I*, that the orbit of each point in R - M(f) is dense in *R* and that each element of A(R, f) is attracted to *R*.

5. The main result

We now come to the main result.

THEOREM 5.1. Let C_1, \ldots, C_r be the topologically transitive f-cycles, let R_1, \ldots, R_s be the f-register-shifts and for $1 \le i \le s$ let $\{K_n^{(i)}\}_{n\ge 1}$ be a generator for R_i . Then

$$r+s \leq \operatorname{card} (S(f) \cap (a, b)),$$

and there exists $m \ge 1$ such that for each $n \ge m$ the open and f-biinvariant sets $A(C_1, f), \ldots, A(C_r, f), A(K_n^{(1)}, f), \ldots, A(K_n^{(s)}, f), Sink(f), Homt(f)$ are disjoint and their union is dense in I.

Proof. The proof of theorem 5.1, which is based on a couple of lemmas and propositions, can be found at the end of this section.

Let C_1, \ldots, C_r be the topologically transitive f-cycles and let R_1, \ldots, R_s be the f-register-shifts. Put

 $G(f) = A(C_1, f) \cup \ldots \cup A(C_r, f) \cup A(R_1, f) \cup \ldots \cup A(R_s, f) \cup \text{Sink}(f) \cup \text{Homt}(f).$ Theorem 5.9(2) will show that for each $1 \le i \le s$ there exists a generator $\{K_n^{(i)}\}_{n\ge 1}$ for R_i such that $A(R_i, f) = \bigcap_{n\ge 1} A(K_n^{(i)}, f)$. Hence by theorem 5.1 and the Baire category theorem the G_{δ} -set G(f) is dense in I. The following example shows that I - G(f) (which is f-biinvariant) can have a quite complicated structure. Consider Newton's Method for determining the zeros of a polynomial p. By identifying $\overline{\mathbb{R}}$ with I we obtain a discrete dynamical system on I represented by some $g \in \mathcal{N}(I)$. If p is an n-th degree polynomial with $n \ge 4$ having real roots, then it follows from a result by Barna [1] that Sink (g) is dense in I (and thus there are neither homtervals of g, topologically transitive g-cycles nor g-register-shifts) and that I - G(g) contains a Cantor-like set. Furthermore, it should be noted that the action of f restricted to I - G(f) can be very complex. In the continuous case (i.e. if there exists a continuous function g on I into itself with g(x) = f(x) for all $x \in I - S(f)$) the asymptotic behaviour of f on I - G(f) is analysed in [16] by using certain factors of f which essentially 'kill off' G(f).

For $\varphi \in S(f)$ and $n \ge 1$ put

$$I_n(\varphi) = \left(\varphi - \frac{1}{n}, \varphi + \frac{1}{n}\right) \cap I$$

and

$$L_n(\varphi) = \bigcup_{m \ge 0} f^m(I_n(\varphi) - S(f^m))$$

Then $L_n(\varphi)$ is non-empty, open and f-almost-invariant and we have $L_{n+1}(\varphi) \subseteq L_n(\varphi)$ for all $n \ge 1$. Furthermore, for $\varphi \in S(f)$ put

$$\Delta(\varphi) = \{ x \in I : f^m(x) = \varphi \text{ for some } m \ge 0 \};$$

note that $\Delta(\varphi)$ and thus also $\overline{\Delta(\varphi)}$ and $\overline{\Delta(\varphi)}$ are *f*-almost-invariant.

The proof of theorem 5.1 will consist in showing that for each $\varphi \in S(f)$ with int $\overline{(\Delta(\varphi))} \neq \emptyset$ there exists $m \ge 1$ such that either $\overline{L_m(\varphi)}$ is a topologically transitive f-cycle or $\{\overline{L_n(\varphi)}\}_{n\ge m}$ is a generator for some f-register-shift R. In order to prove that (for sufficiently large n) $\overline{L_n(\varphi)}$ is an f-cycle we will first study some properties of certain (connected) components of open, f-almost-invariant subsets of I.

Let $U \subseteq I$ be open; a component J of U is called *regular* if there exists a component L of U with $L \cap S(f) \neq \emptyset$ such that $f^k(L) \cap J \neq \emptyset$ for some $k \ge 0$. Let $\varphi \in S(f)$ and $n \ge 1$; note that each component of $L_n(\varphi)$ is regular.

LEMMA 5.2. Let $U \subseteq I$ be non-empty, open and f-almost-invariant and let J be a regular component of U. Then there exists a component K of U - S(f) and $m \ge 0$ such that $f^m(K) \subseteq J$, $K \cap S(f^m) = \emptyset$ and $K \subseteq L$ for some component L of U with $L \cap S(f) \neq \emptyset$.

Proof. Let

 $m = \min \{k \ge 0: f^k(L) \cap J \ne \emptyset \text{ for some component } L \text{ of } U \text{ with } L \cap S(f) \ne \emptyset \}.$

Choose a component L of U with $L \cap S(f) \neq \emptyset$ such that $f^m(L) \cap J \neq \emptyset$. Since U is f-almost-invariant there exists a component K of L - S(f) such that $f^m(K) \subseteq J$. Then K is a component of U - S(f) and by the choice of m we have $K \cap S(f^m) = \emptyset$.

LEMMA 5.3. Let $U \subseteq \overline{M(f)}$ be non-empty, open and f-almost-invariant. Then the set of the regular components of U is non-empty and finite.

Proof. By Lemma 3.5 we have $U \cap S(f) \neq \emptyset$; hence we can find at least one regular component of U. Let \mathscr{Y} be the set of the components K of U - S(f) which are

contained in some component L of U with $L \cap S(f) \neq \emptyset$. \mathcal{Y} is finite because we have for all $K \in \mathcal{Y}$ and $\varphi \in S(f)$, $\overline{K} \cap S(f) \neq \emptyset$ and card $(\{K \in \mathcal{Y} : \varphi \in \overline{K}\}) \leq 2$. Since $U \subseteq \overline{M(f)}$ we can find $N \geq 1$ such that for all $K \in \mathcal{Y}$ there exists $0 \leq n \leq N$ with $f^n(K) \cap S(f) \neq \emptyset$. Now let J be a regular component of U. By lemma 5.2 there exist $K \in \mathcal{Y}$ and $m \geq 0$ such that $f^m(K) \subseteq J$, $K \cap S(f^m) = \emptyset$ and m < N. Since J is the unique component of U with $f^m(K) \subseteq J$, this shows that there are at most $N \cdot \text{card}(\mathcal{Y})$ regular components of U.

LEMMA 5.4. Let U, U' be open and f-almost-invariant subsets of I with $U' \subseteq U$ and $U \cap S(f) = U' \cap S(f)$. Then each regular component of U contains at least one regular component of U'.

Proof. Let J be a regular component of U. By lemma 5.2 there exist a component K of U - S(f) and $m \ge 0$ such that $f^m(K) \subseteq J$, $K \cap S(f^m) = \emptyset$ and $K \subseteq L$ for some component L of U with $L \cap S(f) \ne \emptyset$. Since $U \cap S(f) = U' \cap S(f)$ we can find a component L' of U' with $L' \cap S(f) \ne \emptyset$ such that $L' \subseteq L$ and $L' \cap K \ne \emptyset$. Then since U' is f-almost-invariant $f^m(L' \cap K)$ is a non-empty open interval which is contained in $U' \cap J$. Let J' be the unique component of U' with $f^m(L' \cap K) \subseteq J'$. Then $J' \subseteq J$ and J' is regular.

Next we want to show that if $\varphi \in S(f)$ with int $\overline{(\Delta(\varphi))} \neq \emptyset$ and *n* is sufficiently large then $\overline{L_n(\varphi)}$ is an *f*-cycle. For this we need the following lemma.

LEMMA 5.5. Let $\varphi \in S(f)$ with int $\overline{(\Delta(\varphi))} \neq \emptyset$. Then:

(1) If $U \subseteq \overline{\Delta(\varphi)}$ is non-empty, open and f-almost-invariant, then $L_n(\varphi) \subseteq U$ for some $n \ge 1$.

(2) There exists $m \ge 1$ such that $L_n(\varphi) \subseteq \overline{\Delta(\varphi)}$ and

$$L_n(\varphi) \cap S(f) = L_m(\varphi) \cap S(f)$$
 for all $n \ge m$.

Proof. (1) Suppose that $U \subseteq \overline{\Delta(\varphi)}$ is non-empty, open and f-almost-invariant. Since $\Delta(\varphi) \cap U \neq \emptyset$ we have $\varphi \in f^j(U - S(f^j)) \subseteq U$ for some $j \ge 0$. Hence there exists $n \ge 1$ such that $I_n(\varphi) \subseteq U$. Again using that U is f-almost-invariant gives us that $L_n(\varphi) \subseteq U$.

(2) Since $\operatorname{int}(\overline{\Delta(\varphi)})$ is f-almost-invariant and S(f) is finite there exists by (1) $m \ge 1$ such that $L_n(\varphi) \subseteq \overline{\Delta(\varphi)}$ and $L_n(\varphi) \cap S(f) = L_m(\varphi) \cap S(f)$ for all $n \ge m$.

PROPOSITION 5.6. Let $\varphi \in S(f)$ with int $\overline{(\Delta(\varphi))} \neq \emptyset$. Then for all sufficiently large $n \ge 1$ the number of components of $L_n(\varphi)$ is finite and $\overline{L_n(\varphi)}$ is an f-cycle contained in $\overline{\Delta(\varphi)}$.

Proof. By lemma 5.5(2) there exists $m \ge 1$ such that $L_n(\varphi) \subseteq \overline{\Delta(\varphi)}$ and $L_n(\varphi) \cap S(f) = L_m(\varphi) \cap S(f)$ for all $n \ge m$. Now let $n \ge m$. Since each component of $L_n(\varphi)$ is regular lemma 5.3 immediately gives us that the number of components of $L_n(\varphi)$ is finite. Hence $\overline{L_n(\varphi)}$ can be written as a disjoint union of non-trivial closed intervals B_1, \ldots, B_p (with $p \ge 1$). Let $U \subseteq \overline{L_n(\varphi)}$ be open and non-empty. In order to prove that $\overline{L_n(\varphi)}$ is an f-cycle it remains to show that for each $1 \le i \le p$ we have $B_i \cap f^k(U) \ne \emptyset$ for some $k \ge 1$. Let $1 \le i \le p$ and put $V = \bigcup_{k\ge 1} f^k(U - S(f^k))$. Then V is open and (since V and $\overline{L_n(\varphi)}$ are both f-almost-invariant) we have $V \subseteq \overline{L_n(\varphi)} \subseteq \overline{\Delta(\varphi)}$. Hence by lemma 5.5(1) there exists $j \ge n$ with $L_i(\varphi) \subseteq V$. B_i contains at least one

component J of $L_n(\varphi)$, which is regular. By lemma 5.4 there exists a component J' of $L_j(\varphi)$ with $J' \subseteq J \subseteq B_i$. Hence $J' \subseteq B_i \cap V$ and therefore $B_i \cap f^k(U) \neq \emptyset$ for some $k \ge 1$.

PROPOSITION 5.7. Let $L_{\infty} = \bigcap_{n \ge 1} \overline{L_n(\varphi)}$ for some $\varphi \in S(f)$ with int $\overline{(\Delta(\varphi))} \neq \emptyset$. Then:

(1) If int $(L_{\infty}) \neq \emptyset$ then L_{∞} is a topologically transitive f-cycle and $L_{\infty} = \overline{L_m(\varphi)}$ for some $m \ge 1$.

(2) If int $(L_{\infty}) = \emptyset$ then L_{∞} is an f-register-shift and for all sufficiently large m, $\{\overline{L_n(\varphi)}\}_{n \ge m}$ is a generator for L_{∞} with $A(L_{\infty}, f) = \bigcap_{n \ge m} A(\overline{L_n(\varphi)}, f)$.

Proof. (1) Put $V = \operatorname{int} (L_{\infty})$ and suppose that V is non-empty. By lemma 5.5(2) we have $V \subseteq \overline{L_k(\varphi)} \subseteq \overline{\Delta(\varphi)}$ for some $k \ge 1$ and by lemma 5.5(1) we can find $m \ge 1$ with $L_m(\varphi) \subseteq V$. Thus $\overline{L_n(\varphi)} = \overline{L_m(\varphi)} = L_{\infty}$ for all $n \ge m$, and so by proposition 5.6 $\overline{L_m(\varphi)}$ is an *f*-cycle contained in $\overline{\Delta(\varphi)}$. Now let $U \subseteq \overline{L_m(\varphi)}$ be non-empty, open and *f*-almost-invariant. Again by lemma 5.5(1) we have $L_j(\varphi) \subseteq U$ for some $j \ge m$ and hence $\overline{L_j(\varphi)} = \overline{U} = \overline{L_m(\varphi)}$. Therefore by proposition 4.2, $\overline{L_m(\varphi)}$ is a topologically transitive *f*-cycle.

(2) Suppose that int $(L_{\infty}) = \emptyset$. By proposition 5.6 there exists $m \ge 1$ such that for each $n \ge m \ \overline{L_n(\varphi)}$ is an *f*-cycle contained in $\overline{\Delta(\varphi)} \subseteq \overline{M(f)}$. Hence L_{∞} is an *f*-register-shift and $\{\overline{L_n(\varphi)}\}_{n\ge m}$ is a generator for L_{∞} . In order to show that $A(L_{\infty}, f) = \bigcap_{n\ge m} A(\overline{L_n(\varphi)}, f)$, consider an *f*-cycle K with $L_{\infty} \subseteq K$; put U =int $(K) \cap$ int $(\overline{\Delta(\varphi)})$. Then U is non-empty because $\varphi \in L_{\infty} \cap$ int $(\overline{\Delta(\varphi)}) \subseteq K \cap$ int $(\overline{\Delta(\varphi)})$. Moreover, U is open and *f*-almost-invariant; hence by lemma 5.5(1) we have $L_n(\varphi) \subseteq U \subseteq K$ and thus int $(\overline{L_n(\varphi)}) \subseteq$ int (K) for some $n \ge m$. Therefore $A(\overline{L_n(\varphi)}, f) \subseteq A(K, f)$ which shows that $A(L_{\infty}, f) = \bigcap_{n\ge m} A(\overline{L_n(\varphi)}, f)$.

LEMMA 5.8. Let $U \subseteq \overline{M(f)}$ be non-empty, open and f-almost-invariant. Then there exists $\varphi \in S(f)$ with int $(\overline{\Delta(\varphi)}) \neq \emptyset$ such that $L_n(\varphi) \subseteq U$ for some $n \ge 1$.

Proof. $\bigcup_{\varphi \in S(f)}$ int $(\overline{\Delta(\varphi)})$ is dense in $\overline{M(f)}$ since

$$\overline{M(f)} - \bigcup_{\varphi \in S(f)} \operatorname{int} \overline{(\Delta(\varphi))} = \bigcup_{\varphi \in S(f)} \overline{\Delta(\varphi)} - \bigcup_{\varphi \in S(f)} \operatorname{int} (\overline{\Delta(\varphi)}) \subseteq \bigcup_{\varphi \in S(f)} \partial(\overline{\Delta(\varphi)}).$$

Hence there exists $\varphi \in S(f)$ with int $(\overline{\Delta(\varphi)}) \cap U \neq \emptyset$, and thus by lemma 5.5(1) we have $L_n(\varphi) \subseteq U$ for some $n \ge 1$.

Proof of Theorem 5.1. By propositions 4.3 and 4.4 there exists $m \ge 1$ such that for all $n \ge m$ the open and f-biinvariant sets $A(C_1, f), \ldots, A(C_r, f), A(K_n^{(1)}, f), \ldots, A(K_n^{(s)}, f)$, Sink (f), Homt (f) are disjoint and each of them apart from Sink (f) and Homt (f) contains at least one element of $S(f) \cap (a, b)$. Thus $r+s \le \operatorname{card} (S(f) \cap (a, b))$. For $n \ge m$ put

$$G_n = I - (A(C_1, f) \cup \ldots \cup A(C_r, f) \cup A(K_n^{(1)}, f) \cup \ldots \cup A(K_n^{(s)}, f) \cup \operatorname{Sink} k, (f) \cup \operatorname{Homt} (f)).$$

Then G_n and thus int (G_n) are *f*-almost-invariant, and by proposition 3.4 we have $G_n \subseteq \overline{M(f)}$. Lemma 5.8 and proposition 5.7 immediately give us that int $(G_n) = \emptyset$.

J. Willms

The next theorem shows how each topologically transitive f-cycle and how for a given f-register-shift R a generator $\{K_n\}_{n\geq 1}$ for R with $A(R, f) = \bigcap_{n\geq 1} A(K_n, f)$ can be constructed; in particular, this implies that A(R, f) is a G_{δ} -set.

THEOREM 5.9. Let C be a topologically transitive f-cycle and let R be an f-register-shift. Then:

(1) $C = \bigcap_{n \ge 1} \overline{L_n(\varphi)} = \overline{L_m(\varphi)}$ for some $\varphi \in S(f)$ with $\operatorname{int} \overline{\Delta(\varphi)} \neq \emptyset$.

(2) $R = \bigcap_{n \ge 1} \overline{L_n(\varphi)}$ and $\{\overline{L_n(\varphi)}\}_{n \ge m}$ is a generator for R with $A(R, f) = \bigcap_{n \ge m} A(\overline{L_n(\varphi)}, f)$ for some $\varphi \in S(f)$ with $\operatorname{int}(\overline{\Delta(\varphi)}) \neq \emptyset$ and all large enough m.

Proof. (1) By proposition 4.3(2) we have $C \subseteq \overline{M(f)}$. Hence by lemma 5.8 there exists $\varphi \in S(f)$ with $\operatorname{int} (\overline{\Delta(\varphi)}) \neq \emptyset$ such that $L_m(\varphi) \subseteq C$ for some $m \ge 1$. Since C is topologically transitive we have $C = \overline{L_m(\varphi)} = \bigcap_{n \ge 1} \overline{L_n(\varphi)}$.

(2) Let $\{K_n\}_{n\geq 1}$ be a generator for R. Since S(f) is finite there exists, by lemma 5.8, $\varphi \in S(f)$ with $\operatorname{int} (\overline{\Delta(\varphi)}) \neq \emptyset$ such that for each $n \geq 1$ we have $L_j(\varphi) \subseteq K_n$ for some $j \geq n$. Hence propositions 4.4(3) and 5.7(2) give us that $R = \bigcap_{n\geq 1} \overline{L_n(\varphi)}$ and that for sufficiently large m, $\{\overline{L_n(\varphi)}\}_{n\geq m}$ is a generator for R with $A(R, f) = \bigcap_{n\geq m} A(\overline{L_n(\varphi)}, f)$.

6. More on register-shifts and topologically transitive cycles

In this section we will first study some more properties of f-register-shifts. In particular, we will show that each f-register-shift R is a Cantor-like set, that $R-Q \subseteq f(R-S(f)) \subseteq R$ where Q is a finite set of points in I and that the orbit of each point in R-M(f) is dense in R. In the second part of this section we will prove that each topologically transitive f-cycle C is in fact strongly transitive, i.e. for each open and non-empty subset U of C, $\bigcup_{n=0}^{m} f^{n}(U-S(f^{n}))$ is dense in C for some $m \ge 0$.

For the sequel it will be convenient to consider a new dynamical system associated with f. For $x \in I$ and $\varepsilon > 0$ let $B_{\varepsilon}(x, 1) = (x, x + \varepsilon) \cap I$ and $B_{\varepsilon}(x, -1) = (x - \varepsilon, x) \cap I$. For $A \subseteq I$ put

$$A^* = \{ (x, \alpha) \in I \times \{1, -1\} : B_{\varepsilon}(x, \alpha) \cap A \neq \emptyset \text{ for each } \varepsilon > 0 \}.$$

Let K be an f-cycle; note that $(x, \alpha) \in K^*$ if and only if $B_{\varepsilon}(x, \alpha) \subseteq K$ for some $\varepsilon > 0$. Let $(x, \alpha) \in I^*$ and $n \ge 0$; put $f^n(x, \alpha) = \lim_{y \downarrow x} f^n(y)$ if $\alpha = 1$ and $f^n(x, \alpha) = \lim_{y \uparrow x} f^n(y)$ if $\alpha = -1$. This is well defined and clearly we have $f^n(x, \alpha) \in I$. Moreover, there exists $\varepsilon > 0$ such that f^n is continuous and monotone on $B_{\varepsilon}(x, \alpha)$; put $\Pi^n(x, \alpha) = \alpha$ if f^n is increasing on $B_{\varepsilon}(x, \alpha)$ and $\Pi^n(x, \alpha) = -\alpha$ if f^n is decreasing on $B_{\varepsilon}(x, \alpha)$. In the following we will write $f(x, \alpha)$ (resp. $\Pi(x, \alpha)$) instead of $f^1(x, \alpha)$ (resp. $\Pi^1(x, \alpha)$). Clearly $(f(x, \alpha), \Pi(x, \alpha)) \in I^*$ for each $(x, \alpha) \in I^*$.

Finally, let $F: I^* \to I^*$ be the mapping given by $F(x, \alpha) = (f(x, \alpha), \Pi(x, \alpha))$ and define the mapping $F^n: I^* \to I^*$ inductively by $F^0(x, \alpha) = (x, \alpha)$ and $F^n(x, \alpha) = F(F^{n-1}(x, \alpha))$ for all $n \ge 1$. It is not difficult to see that for all $(x, \alpha) \in I^*$ and $n, m \ge 0$ we have:

$$f^{m+n}(x, \alpha) = f^m(f^n(x, \alpha), \Pi^n(x, \alpha)),$$

$$\Pi^{m+n}(x, \alpha) = \Pi^m(f^n(x, \alpha), \Pi^n(x, \alpha))$$

and hence

$$F^{n}(x, \alpha) = (f^{n}(x, \alpha), \Pi^{n}(x, \alpha)).$$

Furthermore, it is easily checked that for each f-cycle K we have $F(K^*) \subseteq K^*$.

In order to show that each *f*-register-shift is a Cantor-like set we need the next two lemmas which will also be useful later. For $(x, \alpha) \in I^*$ put

$$O_f(x, \alpha) = \{ f^n(x, \alpha) \colon n \ge 0 \}$$

for $B \subseteq I^*$ let

$$O_f(B) = \{ f^n(x, \alpha) \colon (x, \alpha) \in B \text{ and } n \ge 0 \}$$

and for an f-cycle K put

$$S(f, K) = \{(x, \alpha) \in K^* : x \in S(f)\}.$$

Note that if $(x, \alpha) \in K^*$ for some f-cycle K then $O_f(x, \alpha) \subseteq K$.

LEMMA 6.1. Let K be an f-cycle and let c, $d \in K$ with c < d and $(c, d) \subseteq K$. Then for each $n \ge 0$,

$$\partial(f^{n}((c, d))) \subseteq O_{f}(S(f, K)) \cup \{f^{n}(c, 1), f^{n}(d, -1)\}.$$

Proof. Let $n \ge 0$. If $u \in (c, d) \cap S(f^n)$ then there exists $0 \le j < n$ with $f^j(u) \in S(f) \cap$ int (K) and hence $f^n(u, \alpha) \in O_f(S(f, K))$ for all $\alpha \in \{1, -1\}$. Now let $(c, d) \cap S(f^n) =$ $\{u_1, \ldots, u_m\}$ with $u_1 < u_2 < \cdots < u_m$. Put $u_0 = c$ and $u_{m+1} = d$. Then f^n is continuous and monotone on each of the intervals $(u_i, u_{i+1}), i = 0, 1, \ldots, m$. Thus

$$\partial(f^{n}((c, d))) = \partial(f^{n}((c, d) - S(f^{n})))$$

$$\subseteq \bigcup_{1 \le i \le m} \partial(f^{n}((u_{i}, u_{i+1})))$$

$$\subseteq O_{f}(S(f, K)) \cup \{f^{n}(c, 1), f^{n}(d, -1)\}.$$

LEMMA 6.2. Let $\{K_n\}_{n\geq 1}$ be a generator for some f-register-shift R and let $(x, \alpha) \in I^*$ with $(x, \alpha) \in (K_n)^*$ for each $n \geq 1$. Then card $(O_f(x, \alpha)) = +\infty$.

Proof. Assume that card $(O_f(x, \alpha)) < +\infty$. Then also card $(\{F^n(x, \alpha): n \ge 0\}) < +\infty$, and hence there exist $q \ge 0$ and $p \ge 1$ such that $F^p(y, \beta) = (y, \beta)$ where $(y, \beta) = F^q(x, \alpha)$. We have $(x, \alpha) \in (K_n)^*$ and thus $(y, \beta) \in (K_n)^*$ for each $n \ge 1$. Since by proposition 3.4, $K_1 \cap \text{Sink}(f) = \emptyset$ there exists $\varepsilon > 0$ such that f^p is continuous and increasing on $B_{2\varepsilon}(y, \beta)$ and

$$\beta \cdot f^p(z) > \beta \cdot z$$
 for all $z \in B_{2\varepsilon}(y, \beta)$.

Hence for all $\delta > 0$ there exists $m \ge 0$ such that $B_{\varepsilon}(y, \beta) \subseteq f^m(B_{\delta}(y, \beta) - S(f^m))$; thus $B_{\varepsilon}(y, \beta) \subseteq K_n$ for each $n \ge 1$ which is not possible. Therefore, card $(O_f(x, \alpha)) = +\infty$.

Let $\mathscr{C} = \{C_n\}_{n \ge 1}$ be a decreasing sequence of *f*-cycles and $m \ge 1$; we call a component *B* of $C_m \mathscr{C}$ -splitting if for some k > m *B* contains at least two (distinct) components of C_k . \mathscr{C} is said to be splitting if for all $n \ge 1$ each component of C_n is \mathscr{C} -splitting.

PROPOSITION 6.3. Let $\{K_n\}_{n\geq 1}$ be a generator for some f-register-shift R. Then $\{K_n\}_{n\geq 1}$ is splitting.

Proof. Assume that $\{K_n\}_{n\geq 1}$ is not splitting. Then there exists $m\geq 1$ and a component B of K_m such that for all $n\geq m$, B contains exactly one component of K_n (since

by lemma 4.1(1) *B* contains at least one component of K_n). For $n \ge m$ let B_n be the unique component of K_n with $B_n \subseteq B$. Then $B_{n+1} \subseteq B_n$ and card $(\bigcap_{n \ge m} B_n) = 1$. Without loss of generality we can assume that $S(f, K_n) = S(f, K_m)$ for all $n \ge m$. By proposition 4.4(2) we have $S(f, K_m) \ne \emptyset$, and thus there exists $(x, \alpha) \in I^*$ with $(x, \alpha) \in S(f, K_m) \subseteq (K_n)^*$ for all $n \ge 1$. Lemma 6.2 shows that card $(O_f(x, \alpha)) = +\infty$; hence there exist $c, d \in O_f(x, \alpha) \subseteq O_f(S(f, K_m))$ with c < d such that $(c, d) \subseteq K_m$. We can find $p \ge 0$ such that $f^p((c, d)) \cap B \ne \emptyset$. By lemma 6.1 we have

$$\partial(f^p((c, d))) \subseteq O_f(S(f, K_m)) \cup \{f^p(c, 1), f^p(d, -1)\}$$
$$\subseteq O_f(S(f, K_m));$$

thus there exist $u, v \in O_f(S(f, K_m))$ with $(u, v) \subseteq B$. But since $O_f(S(f, K_m)) \subseteq K_n$ for all $n \ge 1$ and B is not $\{K_n\}_{n\ge 1}$ -splitting, it follows that $(u, v) \subseteq B_n$ for all $n \ge m$ which is not possible.

Note that by the above proposition each point of an f-register-shift R is a limit point of R. Since in addition R is non-empty, closed and nowhere dense, R is a Cantor-like set. In particular, for each $x \in R$ there exists $\alpha \in \{1, -1\}$ with $(x, \alpha) \in R^*$. The next proposition shows that f acts minimally on each f-register-shift.

PROPOSITION 6.4. Let R be an f-register-shift. Then $\overline{O_f(x, \alpha)} = R$ for each $(x, \alpha) \in R^*$. Proof. Let $(x, \alpha) \in R^*$, $\{K_n\}_{n \ge 1}$ be a generator for R and for each $n \ge 1$ and $(\varphi, \beta) \in S(f, K_n)$ let $K_n(\varphi, \beta)$ denote the unique component of int $(K_n) - S(f)$ with $(\varphi, \beta) \in (K_n(\varphi, \beta))^*$. We can find $m \ge 1$ such that for each $(\varphi, \beta) \in S(f, K_m)$ either

$$O_f(x, \alpha) \cap (\overline{K_m(\varphi, \beta)} - \{\varphi\}) = \emptyset$$

or

$$O_f(x, \alpha) \cap K_n(\varphi, \beta) \neq \emptyset$$

for all $n \ge m$. Now let $z \in R$ and for $n \ge m$ let B_n denote the unique component of K_n with $z \in B_n$. Then $\{z\} = \bigcap_{n \ge m} B_n$. Since $(x, \alpha) \in (K_n)^*$ we have $O_f(x, \alpha) \subseteq K_n$ for each $n \ge 1$ and thus $O_f(x, \alpha) \subseteq R$. Hence it is sufficient to show that $O_f(x, \alpha) \cap B_n \neq \emptyset$ for all $n \ge m$. So let $n \ge m$. Since $(x, \alpha) \in R^* \subseteq (K_j)^*$ for all $j \ge 1$, lemma 6.2 shows that there exist $c, d \in O_f(x, \alpha)$ with c < d and $(c, d) \subseteq K_n$. Moreover, we can find $p \ge 0$ such that

$$f^p((c, d) - S(f^p)) \cap B_n \neq \emptyset.$$

Hence $O_f(x, \alpha) \cap B_n \neq \emptyset$ follows if we can show that $\partial(f^p((c, d) - S(f^p))) \subseteq O_f(x, \alpha)$. Let $u, v \in \overline{O_f(x, \alpha)}$ with $(u, v) \subseteq K_n$ and let $w \in \partial(f((u, v) - S(f)))$. Then either w = f(u), w = f(v) or $w = f(\varphi, \beta)$ for some $(\varphi, b) \in S(f, K_n)$. If w = f(u) or w = f(v) then clearly $w \in \overline{O_f(x, \alpha)}$. If $w = f(\varphi, \beta)$ for some $(\varphi, \beta) \in S(f, K_n)$ then by the choice of m we have $K_j(\varphi, \beta) \cap O_f(x, \alpha) \neq \emptyset$ for all $j \ge m$; hence $w \in \overline{O_f(x, \alpha)}$ (since $\bigcap_{j\ge m} \overline{K_j(\varphi, \beta)} = \{\varphi\}$). Repeating this argument shows that $\partial(f^k((u, v) - S(f^k))) \subseteq \overline{O_f(x, \alpha)}$ for all $k \ge 0$; in particular, we have

$$\partial(f^p((c, d) - S(f^p))) \subseteq \overline{O_f(x, \alpha)}.$$

Let R be an f-register-shift; the above result gives us that $O_f(x)$ is dense in R for all $x \in R - M(f)$ (note that since M(f) is countable and R is a Cantor-like set, R - M(f) is uncountable). Next we will show that R is the union of f(R - S(f)) and a finite set. For this we need the following lemma which will also be useful later.

LEMMA 6.5. Let $A \subseteq I$ be closed and let $(y, \beta) \in (\overline{f(A - S(f))})^*$. Then there exists $(x, \alpha) \in A^*$ with $F(x, \alpha) = (y, \beta)$.

Proof. For each $n \ge 1$ there exists $y_n \in f(A - S(f)) \cap B_{1/n}(y, \beta)$. For $n \ge 1$ let $x_n \in A$ with $f(x_n) = y_n$ and let x be a point of accumulation of $\{x_n\}_{n\ge 1}$. Then there exists $\alpha \in \{1, -1\}$ such that $B_{\varepsilon}(x, \alpha) \cap \{x_n : n \ge 1\} \neq \emptyset$ for each $\varepsilon > 0$, and so $(x, \alpha) \in A^*$ and $F(x, \alpha) = (y, \beta)$.

PROPOSITION 6.6. Let R be an f-register-shift. Then:

- (1) $\overline{f(R-S(f))} = R.$
- (2) $f(R-S(f)) \cup \{f(x, \alpha) : (x, \alpha) \in R^* \text{ and } x \in S(f)\} = R.$
- (3) $F(R^*) = R^*$.

Proof. (1) Let $\{K_n\}_{n\geq 1}$ be a generator for R. Then

$$f(R-S(f)) \subseteq f(K_n - S(f)) \subseteq K_n$$
 for each $n \ge 1$;

hence $f(R - S(f)) \subseteq R$. Let $x \in R - M(f)$; then $O_f(f(x)) \subseteq f(R - S(f)) \subseteq R$ and thus by proposition 6.4 we have $\overline{f(R - S(f))} = R$.

(2) Clearly by (1) we have

$$f(R-S(f)) \cup \{f(x, \alpha) \colon (x, \alpha) \in \mathbb{R}^* \text{ and } x \in S(f)\} \subseteq \overline{f(R-S(f))} = \mathbb{R}.$$

Now let $y \in R - f(R - S(f))$; then $(y, \beta) \in R^* = \overline{(f(R - S(f)))}^*$ for some $\beta \in \{1, -1\}$, and so by lemma 6.5 there exists $(x, \alpha) \in R^*$ with $f(x, \alpha) = y$. Since $y \notin f(R - S(f))$ we must have $x \in S(f)$.

(3) Let $(x, \alpha) \in R^*$; then $f(x, \alpha) \in R$ and for all $\varepsilon > 0$ we have $B_{\varepsilon}(f(x, \alpha), \Pi(x, \alpha)) \cap R \neq \emptyset$. Hence $F(x, \alpha) \in R^*$. On the other hand, let $(y, \beta) \in R^*$. Then by (1) $(y, \beta) \in (\overline{f(R-S(f))})^*$ and so by lemma 6.5 there exists $(x, \alpha) \in R^*$ with $F(x, \alpha) = (y, \beta)$.

Let $A \subseteq I$ be non-empty; for $x \in I$ put $d(x, A) = \inf \{|x - y|: y \in A\}$.

Let R be an f-register-shift; the next result shows that each element of A(R, f) is attracted to R.

PROPOSITION 6.7. Let R be an f-register-shift and $\{K_n\}_{n\geq 1}$ be a generator for R. Then: (1) For each $\varepsilon > 0$ there exists $m \geq 1$ such that if $x \in A(K_m, f)$ and $\alpha \in \{1, -1\}$ then $\limsup_{n \to \infty} d(f^n(x, \alpha), R) \leq \varepsilon$.

(2) If $x \in A(R, f)$ and $\alpha \in \{1, -1\}$ then $\lim_{n \to \infty} d(f^n(x, \alpha), R) = 0$.

Proof. (1) Let $\varepsilon > 0$; there exists $m \ge 1$ such that the length of each component of K_m is smaller than ε and

$$\operatorname{int} (K_m) \cap S(f) = \operatorname{int} (K_n) \cap S(f) \qquad \text{for all } n \ge m.$$

Let $x \in A(K_m, f)$ and $\alpha \in \{1, -1\}$. If $x \in A(K_m, f) \cap M(f)$ then there exists $p \ge 0$ such that $f^p(x) \in int (K_m) \cap S(f) \subseteq R$; thus $f^n(x, \alpha) \in R$ for all $n \ge p$.

If $x \in A(K_m, f) - M(f)$ then there exists $p \ge 0$ such that $f^n(x) \in K_m$ for all $n \ge p$. Hence in any case $\limsup_{n \to \infty} d(f^n(x, \alpha), R) \le \varepsilon$.

(2) This follows immediately from (1).

Let R be an f-register-shift; one can show that if $x \in I - M(f)$ with $\lim_{n\to\infty} d(f^n(x), R) = 0$ then it does not necessarily follow that $x \in A(R, f)$.

Let C be an f-cycle; we call C strongly transitive if for each non-empty open subset U of C we have $\bigcup_{n=0}^{m} f^n(U - S(f^n)) = C$ for some $m \ge 0$.

In order to prove that each topologically transitive f-cycle is strongly transitive we need the following result.

PROPOSITION 6.8. Let $\varphi \in S(f)$ and suppose that $\overline{L_m(\varphi)}$ is a topologically transitive f-cycle for some $m \ge 1$. Then there exists $n \ge 0$ such that

$$L_m(\varphi) = \bigcup_{k=1}^n f^k(I_m(\varphi) - S(f^k)).$$

Proof. By proposition 4.3 we have $L_m(\varphi) \subseteq \overline{M(f)}$; hence by lemma 5.3, $L_m(\varphi) =$ $(c_1, d_1) \cup \cdots \cup (c_q, d_q)$ can be written as a disjoint and finite union of non-empty open intervals. Put $B(1) = \{c_1, \ldots, c_q\}$ and $B(-1) = \{d_1, \ldots, d_q\}$. For $n \ge 0$ let

$$E_n = \bigcup_{0 \le k \le n} f^k (I_m(\varphi) - S(f^k));$$

then $L_m(\varphi) = \bigcup_{n \ge 0} E_n$, $E_n \subseteq E_{n+1}$ and $f^j(E_n - S(f^j)) \subseteq E_{n+j}$ for all $n, j \ge 0$. For $\alpha \in C_n$ $\{1,-1\}$ put

$$R(\alpha) = \{ z \in B(\alpha) \colon (z, \alpha) \notin (\overline{E_n})^* \text{ for all } n \ge 0 \}.$$

Now let us assume that $L_m(\varphi) \neq E_n$ for all $n \ge 0$. Then $R(1) \cup R(-1) \neq \emptyset$. Let $\varepsilon > 0$; for $\alpha \in \{1, -1\}$ and $u \in B(\alpha)$ put $u(\varepsilon) = u + \alpha \cdot \varepsilon$ if $u \in R(\alpha)$ and $u(\varepsilon) = u$ if $u \notin R(\alpha)$. Furthermore, let $D(\varepsilon) = \bigcup_{1 \le i \le q} (c_i(\varepsilon), d_i(\varepsilon))$. By compactness there exists $k \ge 0$ such that $\bigcup_{1 \le i \le q} (c_i + \varepsilon, d_i - \varepsilon) \subseteq E_k$. Hence there exists $j \ge 0$ such that $D(\varepsilon) \subseteq E_j$.

We will first show that for each $u \in R(\alpha)$ there exists $j \ge 1$ such that $F'(u, \alpha) =$ (u, α) . Let $u \in R(\alpha)$ for some $\alpha \in \{1, -1\}$. Since $\overline{L_m(\varphi)}$ is a topologically transitive f-cycle we have

$$\overline{f}(\overline{L_m(\varphi)} - \overline{S}(f)) = \overline{L_m(\varphi)};$$

hence by lemma 6.5 there exists $(u_1, \alpha_1) \in (\overline{L_m(\varphi)})^*$ with $F(u_1, \alpha_1) = (u, \alpha)$. Then $(u_1, \alpha_1) \notin (\overline{E_n})^*$ for all $n \ge 0$ and thus $u_1 \in R(\alpha_1)$. Therefore, we can inductively find a sequence $\{(u_n, \alpha_n)\}_{n\geq 0}$ of elements of $(\overline{L_m(\varphi)})^*$ such that $(u_0, \alpha_0) = (u, \alpha)$, and $F(u_{n+1}, \alpha_{n+1}) = (u_n, \alpha_n)$ for each $n \ge 0$. Since card $u_n \in R(\alpha_n)$ $(R(1) \cup R(-1)) < +\infty$ there exist $n \ge 0$ and $j \ge 1$ such that $(u_{j+n}, \alpha_{j+n}) = (u_n, \alpha_n)$. Hence $(u_i, \alpha_i) = (u_0, \alpha_0)$ and thus $F^{ij}(u, \alpha) = (u, \alpha)$ for each $l \ge 0$. Since by proposition 4.3(1) int $(\overline{L_m(\varphi)}) \cap \text{Sink}(f) = \emptyset$ there exist $N \ge 1$ and $\varepsilon > 0$ such that

(i) for each $v \in R(\beta), \beta \in \{1, -1\}, f^N$ is continuous and increasing on $B_{\varepsilon}(v,\beta), F^{N}(v,\beta) = (v,\beta) \text{ and } \beta \cdot f^{N}(z) > \beta \cdot z \text{ for all } z \in B_{\varepsilon}(v,\beta)$ (ii) $I_m(\varphi) \cup (L_m(\varphi) \cap S(f^N)) \subseteq D(\varepsilon).$

Furthermore, there exist p, $k \ge 1$ and $0 < \delta < \varepsilon$ such that

$$D(\varepsilon) \subseteq E_k \subseteq E_{k+N} \subseteq D(\delta) \subseteq E_p.$$

If $f^N(D(\delta) - S(f^N)) \subseteq D(\delta)$ then (since $I_m(\varphi) \subseteq D(\delta)$) we would have $L_m(\varphi) \subseteq$ $\bigcup_{i=0}^{N-1} f^i(D(\delta) - S(f^i)) \subseteq E_{p+N-1}$ which contradicts our assumption. Hence there exists $x \in D(\delta)$ with $f^N(x) \in L_m(\varphi) - D(\delta)$. Without loss of generality let us assume that f^N is increasing in x and that $f^N(x) \in (c, c+\delta]$ for some $c \in R(1)$. Put $y = \max \{z \le x: z \in S(f^N) \cup B(1)\};$

so y < x and $f^{N}((y, x)) \subseteq (c, c+\delta)$. If $y \in S(f^{N})$ or $y \in B(1) - R(1)$ then we would have $(y, x) \cap E_{k} \neq \emptyset$ and thus $f^{N}((y, x)) \cap E_{k+N} \neq \emptyset$; but this is not possible since $E_{k+N} \cap (c, c+\delta) = \emptyset$. Hence $y \in R(1)$. Since $x \in D(\delta)$ we have $B_{\delta}(y, 1) \subseteq (y, x)$ and so $f^{N}(B_{\delta}(y, 1)) \subseteq (c, c+\delta)$. But again this is not possible since by (i) the length of the interval $f^{N}(B_{\delta}(y, 1))$ is strictly larger than δ . Therefore, $L_{m}(\varphi) = E_{n}$ for some $n \ge 0$.

PROPOSITION 6.9. C is a topologically transitive f-cycle if and only if C is a strongly transitive f-cycle.

Proof. If C is a strongly transitive f-cycle then clearly, by proposition 4.2, C is topologically transitive. Conversely, suppose that C is a topologically transitive f-cycle. By theorem 5.9 there exist $\varphi \in S(f)$ with int $(\overline{\Delta(\varphi)}) \neq \emptyset$ and $m \ge 1$ such that $C = \overline{L_n(\varphi)}$ for all $n \ge m$. Now let $U \subseteq C$ be non-empty and open. Since $U \subseteq C \subseteq \overline{\Delta(\varphi)}$ we have $I_j(\varphi) \subseteq f^q(U - S(f^q))$ for some $q \ge 0$ and $j \ge m$. Hence by proposition 6.8 there exists $p \ge q$ such that

$$L_j(\varphi) \subseteq \bigcup_{k=0}^p f^k(U-S(f^k)).$$

Since $\overline{L_i(\varphi)} = C$ this shows that C is strongly transitive.

Remark. We call $(x, \alpha) \in I^*$ periodic if $F^n(x, \alpha) = (x, \alpha)$ for some $n \ge 1$. We say that $g \in \mathcal{N}(I)$ is uniformly piecewise linear with slope $\eta > 0$ if on each component U of I - S(f) g is linear with slope η or $-\eta$. Suppose that I is a strongly transitive f-cycle, and assume further that either $f(U) \cap f(V) \neq \emptyset$ for some components U and V of I - S(f) with $U \neq V$ or that I^* contains no periodic element. As in [13, Theorem 5] it can be shown that f is then conjugate to a uniformly piecewise linear mapping $g \in \mathcal{N}(I)$ (with slope $\eta \ge 1$), i.e. there exists a homeomorphism ψ of I' such that $\psi f = g\psi$.

Let C be an f-cycle and assume that there exists a continuous function $g: C \to C$ such that f(x) = g(x) for all $x \in C - S(f)$. Then we can label the components B_1, \ldots, B_m of C in such a way that $g(B_i) \subseteq B_{i+1}$ for $1 \le i \le m-1$ and $g(B_m) \subseteq B_1$. For $n \ge 0$ define inductively $g^0(x) = x$ and $g^{n+1}(x) = g(g^n(x))$ for all $x \in C$. Let $1 \le i \le m$; then $g^m(B_i) \subseteq B_i$, and if in addition C is strongly transitive then for each non-empty open subset $U \subseteq B_i$ there exists $p \ge 0$ such that $\bigcup_{k=0}^p g^{mk}(U) = B_i$. The next result shows that in this situation proposition 6.9 can be improved.

PROPOSITION 6.10. Let C be a topologically transitive f-cycle with m components, let B be a component of C and suppose that there exists a continuous function $g: C \to C$ such that g(x) = f(x) for all $x \in C - S(f)$. Then exactly one of the following statements holds:

(1) For each non-trivial interval $J \subseteq B$ there exists $k \ge 0$ with $g^{km}(J) = B$.

(2) There exists a closed interval D with $D \cup g^m(D) = B$, int $(D) \cap$ int $(g^m(D)) = \emptyset$ and $g^{2m}(D) = D$ such that for each non-trivial interval $J \subseteq D$ there exists $k \ge 0$ with $g^{km}(J) = D$.

Π

Proof. Put B = [c, d] and $h = g^m$. By Proposition 6.9, C is strongly transitive; in particular, we have h(B) = B and h(u) = u for some $u \in (c, d)$. Suppose that there exists a non-trivial interval $J \subseteq B$ such that $h^n(J) \neq B$ for all $n \ge 0$. Since C is strongly transitive there exists $j \ge 0$ such that $u \in h^n(J)$ for all $n \ge j$; hence $[c, u] \subseteq h^p(J)$ for some $p \ge j$. Since $h^n(J) \neq B$ for all $n \ge 0$ we have $c \notin h([c, u])$, and thus $c \in h([u, d])$. The same argument shows that $d \in h([c, u])$. Therefore, for all $n \ge 0$ we have

$$[c, u] \subseteq h^{2n}([c, u]) \subseteq h^{p+2n}(J) \subseteq [c, d)$$

and

$$[u, d] \subseteq h^{2n+1}([c, u]) \subseteq h^{p+2n+1}(J) \subseteq (c, d].$$

For $n \ge 0$ put

$$D_n = h^{p+2n}(J) \cap h^{p+2n+1}(J).$$

Then D_n is an interval with $u \in D_n$ and $h(D_n) \subseteq D_{n+1} \subseteq (c, d)$ for each $n \ge 0$. Hence $D_n = \{u\}$ for all $n \ge 0$ because C is strongly transitive. Therefore, putting D = [c, u] we have h(D) = [u, d] and $h^2(D) = D$. Now let $J' \subseteq D$ be a non-trivial interval; as above we have $[c, u] \subseteq h^k(J')$ for some $k \ge 0$, and thus $[c, u] \subseteq h^k(J') \subseteq h^k(D) = [c, u]$. Finally, it is clear that (1) and (2) cannot both hold.

7. Some examples

In this section we want to apply our results to some examples. We will make use of the following fact.

PROPOSITION 7.1. Suppose that Sink $(f) = \text{Homt } (f) = \emptyset$ and that I is the only f-cycle K with int $(K) \cap S(f) \cap (a, b) \neq \emptyset$. Then I is strongly transitive.

Proof. By proposition 4.4(2) there are no *f*-register-shifts. Thus by theorem 5.1 there exists a topologically transitive *f*-cycle *K*. We have K = I since by proposition 4.3(3) int $(K) \cap S(f) \cap (a, b) \neq \emptyset$, and by proposition 6.9 *I* is strongly transitive.

Suppose that $g \in \mathcal{N}([0, 1])$ is given by $g(x) = \beta x \mod 1$ for all $x \in (0, 1)$ with $\beta x \notin \mathbb{N}$ and some $\beta > 1$ (such transformations were discussed in [17]). Then *I* is a strongly transitive *g*-cycle; this follows immediately from the next corollary.

For an interval $J \subseteq I$ let |J| denote the length of J.

COROLLARY 7.2. Suppose that f(a, 1) = a, $f(\varphi, 1) = a$ and $f(\varphi, -1) = b$ for all $\varphi \in S(f) \cap (a, b)$ and that |f(J)| > |J| for each interval $J \subseteq I$ with $J \cap S(f) = \emptyset$. Then I is a strongly transitive f-cycle.

Proof. Since |f(J)| > |J| for each interval $J \subseteq I$ with $J \cap S(f) = \emptyset$ we clearly have Sink $(f) = \text{Homt } (f) = \emptyset$. Let K be an f-cycle with int $(K) \cap S(f) \cap (a, b) \neq \emptyset$. Then $f(\varphi, 1) = a$ for each $\varphi \in S(f) \cap (a, b)$ implies that $a \in K$. Since $f(a, 1) = a, f(\varphi, -1) = b$ for each $\varphi \in S(f) \cap (a, b)$ and Sink, $(f) = \emptyset$ it follows that K = I. Therefore, by proposition 7.1, I is strongly transitive.

The next class of function we consider contains the Poincaré map of the geometric Lorentz attractor already mentioned in the Introduction.

128

COROLLARY 7.3. Suppose that f is continuous and strictly increasing on (a, φ) and (φ, b) for some $a < \varphi < b$, that $f(\varphi, 1) = a$ and $f(\varphi, -1) = b$ and that $|f(J)| > \sqrt{2}|J|$ for each interval $J \subseteq I$ with $J \cap S(f) = \emptyset$. Then I is a strongly transitive f-cycle.

Proof. Since $|f(J)| > \sqrt{2}|J|$ for each interval $J \subseteq I$ with $J \cap S(f) = \emptyset$ we have Sink (f) =Homt $(f) = \emptyset$. Let K be an f-cycle with $\varphi \in int (K) \cap S(f) \cap (a, b)$ and let B = [c, d]be the component of K with $\varphi \in B$. Put $U_1 = (c, \varphi)$ and $U_2 = (\varphi, d)$. Without loss of generality we can assume that $|U_1| \ge |U_2|$ (otherwise 'turn f upside down'). Put $n = \min \{k \ge 1: f^k(U_1) \cap B \ne \emptyset\}$. Then $f^n(U_1) \subseteq B$, and we have

$$|B| > (\sqrt{2})^n \cdot |U_1| \ge \frac{1}{2}(\sqrt{2})^n \cdot |B|;$$

hence n = 1 and d = b (because $f(\varphi, -1) = b$). Moreover, we have $\sqrt{2}(\varphi - a) < b - a$; thus

$$|U_2| > b - (\frac{1}{2}\sqrt{2}(b-a) + a) = (1 - \frac{1}{2}\sqrt{2})(b-a)$$

and

$$|f(U_2)| > (\sqrt{2} - 1)(b - a).$$

Therefore, $|B| + |f(U_2)| > b - a$ which gives us that $f(U_2) \cap B \neq \emptyset$ and thus $f(U_2) \subseteq B$. Hence B is the only component of K. Since $f(\varphi, 1) = a$ we have c = a and therefore K = I. Thus, by proposition 7.1, I is strongly transitive.

Finally we will apply our results to interval exchange transformations (see for instance [4] or [8]).

Let $S(f) = \{d_0, ..., d_{m+1}\}$ with $a = d_0 < d_1 < \cdots < d_{m+1} = b$. f is said to be an *interval exchange transformation* (on I) if f 'exchanges' the open intervals $(d_k, d_{k+1}), k = 0, ..., m$ according to a permutation of $\{0, 1, ..., m\}$, i.e. if

(7.1) f is linear with slope 1 on each of the open intervals $(d_k, d_{k+1}), k = 0, ..., m$; and

(7.2) $f((d_k, d_{k+1})) \cap f((d_j, d_{j+1})) = \emptyset$ if $0 \le k \le j \le m$.

Now suppose that f is an interval exchange transformation. Then $F^n(x, 1) = (f^n(x, 1), 1)$ for all $n \ge 1$, $x \in [a, b)$, $F: I^* \to I^*$ is bijective and

$$f(I - S(f)) \cup \{(\varphi, 1) : \varphi \in S(f) - \{b\}\} = [a, b].$$

Moreover, f^n is also an interval exchange transformation for each $n \ge 1$, and it is not difficult to see that for each *f*-cycle *K* we have $f^{-1}(K) \subseteq K$; in particular, this gives us that $A(K, f) \subseteq K$.

PROPOSITION 7.4. Suppose that f is an interval exchange transformation. Then:

(1) If $x \in I$ with $f^n(x) = x$ for some $n \ge 1$ then x is contained in some sink of f.

(2) Sink $(f) = \{x \in I : \text{ there exists } n \ge 1 \text{ and } u, v \in S(f^n) \text{ with } u < x < v \text{ such that}$

$$f^n(z) = z$$
 for all $z \in (u, v)$.

(3) Homt $(f) = \emptyset$.

Proof. (1) Suppose that $x \in I$ with $f^n(x) = x$ for some $n \ge 1$. Then there exist $u, v \in S(f^n)$ with u < x < v and $(u, v) \cap S(f^n) = \emptyset$. Since f^n is linear on (u, v) with slope 1 we have $f^n(z) = z$ for all $z \in (u, v)$. Hence (u, v) is a sink of f with $x \in (u, v)$.

(2) Clearly, if $u, v \in S(f^n)$ with $n \ge 1$, u < v and $f^n(z) = z$ for all $z \in (u, v)$ then (u, v) is a sink of f and thus $(u, v) \subseteq Sink(f)$. Conversely, let J be a sink of f and let $n \ge 1$ with $f^n(J) \subseteq J$. Then there exist $u, v \in S(f^n)$ with $J \subseteq (u, v)$ and $(u, v) \cap S(f^n) = \emptyset$. Since f^n is linear on (u, v) with slope 1 we have $f^n(z) = z$ for all $z \in (u, v)$. Moreover, since $f^n(J) = J$ it follows that

$$\{x \in I: f^n(x) \in J \text{ for some } n \ge 0\} = \bigcup_{k=0}^{n-1} f^k(J),$$

and thus each element of Sink (f) is already contained in a sink of f.

(3) This follows immediately from Proposition 3.3(3) and from the fact that if $J \subseteq I$ is an interval with $J \cap S(f) = \emptyset$ then |J| = |f(J)|.

COROLLARY 7.5. Suppose that f is an interval exchange transformation and let C_1, \ldots, C_r be the topologically transitive f-cycles. Then:

- (1) There are no f-register-shifts.
- (2) $\operatorname{Sink}(f) \cup C_1 \cup \cdots \cup C_r$ is dense in I.

Proof. (1) Let R be an f-register-shift. By theorem 5.9 and proposition 5.6 there exists $\varphi \in S(f)$ with int $\overline{\Delta(\varphi)} \neq \emptyset$ and $m \ge 1$ such that $R = \bigcap_{n \ge 1} \overline{L_n(\varphi)}$ and $\overline{L_n(\varphi)} \subseteq \overline{\Delta(\varphi)}$ for all $n \ge m$. But since $f^{-1}(\overline{L_n(\varphi)}) \subseteq \overline{L_n(\varphi)}$ we have $\Delta(\varphi) \subseteq \overline{L_n(\varphi)}$ and thus $\overline{L_n(\varphi)} = \overline{\Delta(\varphi)}$ for each $n \ge m$. This is not possible since int $(R) = \emptyset$.

(2) Since $A(K, f) \subseteq K$ for each f-cycle K and since by proposition 7.4(3), Homt $(f) = \emptyset$ this follows immediately from theorem 5.1.

Finally, we show that if the orbits $O_f(\varphi, 1)$ of the singular points φ in (a, b) are infinite and disjoint then I is a strongly transitive f-cycle.

COROLLARY 7.6 (cf. [8].) Suppose that f is an interval exchange transformation with $S(f) \cap (a, b) \neq \emptyset$ and assume that card $(O_f(\varphi, 1)) = +\infty$ and $f^n(\varphi, 1) \notin S(f) \cap (a, b)$ for all $\varphi \in S(f) \cap (a, b)$ and $n \ge 1$. Then I is a topologically transitive f-cycle. Moreover, we have $O_f(x, 1)$ is dense in I for each $x \in [a, b)$.

Proof. We will first show that $Sink(f) = \emptyset$. Assume that $Sink(f) \neq \emptyset$. By proposition 7.4(2) there exist $n \ge 1$ and $u, v \in S(f^n)$ with u < v such that $f^n(z) = z$ for all $z \in (u, v)$; then $f^k(u) \in S(f)$ for some $0 \le k < n$, Put $\varphi = f^k(u)$; so $\varphi < b$ and $f^n(\varphi, 1) = \varphi$. Thus by assumption we have $\varphi = a$. Since $a = f(\eta, 1)$ for some unique $\eta \in S(f) \cap [a, b)$ it follows that $f^n(\eta, 1) = \eta$. But again this is only possible if $\eta = a$; hence f(a, 1) = a, and thus f(z) = z for all $z \in (a, \xi)$ where $\xi = \min(S(f) \cap (a, b))$. But then there exists $\psi \in S(f) \cap [\xi, b)$ with $f(\psi, 1) = \xi$, which contradicts our assumption. Therefore, Sink $(f) = \emptyset$.

Let C_1, \ldots, C_r be the topologically transitive *f*-cycles. Then by corollary 7.5(2) $I = C_1 \cup \cdots \cup C_r$. Assume that $r \ge 2$. Then $C_1 \cap C_j \ne \emptyset$ for some $1 \le i < j \le r$. Let $z \in C_i \cap C_j$. Suppose first that $z \notin M(f)$. Then $f^n(z) \in C_i \cap C_j$ for all $n \ge 0$, and thus there would exist $p \ge 1$ and $m \ge 0$ such that $f^p(f^n(z)) = f^n(z)$; by proposition 7.4(1) this is not possible. Suppose next that $z \in M(f)$; then $f^m(z) \in S(f) \cap (a, b)$ for some $m \ge 0$ and there exists $(x, 1) \in I^*$ with f(x, 1) = z. Since $f^n(\varphi, 1) \notin S(f) \cap (a, b)$ for all $\varphi \in S(f) \cap [a, b)$ and $n \ge 1$ ($f^n(a, 1) \notin S(f) \cap (a, b)$ for all $n \ge 1$ because $a = f(\xi, 1)$ for some $\xi \in S(f) \cap (a, b)$) it follows that $x \notin S(f)$. Thus $x \in f^{-1}(C_i \cap C_j) \subseteq C_i \cap C_j$.

Repeating this argument shows that there exists $p \ge 1$ with $f^p(x) = x$ which by proposition 7.4(1) is not possible. Hence r = 1.

Let $x \in [a, b)$ and let $J \subseteq I$ be a non-trivial closed interval. By proposition 6.9 I is strongly transitive; thus we have $I = \bigcup_{n=0}^{m} \overline{f^n(J - S(f^n))}$ for some $m \ge 0$. Let $z = f^m(x, 1)$. It follows from lemma 6.5 that there exist $y \in J$ and $0 \le k \le m$ such that $f^k(y, 1) = z$. But this immediately gives us that $f^{m-k}(x, 1) = y \in J$. Therefore, $O_f(x, 1)$ is dense in I.

REFERENCES

- B. Barna. Über die Divergenzpunkte des Newtonschen Verfahrens zur Bestimmung von Wurzeln algebraischer Gleichungen, III. Publ. Math. Debrecen 8 (1961), 193-207.
- [2] P. Collet & J.-P. Eckmann. Iterated Maps on the Interval as Dynamical Systems. Progress in Physics, Vol. 1, Birkhäuser: Boston, 1980.
- [3] P. Collet. J.-P. Eckmann & O. E. Lanford, III. Universal properties of maps on an interval. Commun. Math. Phys. 76 (1980), 211-254.
- [4] I. P. Cornfeld, S. V. Fomin & Ya. G. Sinai. Ergodic Theory. Springer: New York, 1982.
- [5] E. M. Coven & Z. Nitecki. Non-wandering sets of the powers of maps of the interval. Ergod. Th. & Dynam. Sys. 1 (1981), 9-31.
- [6] M. Feigenbaum. Quantitative universality for a class of non-linear transformations. J. Stat. Phys. 19 (1978), 25-52.
- [7] F. Hofbauer. The structure of piecewise monotone transformations. Ergod. Th. & Dynam. Sys. 1 (1981), 135-143.
- [8] M. Keane. Interval exchange transformations. Math. Z. 141 (1975), 25-31.
- [9] T.-Y. Li & J. A. York. Period three implies chaos. Amer. Math. Monthly 82 (1975), 985-992.
- [10] R. M. May. Biological populations obeying difference equations. J. Theoret. Biol. 51 (1975), 511-524.
- [11] R. M. May. Simple mathematical models with very complicated dynamics. Nature 261 (1976), 459-467.
- [12] Z. Nitecki. Topological dynamics on the interval. In Ergodic Theory and Dynamical Systems, II. Proc., Special Year Maryland 1979-80. A. Katok, ed., Progress in Math., Vol. 21, Birkhäuser: Boston, 1982.
- [13] W. Parry. Symbolic dynamics and transformations of the unit interval. Trans. Amer. Math. Soc. 122 (1966), 368-378.
- [14] C. Preston. Iterates of Maps on an Interval. Lecture Notes in Mathematics, Vol. 999, Springer: Berlin, 1983.
- [15] C. Preston. Iterates of piecewise monotone maps on an interval. Preprint, Bielefeld, January 1984.
- [16] C. Preston, Iterates of piecewise monotone maps on an interval. Preprint, Bielefeld, 1986.
- [17] A. Rényi. Representations for real numbers and their ergodic properties. Acta. Math. Acad. Sci. Hungar. 8 (1957), 477-493.
- [18] P. Walters, *Ergodic Theory—Introductory Lectures*. Lecture Notes in Mathematics, Vol. 458, Springer: Berlin (1975).
- [19] R. F. Williams. The structure of Lorenz attractors. Publ. Math. I.H.E.S. 50 (1979), 73-99.