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Abstract. In this paper the asymptotic behaviour of piecewise monotone functions
/ : / - > / with a finite number of discontinuities is studied (where / c R is a compact
interval). It is shown that there is a finite number of /-almost-invariant subsets
C , , . . . , Cr, / ? , , . . . , Rs, where each C, is a disjoint union of closed intervals and
each Rj is a Cantor-like subset of /, such that if x is a 'typical' point in / (in a
topological sense) then exactly one of the following three possibilities will happen:

(1) [f"(x)}nz0 eventually ends up in some C,.
(2) {f"{x)}ns0 is attracted to some Rj.
(3) [f"(x): n >0} is contained in an open, invariant set Z ^ I, which is such that

for each n > 1 / " is monotone and continuous on each connected component of Z.
Moreover, / acts topologically transitively on each C, and minimally on each Rj.

Furthermore, it is shown how the sets C , , . . . , Cr, / ? , , . . . , Rs can be constructed.
Finally, our results are applied to some examples.

1. Introduction
In the last few years there has been considerable interest in the qualitative behaviour
of iterates of maps on an interval into itself (see, for instance, [2], [6], [9], [11],
[12], [14]). Although they are the simplest examples of non-linear (discrete) dynami-
cal systems their asymptotic behaviour can exhibit a surprisingly complex structure.
One-dimensional maps have been used as models for various systems (see, for
instance, the models of density dependent population growth studied in [10]). It is
known that in certain cases the asymptotic behaviour of higher-dimensional (discrete
as well as continuous) dynamical systems can be, at least partly, described by iterates
of maps on an interval into itself. For instance, in [19] the Lorenz attractor is
described as the inverse limit of a semi-flow on a two-dimensional branched mani-
fold. The Poincare map of this semi-flow is a function on a bounded interval [a, b]
into itself which has a single discontinuity at c = (a + b)/2 and is strictly increasing
on [a, c) and (c, b]. Interval exchange transformations, Newton's method for deter-
mining the zeros of a polynomial (identifying R with the unit interval) and the
/3-transformations discussed in [17] are some more examples for discrete dynamical
systems on a compact interval, having a finite number of discontinuities.

In [15] Preston studied the asymptotic behaviour of iterates of piecewise monotone
continuous functions on a compact interval / into itself, i.e. continuous functions
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/ : / - > / with only a finite number of points at which / is not strictly monotone (an
improved and much simplified version of [15] is contained in §§ 2, 3 and 4 of [16]).
The present work generalizes his main result in that a finite number of discontinuities
is allowed. More exactly, let a, b e R with a < b and let / be the closed interval with
endpoints a and b. For technical reasons we consider a point 10 not contained in
R and put 7'=/u{o>}. We call a map / : / ' -> / ' piecewise monotone on I if there
exist m > 1 and a = do< dx < • • • < dm = b such that / " ' ( { O J } ) = {d0, du ..., dm, w}
and, for all 0 < f c < m - l , / is continuous and strictly monotone on each of the
intervals (dk, dk+i). Jf(I) will denote the set of piecewise monotone maps on /. For
feJf(I) put S(J)=rl(W})nI. Now l e t / e .//•(/) be fixed. We define /" eJf(I),
the nth. iterate of/, inductively by f°(x) = x and fn+\x) =/(/"(x)) for all xel
and n > 0. Unlike in [7] where the structure of the non-wandering set is studied
(using symbolic dynamics) our aim is to analyse the asymptotic behaviour of
{/"MJnao for a 'typical' point x of I (in a topological sense).

After some preliminaries in § 2 we study in § 3 some basic properties of sinks
and homtervals of / § 4 is concerned with some elementary properties of topologi-
cally transitive /-cycles and /-register-shifts. The main result is stated and proved
in § 5. It says that there are only a finite number of topologically transitive/-cycles
C, , . . . , Cr and /-register-shifts Rlt..., Rs and that for all points x lying in some
residual subset of / exactly one of the following three things will happen:

(1) {f"(x)}nso eventually ends up in some topologically transitive/-cycle C,.
(2) {f"(x)}nl.o is attracted to some/-register-shift Rj.
(3) {/"(x)},>0 eventually ends up in some sink or some homterval of / (in

particular, {/""(*): n>0} is contained in an open, invariant set Z Q I, which is such
that for each n > 1, /" is monotone and continuous on each connected component
of Z).
In § 6 we study some more properties of/-register-shifts and topologically transitive
/-cycles. In particular, we show that each/-register-shift R is a Cantor-like set, that
R-Q^f(R-S(f))cR where Q is a finite subset of / and that for each xeR
either {/"(*): «>0} contains a singular point o f / i.e. an element of S(f), or
\f(x): n >0} is dense in R. Moreover, we prove that each topologically transitive
/-cycle is in fact strongly transitive. Finally, in § 7 we apply our results to some
examples.

Acknowledgement. I would like to thank Professor Chris Preston for his helpful
suggestions and comments, and in particular for his improvements to the clarity of
the definition of register-shifts. I am also grateful to the referee for his remarks and
recommendations.
This paper is a shortened and revised version of the author's Dissertation (Bielefeld
1985) with the same title.

2. Piecewise monotone functions
Let a, b £ R with a < b and let w be some point not contained in R. Put I = [a,b]
and / '= /u{o>}; we consider / ' as a topological space by calling a subset A of / '
open if there exists an open subset U of R such that Un I = An I.
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A function / : /'-» / ' is called piecewise monotone on / if there exists m > 1 and
a = do<dl<- • • <dm = b such that

(2.1) / i s continuous and strictly monotone on each of the open intervals (dk, dk+1),
fc = 0 , 1 , . . . , m - 1, and

(2.2) r\{o>}) = {do,dl,...,dm,a>}.
Jf(I) will denote the set of piecewise monotone functions on /. Throughout this
paper we assume that / is a fixed element of Jf(I).

For n > 0 define /" : / ' -» / ' inductively by f°(x) = x and f"+'(x) = f(f"{x)) for all
x e I'. It is easy to check that the composition of two elements of Jf(I) is again an
element of N{I); hence we have / " e N(I) for each n > 1. Let S(/) denote the set
of singular points of/ in /, i.e. S(f) =/"'({«}) n /. Put S(/°) = 0 ; it is not difficult
to show that for all n, k > 0 and A c / we have

S(/n) = {x£ / : / J (x) 6 S(/) for some 0 < j < n}

and

Let n > 1; note that / " is continuous and monotone on an open interval / Q I if
and only if J r\ S(/") = 0 and that / n S(/") = 0 if and only if/"(/) <= /. Note also
that i f / " (x )e / for some xel then there exists e>0 such that/" is continuous
and monotone on (x — e, x + e); in particular, /"(A — S(f")) and f"(A) are open
whenever A is an open subset of / (where f~"(A) = {xe I:f"(x)eA}). Moreover,
if A is an open interval contained in I then/"(A — S(/")) is a finite union of open
intervals.

A subset A c / is called /-almost-invariant if/(A - S(/)) c A. The union and the
intersection of any number of/-almost-invariant subsets of / are/-almost-invariant.
Furthermore, it is easy to show that if Ac / is /-almost-invariant then int (A) and
A are both/-almost-invariant and that for each n > 1, A is also/"-almost-invariant.

We call A c / f-biinvariant if A is /-almost-invariant and / " ' ( A ) c A Again
the union and the intersection of/-biinvariant subsets of / are /-biinvariant.

3. Sinks and homtervals
All results and proofs in this section are almost identical with the ones in [16]. For
the convenience of the reader we give the proofs below.

A non-empty, open interval /?= / is called a sink of/ if there exists m > 1 such
that fm(J)cJ. Note that if J is a sink o f / then fn(J)nS(f) = 0 and hence
J n S(f") = 0 for all n > 0; thus for each n > 0, / " is continuous and monotone on
J.

LEMMA 3.1 (cf. [16, lemma 4.1]). Let U £ / be a non-empty open interval such that
f"(U) s I for each n>0. 7/1/ n / m ( U) ^ 0 /or some m > 1 f/ien (7 is contained in a
sink off.
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Proof. P u t J = U k a o / f c m ( U ) ; t h e n [ / c / c / a n d / is a n o n - e m p t y o p e n in te rva l 
w i t h / m ( 7 ) c j . • 

W e call a n o n - e m p t y o p e n in t e rva l L c / a homterval of / if for e a c h n > O w e h a v e 
f"(L)c I a n d f"(L) is n o t c o n t a i n e d in a n y s i n k of / N o t e t h a t if L is a h o m t e r v a l 
of / t h e n f(L)r\ S(f) = 0 a n d h e n c e Ln S(f") = 0 for all n > 0 ; t h u s / " is con 
t i n u o u s a n d m o n o t o n e o n L for e a c h n > 0. W e e m p h a s i z e t h a t b y p r o p o s i t i o n 3.3 (3) 
o u r de f in i t i on of a h o m t e r v a l is e q u i v a l e n t t o t h e u s u a l o n e ( see for i n s t a n c e [ 5 ] ) . 
F o r t h e c o n s t r u c t i o n o f f u n c t i o n s h a v i n g h o m t e r v a l s see for e x a m p l e [ 5 ] o r [ 1 6 ] . 

P r o p o s i t i o n 3.2 (cf. [ 1 6 , p r o p o s i t i o n 4 .3 ] ) . (1) If Jx, J2 are sinks (resp. homtervals) 
off with 7 i u J2 5* 0 then J , u J2 is also a sink (resp. homterval) off. 

(2) If J is a sink (resp. homterval) of f then for each n a O , / " ( / ) is also a sink 
(resp. homterval) off. 

(3) Each sink off is contained in a maximal sink off; if J{ and J2 are maximal 
sinks of f then either Jx = J2 or J{nJ2 = 0 . 

(4) Each homterval of f is contained in a maximal homterval of / ; z / L , and L2 are 
maximal homtervals off then either Lx = L2 or Lxr\L2 = 0. 

Proof. (1) a n d (2) a r e c lea r . 
(3) Let J b e a s ink o f / a n d let U b e t h e l a rges t o p e n in te rva l w i th J c U c / 

s u c h t h a t f(U)c I for al l n > 0. T h e m a x i m a l i t y of U a n d l e m m a 3.1 e n s u r e t h a t 
U is t h e m a x i m a l s ink of / c o n t a i n i n g / . I f J , a n d J2 a r e m a x i m a l s i nks of / w i th 
/, 9^ J2 t h e n b y (1) we h a v e J , n 7 2 = 0-

(4) Let L b e a h o m t e r v a l of / a n d let U b e t h e l a rges t o p e n in te rva l w i th L g (J c J 
s u c h t h a t f"(U)Q I for all n > 0 . U c a n n o t b e c o n t a i n e d in a s ink of / s ince L is 
a h o m t e r v a l of / H e n c e U is t h e m a x i m a l h o m t e r v a l o f / c o n t a i n i n g L. If L, a n d 
L 2 a r e m a x i m a l h o m t e r v a l s of / w i th L , ^ L2 t h e n by (1) we h a v e L, n L2 = 0. • 

Put 

S i n k (f) = {xe I: fm(x)eJ for s o m e s ink J of / a n d s o m e m > 0} 

a n d 

H o m t (f) — {x £ /: fm(x) e L for s o m e h o m t e r v a l L of f a n d s o m e m > 0} ; 

t h e n Sink (f) a n d H o m t ( / ) a r e b o t h o p e n a n d b y p r o p o s i t i o n 3.2 (2) we h a v e 
/ (S ink ( / ) ) c S i n k (f) a n d / ( H o m t ( / ) ) £ H o m t ( / ) . M o r e o v e r , it is ea sy t o see t h a t 
S ink (J) a n d H o m t ( / ) a r e b o t h / - b i i n v a r i a n t . 

P r o p o s i t i o n 3.3 (cf. [ 1 6 , p r o p o s i t i o n 4 .3 ] ) . (1) S i n k (f) r> H o m t (f) = 0. 
(2) If L c H o m t ( / ) is a non-empty open interval then L is a homterval of f. 
(3) If L is a homterval of f then fn(L) nfk(L) = 0 whenever 0 < k < n. 
(4) If xe S ink (f) then there exists q>\ such that \\m„^02f"q(x) exists. 

Proof. (1) S u p p o s e t h a t S i n k (J) n H o m t (f) # 0. T h e n t h e r e exis t a s ink / of / a n d 

a h o m t e r v a l L of f s u c h t h a t L n 7 ^ 0 . L e m m a 3.1 g ives u s t h e n t h a t / u L , a n d 

t h u s a l so L, is c o n t a i n e d in a s ink of / Bu t th i s is n o t p o s s i b l e s ince L is a h o m t e r v a l 

o f / 
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(2) Let L c Homt (/) be a non-empty open interval. Then for each n >0 we have
f"(L)c I and by (1)/"(L) is not contained in any sink of/ Hence L is a homterval
of/

(3) Let 0< k< n; applying lemma 3.1 with U=fk(L) and m = n-k shows that
if L is a homterval of/ then /*(!) nf(L) = 0 .

(4) Suppose that x e Sink (/); then by proposition 3.2(2) there exist fc > 0, m > 1
and a sink 7 of/such that /fcm(x)e7 and/ m (7)c7. Since/"1 is continuous and
monotone on 7 this gives us that for each n > fc, /"m(x) e 7 and that the sequence
{/2nm(x)}n2(c is monotone. Hence \\mn^f2nm{x) exists. •

Put M(f) = {x£l:fm(x) = a) for some m>0}. Note that M(f) and thus also ~WJ)
are /-almost-invariant and that I-M{f) is the largest open set [ / c / such that
r(U)n S(f) = 0 for all n >0.

PROPOSITION 3.4 (cf. [16, proposition 4.2]). 7 - M(f) = Sink (/) u Homt (/).
TVoo/ Suppose that xe Sink (/)u Homt (/); then there exists m>0 such that
fm(x)eJ where 7 is either a sink or a homterval of/ Thus / m ( ( x - e , X + E ) ) C J

for some e>0 and hence f"((x-e, x + e ) ) c / for each n>0. This shows that
xe I - M(f). On the other hand, let C/c I - M(f) be a non-empty open interval.
Then /" (I/) c 7 for all n > 0. Thus either U is a homterval of/ or there exists m > 0
such that/m( U) is contained in some sink of/ Hence U c Sink (/) u Homt (/). D

The following lemma will be useful later.

LEMMA 3.5. IfU c M(f) is non-empty, open andf-almost-invariant then U n S(f) ^ 0 .

Proof. Suppose that U^M(f) is non-empty, open and/-almost-invariant. Since
Un M(f) * 0 we have (p e/"([/) =f"(U-S(f")) s t/ for some ? e S(/) and /i >0.

D
4. Topologically transitive cyclks and register-shifts
This section is concerned with the definitions and some elementary properties of
topologically transitive /-cycles and /-register-shifts.

We call C c / a n f-cycle if C is /-almost-invariant and is the disjoint union of
non-trivial closed intervals B , , . . . , Bm (m> 1) such that whenever l < j < m and
U s C is non-empty and open then /"(I/) n B, 5̂  0 for some n > 1. B , , . . . , Bm are
then called the components of C.

Clearly, 7 is an/-cycle. Note that C being an/-cycle does not necessarily mean
that/cyclically permutes or even permutes the components of C. But if/c is really
'continuous' in that there exists a continuous function g:C->C with g(x)=/(x)
for all x e I - S(f), then we can label the components B , , . . . , Bm of the /-cycle C
in such a way that/(B, -S(f))s B1+1 for i = 1 , . . . , m - 1 and f(Bm -S(f))cB,.In
general however, the situation is much more complicated since, for a component B
of C, f(B — S(f)) is not necessarily contained in a single component of C.

For an /-cycle C let A{C,f) denote the set of points in 7 which eventually 'end
up' in the interior of C, i.e.

^(C,/) = {xe7:/m(x)£int(C) for some m>0}.

Clearly, A(C,f) is open and/-biinvariant.
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L E M M A 4 . 1 . Let C and K be f-cycles. Then: 
(1) If i n t ( B n K) = 0 for some component B of C then int ( C n K) = 0. 
(2) A ( C , / ) n 4 ( K , / ) = 0 if and only if int ( C n X ) = 0. 

i V o o / (1) Let B b e a c o m p o n e n t of C. If int ( C n AT) # 0 t h e n by def in i t ion we 

h a v e 0*f"(mt(Cr^K))nB=f"(mt(CnK)-S(fn})nB for s o m e n > l . But 

s ince for e a c h m > l , / m ( i n t (C nK)- S(f"')) is a n o p e n s u b s e t of K it fo l lows tha t 

mt(BnK)*0. 
(2) Let xeA(C,f)nA(K,f); t h e n / " ( x ) e in t ( C ) a n d fm(x) e in t (K) for s o m e 

n, m > 0 . P u t t i n g k = m a x { n , m } w e h a v e fk(x) e in t ( C n X ) . T h e p r o o f of t he 

c o n v e r s e is t r iv ia l s i n c e 0 # int (K') c A(K',f) for e a c h / - c y c l e K'. • 

I n o r d e r t o a n a l y s e t h e s t r u c t u r e of M(f) w e will b e i n t e r e s t e d in / - c y c l e s c o n t a i n e d 
in M{f). L o o k i n g for / - c y c l e s w h i c h a r e ' m i n i m a l ' l e a d s u s t o t h e fo l l owing def in i t ion . 
W e say t h a t a n / - c y c l e C is topologically transitive if w h e n e v e r F is a c losed , 
/ - a l m o s t - i n v a r i a n t s u b s e t of C t h e n e i t he r F = C o r int (F) = 0. 

F o r x e l p u t Of(x) = {fn(x): n>0}\ Of(x) is ca l l ed t h e orbit of x ( u n d e r / ) . 

P R O P O S I T I O N 4.2 (cf. [ 1 8 , t h e o r e m 5.8] . Let C ^ I be an f-cycle. Then the following 
are equivalent: 

(1) C is a topologically transitive f-cycle. 
(2) / / [ / c C is non-empty, open and f-almost-invariant then 0 = C. 
(3) If U, V c C are non-empty and open then f"(U)n W 0 for some n > 0 . 

(4) If U, V c C are non-empty and open then f~"(U)n V # 0 / o r s o m e n > 0 . 

(5) { x e C : O j ( x ) ^ C } is o / the first category. 
(6) 0 / ( x ) = C for some xe C. 

Proof. ( 1 ) = > ( 2 ) S u p p o s e t h a t t / c C is n o n - e m p t y , o p e n a n d / - a l m o s t - i n v a r i a n t . 
T h e n U c C is c l o s e d a n d / - a l m o s t - i n v a r i a n t ; h e n c e s ince C is t o p o l o g i c a l l y t r ans i 
t ive we h a v e U = C. 

( 2 ) = > ( 3 ) S u p p o s e t h a t U, V g C a r e n o n - e m p t y a n d o p e n . Pu t A = 
U n 2 o / " ( t / — 5 ( / " ) ) . T h e n A is a n o n - e m p t y , o p e n a n d / - a l m o s t - i n v a r i a n t subse t of 
C, a n d t h u s b y (2) A = C. H e n c e / " ( U ) n V * 0 for s o m e n > 0. 

( 3 ) = > ( 4 ) T h i s is c lea r . 

( 4 ) = > ( 5 ) Le t [ / , , U2,... b e a c o u n t a b l e b a s e for t h e re la t ive t o p o l o g y o n C a n d 
let xe C. T h e n Of(x) # C if a n d o n l y if 0 / ( x ) n l / „ = 0 for s o m e n> 1. T h u s 

S ince U m = = o . / ^ m ( n in t ( C ) is o p e n a n d b y (4) d e n s e in C t h e set of p o i n t s 
{ x e C: Of{x) # C } is o f t h e first c a t e g o r y . 

(5)=S>(6) T h i s is c l e a r s i nce C is a set of t h e s e c o n d c a t e g o r y . 
( 6 ) = > ( 1 ) Let xe C w i t h Of(x) = C a n d let F c C b e c lo sed a n d / - a l m o s t - i n v a r i a n t 

w i th int ( F ) 5 * 0 . T h e n w e h a v e / f c ( x ) e F for s o m e k > 0 , a n d t h u s { / " ( x ) : n > k } £ F. 
S ince C h a s n o i s o l a t e d p o i n t s it fo l lows t h a t C = Of(x) = { / " ( x ) : n > / c } = F. • 

{ x e C : O y ( x ) ^ C } = C n U D / " " ( / ' - £ / „ ) 
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PROPOSITION 4.3 (cf. [16, proposition 2.1]). Let C and K be topologically transitive
f-cycles. Then:

(1) A(C,f) n (Sink (f) u Homt if)) = 0 .
(2) C^
(3) int (C) n S(/)n (a, ft) # 0 .
(4) £Mer C = K or A(C,f)nA(K,f) = 0.

Proof. (1) Suppose that A( C,f)n Homt (/) ;* 0 . Then there exists a homterval L
of/ with LgC.By proposition 3.3(3) we would then have Lnf(f(L)) = 0 for all
n >0 which by proposition 4.2 is not possible.

Suppose next that A(C,/)n Sink (/) * 0 . Then int (C)n Sink (/) # 0 and by
proposition 3.3(4) we would have

int (C) n Sink (/) c {x e C: O^x) ^ C}.

Again this contradicts proposition 4.2.
(2) By (1) and proposition 3.4 we have

A(C,f) c / - (Sink (/) u Homt (/)) = M(/).
Hence CgM(f l .

(3) Since int (C) n (a, fe) is an /-almost-invariant subset of M(/), lemma 3.5 gives
us that int (C) n S(/) n (a, fe) * 0 .

(4) Suppose that A{C,f)nA(K,f)*0. Then by lemma 4.1(2) we have
int (Cn /C) ̂  0 . Since C n X is closed and /-almost-invariant it follows from the
topological transitivity of C and K that C = CnfC = X. •

Examples of piecewise monotone functions having topologically transitive cycles
are easily found. For instance, let geN(I) be given by g(x) = 2x-a if a<x<
(a + b)/2 and g(x) = 2x - b if (a + b)/2 < x < b. As it is shown in corollary 7.2, / is
then a topologically transitive g-cycle. In general we cannot describe the asymptotic
behaviour of elements of Ar(I) in terms of sinks, homtervals and topologically cycles
alone. For /u. e (0,4) let /M e ̂ "([0,1]) be given by /M(x) = /xx(l-x) for all xe
(0,1) — {!}. Then for a certain value of /u. (n = 3.56994) we have Sink(/M) =
Homt(/M) = 0 and there is no topologically transitive /^-cycle. (See for instance
[6] and [3, theorem 2.6]). In [16, § 7] a function ge N(I) is explicitly constructed
having neither sinks, homtervals nor topologically transitive g-cycles. In both cases
there exists a decreasing sequence of cycles {Xn}nal such that int(nnai Kn) = 0.
This suggests the following definition.

We call R c / an f-register-shift if int(R) = 0 and if there exists a decreasing
sequence {Kn}nl,] of /-cycles Kn contained in M(f) such that R=C]n>,Kn

({Kn}ns.l is said to be decreasing if Kn+lc. Kn for each n > l ) ; we then say
that {Kn}nsi is a generator for the/-register-shift R.

PROPOSITION 4.4. Let {X n } n a l be a generator for some f-register-shift R and let
{K'n}nsi be a generator for some f-register-shift R'. Then:

(1) If C is a topologically transitive f-cycle then A(C,f) n A(Km,f) = 0 for some
m>\.

(2) S(/)n(a,6)nrUiint(Kn)*0.
(3) R* R' if and only if A{Km,f) n A(K'm,f) = 0 for some m > l .
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Proof. (1) S u p p o s e t h a t C is a t o p o l o g i c a l l y t r ans i t i ve / - c y c l e a n d a s s u m e 
t h a t A(C,f)nA(K„,f)*0 for all n > l . T h e n b y l e m m a 4 .1(2) w e w o u l d h a v e 
int (CnKn) 9*0 a n d t h u s Cc K„ fo r all n > l ( b e c a u s e C is t o p o l o g i c a l l y 
t r a n s i t i v e ) . B u t th i s is n o t p o s s i b l e s ince in t ( P L 2 1 K„) = 0. 

(2) S i n c e in t {K„) n (a, b) is a n / - a l m o s t - i n v a r i a n t s u b s e t o f M(J) w e h a v e by 
l e m m a 3.5, in t (K„) n S(f) n (a, b) # 0 for e a c h n > 1. H e n c e 

S(f)n{a, b)nH i n t ( K J * 0 

( b e c a u s e S(f) is f ini te) . 
(3) Let x e R - R'; t h e n x e / ? - fo r s o m e j> 1. F o r « > 1 let fi„ b e t h e u n i q u e 

c o m p o n e n t of K„ w i t h xeB„. S i n c e i n t ( R ) = 0 w e h a v e {x} = P l „ = , i B „ ; h e n c e 
B m n K'j = 0 for s o m e m > / N o w l e m m a 4.1 g ives t h a t 

in t ( K m n s i n t ( K m n X j ) = 0, 

a n d t h u s A ( K m , / ) n / l ( X : , / ) = 0 . C o n v e r s e l y , if A ( X m , / ) n ^ ( K L , / ) = 0 for 
s o m e m > 1 t h e n in t (Km)nini (K'm) = 0 , a n d t h u s b y (2) R* R'. • 

Let R b e a n / - r e g i s t e r - s h i f t ; p u t A(R,f) =C^C£^R) A{C,f) w h e r e ^ ( K ) is t h e set 
of / - c y c l e s C w i t h R^C. Le t { K „ } „ 2 1 b e a g e n e r a t o r for /?. O n e c a n s h o w t h a t in 
g e n e r a l A{R,f) = C \ n z i A(Kn,f) is n o t t r u e . H o w e v e r , w e will p r o v e in § 5 ( t h e o r e m 
5.9(2)) t h a t t h e r e ex is t s a g e n e r a t o r {K„}nsl for R s u c h t h a t A(R,f) = D ^ i A(Kn,f). 
I n p a r t i c u l a r , t h i s s h o w s t h a t A{R,f) is a G 8 - s e t ( i .e . A(R,f) c a n b e wr i t t en as a 
c o u n t a b l e i n t e r s e c t i o n o f o p e n se t s ) . 

In § 6 w e wil l s t u d y s o m e m o r e p r o p e r t i e s o f / - r e g i s t e r - s h i f t s . W e will s h o w t h a t 
e a c h / - r e g i s t e r - s h i f t R is a C a n t o r - l i k e se t , t h a t R-Qcf(R-S(/))c R w h e r e Q 
is a finite se t o f p o i n t s in / , t h a t t h e o rb i t o f e a c h p o i n t in R - M{f) is d e n s e in R 
a n d t h a t e a c h e l e m e n t o f A(R,f) is a t t r a c t e d t o R. 

5. The main result 
W e n o w c o m e t o t h e m a i n resu l t . 

T h e o r e m 5.1. Let C x , . . . , Cr be the topologically transitive f-cycles, let R x , . . . , Rs 

be the f-register-shifts and for 1 < i ' < s / e t {K^)}nl,l be a generator for Rt. Then 

r + s < c a r d ( S ( / ) n ( a , 5 ) ) , 

and there exists m s 1 such that for each n > m the open and f-biinvariant sets 
A{Cuf),...,A{Cr,f),A{K{:\f),...,A{K(:\f), S i n k ( f ) , H o m t if) are disjoint 
and their union is dense in I. 

Proof T h e p r o o f of t h e o r e m 5 .1 , w h i c h is b a s e d o n a c o u p l e o f l e m m a s a n d 
p r o p o s i t i o n s , c a n b e f o u n d a t t h e e n d o f th i s s e c t i o n . 

Le t C C , b e t he t o p o l o g i c a l l y t r a n s i t i v e / - c y c l e s a n d let R l t . . . , Rs b e t h e 
/ - r e g i s t e r - s h i f t s . P u t 

G{f) = A ( C , , / ) u . . . u A(C„f) u A(R,,/) u . . . u A(R„f) u S ink (f) u H o m t ( / ) . 

T h e o r e m 5.9(2) will s h o w t h a t for e a c h l < i < s t h e r e exis ts a g e n e r a t o r {K(,!)}„:,1 

for Rt s u c h t h a t A ( R „ / ) = P | n = = i A(K^\f). H e n c e b y t h e o r e m 5.1 a n d t h e Bai re 

c a t e g o r y t h e o r e m t h e G 6 - s e t G(f) is d e n s e in / . 
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The following example shows that I -G(f) (which is /-biinvariant) can have a
quite complicated structure. Consider Newton's Method for determining the zeros
of a polynomial p. By identifying R with / we obtain a discrete dynamical system
on / represented by some geJf(I). If p is an n-th degree polynomial with n>4
having real roots, then it follows from a result by Barna [1] that Sink (g) is dense
in I (and thus there are neither homtervals of g, topologically transitive g-cycles
nor g-register-shifts) and that I-G(g) contains a Cantor-like set. Furthermore, it
should be noted that the action of/ restricted to / — G(f) can be very complex. In
the continuous case (i.e. if there exists a continuous function g on 7 into itself
with g(x)=f(x) for all x e I - S(f)) the asymptotic behaviour of/ on I-G(f) is
analysed in [16] by using certain factors of / which essentially 'kill off' G(f).

For (p E S(f) and n > 1 put
/ l
\ n

and

Then Ln(<p) is non-empty, open and/-almost-invariant and we have Ln+1((p) c Ln(<p)
for all n > 1. Furthermore, for <p e S(f) put

A(<p) = {xe J:/"•(*) = <p for some m>0};

note that A(<p) and thus also A(<p) and int (A(<p)) are/-almost-invariant.
The proof of theorem 5.1 will consist in showing that for each <peS(f) with

int (A((p)) 5* 0 there exists m > 1 such that either Lm(<p) is a topologically transitive
/-cycle or {Ln(<p)}nzm is a generator for some /-register-shift R. In order to prove
that (for sufficiently large n) Ln(<p) is an/-cycle we will first study some properties
of certain (connected) components of open, /-almost-invariant subsets of /.

Let U c / be open; a component J of U is called regular if there exists a component
LofU with L n S(f) * 0 such that / ( L ) n J * 0 for some fc > 0. Let ? e S{f) and
n > 1; note that each component of £„(<?) is regular.

LEMMA 5.2. Let U c I be non-empty, open and f-almost-invariant and let J be a regular
component of U. Then there exists a component K of U - S(f) and m > 0 such that
fm(K)c J,Kn S(fm) = 0 andKc Lfor some component LofU with LnS(J) * 0 .

Proof. Let

m =min {/c>0:/(c(L)n/?' 0 for some component L of U with Ln S(/) ^ 0}.

Choose a component L of U with LnS(f)^0 such t h a t / m ( L ) n / ^ 0 . Since [/
is/-almost-invariant there exists a component K of L-S(J) such tha t / m (K)c J.
Then X is a component of U — S(f) and by the choice of m we have K n S(fm) = 0 .

•
LEMMA 5.3. Le/ l /£ M(/) fee non-empty, open and f-almost-invariant. Then the set
of the regular components of U is non-empty and finite.
Proof. By Lemma 3.5 we have t / n S(f) ^ 0 ; hence we can find at least one regular
component of U. Let <3/ be the set of the components K of U - S(f) which are
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contained in some component L of U with LnS(f)?i0. <& is finite because we
have for all K e ® and <p e S(J), K n S(/) # 0 and card ({K e "3/: <p e K}) < 2. Since
U^lMjf) we can find iV> 1 such that for all X £ <& there exists 0< n < N with
f(K)n S(f) ^ 0 . Now let J be a regular component of t/. By lemma 5.2 there
exist Ke<3/ and m > 0 such that / m ( X ) c /, KnS(fm) = 0 and m < N. Since 7 is
the unique component of U with fm{K)zJ, this shows that there are at most
N- card (<30 regular components of L/. •

LEMMA 5.4. Let U, U' be open and f-almost-invariant subsets of I with L/'c: U and
U n S(f) = [/' n S(/). 77ren eac/i regular component of U contains at least one regular
component of U'.

Proof. Let / be a regular component of U. By lemma 5.2 there exist a component
K of U-S(f) and m >0 such that fm(K)c J, K n S ( / m ) = 0 a n d K c L for some
component L of U with L n S ( f ) ? i 0 . Since [7nS( / )= U'n S(f) we can find a
component L' of I/' with L'n S(/) # 0 such that L ' c L and L'nK7i0. Then since
£/' is/-almost-invariant/m(L'n K) is a non-empty open interval which is contained
in U'nJ. Let / ' be the unique component of U' with fm(L'n, K)cJ'. Then / ' c j
and / ' is regular. •

Next we want to show that if <p e S(/) with int (A(<p)) 5̂  0 and n is sufficiently large
then Ln(<p) is an /-cycle. For this we need the following lemma.

LEMMA 5.5. Let <p e S(f) with int (A(<p)) ^ 0 . 77iew:
(1) //" U£ A((?) is non-empty, open and f-almost-invariant, then Ln((p)c(Jfor

some n> 1.
(2) There exists m > 1 such f/iaf Ln(<p) £ A(«p)

forallnzm.

Proof. (1) Suppose that t / c A(<p) is non-empty, open and/-almost-invariant. Since
A(<p)n l / # 0 we have <p ef(U - S(/J'))c [/ forsome^aO. Hence there exists n> 1
such that In(<p)^ U. Again using that £/ is /-almost-invariant gives us that Ln(<p)c. U.

(2) Since int(A(<p)) is /-almost-invariant and S(f) is finite there exists by (1)
m>\ such that Ln(<p)cA(<p) and Ln(«p) n S(f) = Lm(<p) n S(/) for all n > m. •

PROPOSITION 5.6. Let q> e S(/) tvir/i int (A(ip)) ^ 0 . Then for all sufficiently large n > l
the number of components ofLn(<p) is finite and Ln(cp) is anf-cycle contained in A(<p).

Proof. By lemma 5.5(2) there exists m> 1 such that Ln(<p)Q A(<p) and Ln(<p) n S(f) =
Lm(<p) n S(/) for all M > m. Now let n a m. Since each component of Ln(<p) is regular
lemma 5.3 immediately gives us that the number of components of Ln(tp) is finite.
Hence Ln{tp) can be written as a disjoint union of non-trivial closed intervals
Bi,..., Bp (with p a l ) . Let U c Ln(<p) be open and non-empty. In order to prove
that Ln(<p) is an/-cycle it remains to show that for each 1 < i < p we have B, f~\fk( U) #
0 for some fc>l. Let l < i < p and put V = Uf c ! , i/ '

t (Lf-5(/ ' t)). Then V is open
and (since V and Ln(<p) are both/-almost-invariant) we have Vc Ln(<p)c
Hence by lemma 5.5(1) there exists j>n with L/(^>)s V. B, contains at least one
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component / of Ln(<p), which is regular. By lemma 5.4 there exists a component / '
of Lj((p) with / ' £ J c B-. Hence J' £ B,n V and therefore B, n / k ( t/) # 0 for some
fc>l. D

PROPOSITION 5.7. Lef L0O = n n a i Ln((p) for some tp e S(f) with int (A(<p)) # 0 . 77jen:
(1) //int (Lx) # 0 ffren £„ is a topologically transitivef-cyde and Lx= Lm(<p) for

some m > 1.
(2) / / int (Loo) = 0 tfien L^ is an f-register-shift and for all sufficiently large m,

-m is a generator for Lx with A(Lx,f) = C\nzm A(Ln(<p),f).

Proof. (1) Put V = int (Lx) and suppose that V is non-empty. By lemma 5.5(2) we
have V£ Lfc(<p)£ A(̂ >) for some fca 1 and by lemma 5.5(1) we can find m > 1 with
Lm(<p)£ V. Thus Ln(<p) = Lm(<p) = La, for all n>m, and so by proposition 5.6 Lm(<p)
is an /-cycle contained in A(̂ >). Now let U £ Lm(<p) be non-empty, open and
/-almost-invariant. Again by lemma 5.5(1) we have L,(<p)<= U for some j a m and
hence Lj(<p)= 0 = Lm(q>). Therefore by proposition 4.2, Lm(<p) is a topologically
transitive /-cycle.

(2) Suppose that int (La,) = 0 . By proposition 5.6 there exists m > 1 such that for
each n>m Ln((p) is an /-cycle contained in A(<p)cM(/). Hence LK is an
/-register-shift and {Ln(<p)}n^m is a generator for Lx. In order to show that
A(Lx,f) = (~]nsm A(Ln((p),f), consider an /-cycle K with L0C£K; put £/ =
int (X)nint (A(«p)). Then U is non-empty because <p e L^n int (A(^>))£ X n
int (A(<p)). Moreover, t/ is open and/-almost-invariant; hence by lemma 5.5(1) we
have Ln((p)c(jGK and thus int (Ln(<p))chit (K) for some n > m. Therefore

17faJ ) which shows that

LEMMA 5.8. Let UQM(J) be non-empty, open and f-almost-invariant. Then there
exists (p e S(f) with int (A(<p)) ̂  0 swc/i that Ln(<p) £ t//or some w > 1.

/ UVes(/) ' n t
 (^(<P)) is dense in M(f) since

M(f)- U int(A(«p))=

Hence there exists cpeS(f) with int(A(^))n [ 7 ^ 0 , and thus by lemma 5.5(1) we
have Ln((p) £ £/ for some n > 1. D
Proof of Theorem 5.1. By propositions 4.3 and 4.4 there exists m > 1 such that for
all n a m the open and /-biinvariant sets A(C, , / ) , . . . , A(CM/),
^ ( K ^ , / ) , . . . , A{K{:\f), Sink (/), Homt (/) are disjoint and each of them apart
from Sink (/) and Homt (/) contains at least one element of S(f)n(a,b). Thus
r+sscard (S(f)n(a, b)). For n> m put

u Homt (/)).

Then Gn and thus int(Gn) are /-almost-invariant, and by proposition 3.4
we have Gn £ M(/). Lemma 5.8 and proposition 5.7 immediately give us that
int (GJ = 0 . •
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The next theorem shows how each topologically transitive /-cycle and how for a
given/-register-shift R a generator {Kn}nsi for R with A(R,f)=(~]nsl A(Kn,f) can
be constructed; in particular, this implies that A(R, / ) is a Gs-set.

THEOREM 5.9. Let C be a topologically transitive f-cycle and let R be an f-register-shift.
Then:

(1) C = O n a l Ln(ip) = Lm(<p) for some <p e S(f) with intA(<p)*0.
(2) R=Pln a i Ln((p) and {Ln(<p)}n^m is a generator for R with A(R,f) =
nam A(Ln(<p),f) for some <p e S(f) with int (A(<p)) ¥• 0 and all large enough m.

Proof. (1) By proposition 4.3(2) we have C<^M(f). Hence by lemma 5.8 there
exists (p e S(f) with int (A(<p)) ^ 0 such that Lm(<p) c C for some m > l . Since C is
topologically transitive we have C = Lm(<p) = f \ a i Ln(<p).

(2) Let {/Cn}nal be a generator for R. Since S(/) is finite there exists, by lemma
5.8, <p e S(f) with int (A(<p)) 7s 0 such that for each n > 1 we have L,((?) e Kn for
somej&n. Hence propositions 4.4(3) and 5.7(2) give us that R = (~]nl,l Ln{<p) and
that for sufficiently large m, {Ln((p)}nsm is a generator for R with A{R,f) =

6. More on register-shifts and topologically transitive cycles
In this section we will first study some more properties of /-register-shifts. In
particular, we will show that each /-register-shift R is a Cantor-like set, that
R - Q £ / ( /? - S(f)) c R where Q is a finite set of points in I and that the orbit of
each point in R — M(f) is dense in R. In the second part of this section we will
prove that each topologically transitive /-cycle C is in fact strongly transitive, i.e.
for each open and non-empty subset U of C, U™=of"(U-S(f")) is dense in C for
some m >0.

For the sequel it will be convenient to consider a new dynamical system associated
with / For x e / and e > 0 1et BE(x, l) = (x, x+e)nl and B,(x, -1) = ( x - e , x )n /.
For A c / put

A* = {(x, a ) e / x { l , - 1 } : BE(x, Q ) n A ^ 0 for each e>0}.

Let K be an /-cycle; note that (x, a)e K* if and only if Be(x, a ) c X for some
e > 0 . Let (x, a ) e / * and n > 0 ; put f"(x, a) = limvix/"(>>) if a = 1 and/"(x, a) =
lim^x f(y) if a = - 1 . This is well defined and clearly we have/" (x, a)e I. Moreover,
there exists e > 0 such that / " is continuous and monotone on Bf(x, a); put
Il"(x, a) = a iff" is increasing on Be (x, a) and U"(x, a) = -a if/" is decreasing
on BF(x, a). In the following we will write/(x, a) (resp. FI(x, a)) instead of/'(x, a)
(resp. n'(x, a)). Clearly (/(x, a) , n(x, a ) ) e /* for each (x, a) el*.

Finally, let F : /*-» /* be the mapping given by F(x, a) = (/(x, a), U{x, a)) and
define the mapping F" : / * -* /* inductively by F°(x, a) = (x, a) and F"(x,a) =
F(F""'(x, a)) for all n > 1. It is not difficult to see that for all (x, a) e /* and n, m > 0
we have:

fm+n(x,a)=fm{f"(x,a),U"(x,a)),
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and hence

Furthermore, it is easily checked that for each/-cycle K we have F(K*)c K*.
In order to show that each /-register-shift is a Cantor-like set we need the next

two lemmas which will also be useful later. For (x, a )e /* put

O/(x,a) = {/"(x,a):n>0},
for Bel* let

Of(B) = {f"(x, a): (x, a) e B and w>0}

and for an /-cycle K put

S(f,K) = {(x,a)eK*:xeS(f)}.

Note that \f(x,a)eK* for some /-cycle K then Of(x, a)cK.

LEMMA 6.1. Let K be an f-cycle and let c, d e K with c<d and (c, d) c K. Then for
each n > 0,

d(J"((c, d)))<=Of(S(f, K))u{f"(c, l),f"(d, -1)}.

Proof. Let «>0. If ue(c, d)nS(f") then there exists 0<j<n with f(u)e S(f)n
int (K) and hence / " (u , a)e Of(S(f, K)) for all a e{\, - 1 } . Now let (c, rf) n S ( / " ) =

{ « , , . . . , wm} with « ! < M2< • • • < um. Put M O = c and um + 1 = d. T h e n / " is continuous

and monotone on each of the intervals (u,, u j + 1) , i = 0 , 1 , . . . , m. Thus

S U *(/•"((«., «m)))

{r((;i),rK-i)}. •

L E M M A 6.2. Lef { K n } n a l be a generator for some f-register-shift R and let (x, a)e I*
with (x, a)e (Kn)* for each n > l . Then c a r d (Of(x, a)) = +oo.

Proof. Assume that card(O/(x, a))<+oo. Then also card ({F"(x, a): «>0})<+oo,
and hence there exist q > 0 and p > l such that Fp(y, /3) = (y, /3) where (y,/3) =
Fq(x,a). We have (x,a)e(Kn)* and thus (y,B)e(Kn)* for each « > 1 . Since by
proposition 3.4, X! n Sink (/) = 0 there exists e > 0 such that / p is continuous and
increasing on B2e(y, B) and

B-f"(z)>B-z {0Ta\\zeB2e(y,B).

Hence for all S > 0 there exists m > 0 such that Be(y, B)cfm(Bs(y, B)-S(fm))\
thus Bc(y, B)Q Kn for each n > 1 which is not possible. Therefore, card (Of(x, a)) =
+oo. •

Let ^ = {Cn}n s , be a decreasing sequence of/-cycles and m > 1; we call a component
B of Cm ^-splitting if for some k> m B contains at least two (distinct) components
of Ck. ^ is said to be splitting if for all n £ 1 each component of Cn is ^-splitting.

PROPOSITION 6.3. Let {Kn}nsl be a generator for some f-register-shift R. Then {/£„}„;,,
is splitting.

Proof. Assume that {Kn}nl,i is not splitting. Then there exists m > l and a component
B of Km such that for all n > m, B contains exactly one component of Kn (since
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by lemma 4.1(1) B contains at least one component of Kn). For n > m let Bn be the
unique component of Kn with BncB. Then BB+1cflB and card (P|n>™ Bn) = 1.
Without loss of generality we can assume that S(f, Kn) = S(f, Km) for all n > m. By
proposition 4.4(2) we have S(f, Km)?i0, and thus there exists (x, a)el* with
(x, a) e S(f, Km) £ (£„)* for all n > 1. Lemma 6.2 shows that card (O/(x, a)) = +oo;

hence there exist c, d e Of(x, a ) £ Of(Sif, Km)) with c < d such that (c, d)^Km.
We can find p > 0 such that f((c, d)) n B ̂  0 . By lemma 6.1 we have

c D,fp(d, -l)}

thus there exist u,ve Of(S(f, Km)) with (u, v) £ B. But since O^SC/", /Cm)) c Kn for
all n > l and B is not {Xn}nal-splitting, it follows that («, v)^Bn for all n>m
which is not possible. •

Note that by the above proposition each point of an /-register-shift R is a limit
point of R. Since in addition R is non-empty, closed and nowhere dense, R is a
Cantor-like set. In particular, for each x e R there exists a 6 {1, -1} with (x, a) e R*.
The next proposition shows that / acts minimally on each /-register-shift.

PROPOSITION 6.4. Let R be an f-register-shift. Then Of(x, a) = Rfor each (x, a) e R*.

Proof. Let (x,a)eR*, {Kn}nz} be a generator for R and for each n > l and

{<p,B)e S(f, Kn) let Kn(<p, B) denote the unique component of int (Kn) - S(f) with

(<p,B)e(Kn(<p,B))*. We can find w i > l such that for each (<p, B) e S(f, Km) either

Of(x,a)n(Km(<p,B)-{<p}) =
or

for all n > m. Now let ze /? and for n>m let Bn denote the unique component of
Kn with zefin. Then {z} = n n 2 m 5 n - Since (x,a)e(Kn)* we have Or(x, a)cKn

for each n > l and thus Of(x, a)cR. Hence it is sufficient to show that
Of(x, a) n Bn * 0 for all n > w. So let n > m. Since (x, a) e R* £ (X,-)* for all; > 1,
lemma 6.2 shows that there exist c, d £ O/(x, a) with c< d and(c, d)^ Kn. Moreover,
we can find p > 0 such that

H e n c e Of(x, a)nBn*0 fo l lows if w e c a n s h o w t h a t d(fp((c, d ) - S{J"))) £ Of(x, a ) .
Let u, veOf(x,a) with (u, u)£Kn and let wed(/((«, u)-S(/))) . Then either w =
/(u) , w =/(u) or w =f(<p, B) for some (<p, b) G S(/, Kn). If w =/(«) or w =f(v) then
clearly we O/(x, a). If w=f(<p, B) for some (<p, /3)e S(/, Kn) then by the choice of
m we have Kj(<p, B)n Of(x, a) i*0 for all jsum; hence we O/(x, a) (since
rVmKj(»,/3) = {<?})• Repeating this argument shows that d(fk((u, v)-S(fk)))c
Of(x, a) for all fc>0; in particular, we have

d(fp((c,d)-S(f")))^Of(x,a). a

Let R be an /-register-shift; the above result gives us that Of{x) is dense in R for
all xe R — M{f) (note that since M(f) is countable and R is a Cantor-like set,
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R-M{f) is uncountable). Next we will show that R is the union of f(R-S(f))
and a finite set. For this we need the following lemma which will also be useful later.

LEMMA 6.5. Let A c / be closed and let (y,/3)e(f(A-S(f))*. Then there exists
(x,a)eA* withF(x,a) = (y,p).
Proof. For each n > 1 there exists yn ef(A- 5(/)) n Bx/n{y, (3). For n > 1 let xn e A
with /(*„) = j'n and let x be a point of accumulation of {x n } n a l . Then there exists
o e { l , -1} such that BE(x, a)r>{xn: n s i } 5*0 for each e > 0 , and so (x, a ) e A*
and F(x, a) = (>>,/3). D

PROPOSITION 6.6. Let R be an f-register-shift. Then:
(1) f(R-S(f)) = R.
(2) f(R-S(f))u{f(x,a):(x,a)eR* and xe S(f)} = R
(3) F(R*) = R*.

Proof. (1) Let {Kn}nsl be a generator for R. Then

f(R-S(f))^f(Kn-S(f))^Kn for each n > l ;

hence/(i? - S(/)) Q i?. Let x e R - M(f); then Oy(/(x)) <=f(R - S(/)) c /? and thus
by proposition 6.4 we have f(R - S(f)) = R.

(2) Clearly by (1) we have

f(R-S(f))u{f(x,a):(x,a)€R* and xe S(/)}c/(/?-S(/) = R.

Now let >> e R -f(R - S(/)); then (y, p) e R* = (f(R - S(f)))* for some j3 e {1, -1},
and so by lemma 6.5 there exists (x, a )e 7?* with/(x, a) -y. Since y£f(R-S(f))
we must have xe S(/).

(3) Let {x,a)eR*; then /(x, a ) e R and for all e>0 we have
Be(J(x, a), n(x, a))nR*0. Hence F(x, a)<=R*. On the other hand, let (y, )3) e i?*.
Then by (1) (>», /3) e (f(R-S(f)))* and so by lemma 6.5 there exists (x, a) e /?* with
F(x,a) = (>>,/3). D

Let Ac / be non-empty; for xe 7 put d(x, A) = inf {|x-y|: ye A}.
Let R be an /-register-shift; the next result shows that each element of A(R,f)

is attracted to R.

PROPOSITION 6.7. Let R be an f-register-shift and {K n } n a l be a generator for R. Then:
(1) For each e > 0 r/iere exists m > 1 such tfiaf i/x e A(X m , / ) and a e {1, -1} then

(2) IfxeA{R,f) and a €{1,-1} then \imn^x d(f"(x, a), R) = 0.

Proof. (1) Let e > 0; there exists m > 1 such that the length of each component of
Km is smaller than e and

int (Km)n S(/) = int (Xn)n5{/) for all n>m.

Let xeA{Km,f) and a e {1, -1}. If x e A(Xm,/) n M(/) then there exists p >0 such
that/p(x)6int(A:m)nS(/)c:i?; thus f"(x, a)e R for all n>p.

If xeA(Km,f)-M(f) then there exists p > 0 such that/"(x)e Km for all n>p.
Hence in any case lim sup,,^ d(f"(x, a), i?)< e.

(2) This follows immediately from (1). •
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Let R be an /-register-shift; one can show that if xe I — M(f) with
limbec d(f"(x), R) = 0 then it does not necessarily follow that x e A(R,f).

Let C be an /-cycle; we call C strongly transitive if for each non-empty open
subset U of C we have Un=of"( U-S(T)) = C for some m>0.

In order to prove that each topologically transitive /-cycle is strongly transitive
we need the following result.

PROPOSITION 6.8. Let <peS(f) and suppose that Lm{(p) is a topologically transitive
f-cycle for some m > l . Then there exists n > 0 such that

Lm(<p)=OfHl»,(<p)-S(fk)).
k = \

Proof. By proposition 4.3 we have Lm(<p)cJVf(/); hence by lemma 5.3, Lm{<p) =
(c,, d , )u • • •u(c<?, dq) can be written as a disjoint and finite union of non-empty
open intervals. Put B{\) = {cl,... ,cq) and fl(-l) = {dt,..., dq). For n > 0 let

En= U /* ( /« (? )

then Lm(f) = U»,o£n, EncEn+1 and f(En -S(f))<= En+J for all nJaO. For a e
{1,-1} put

R(a) = { z e B ( a ) : ( z , a ) ^ © * for all M>0}.

Now let us assume that Lm(<p)* En for all n >0. Then fl(l)u K(-l) ¥> 0 . Let e>0;
fora G{1, -l}and ue B(a)put u(e) = u + a • e if ue R(a) and M(e) = uifw^/?(a).
Furthermore, let D(e) = {Jlsisq(ci(e), dj(e)). By compactness there exists kzO
such that Uisis? (ci + e, dj-e)c. Ek. Hence there exists j >0 such that D(e)c £,..

We will first show that for each ue R{a) there exists j > 1 such that FJ{u,a) =
(w, a). Let M e -R(a) for some a e {1, —1}. Since Lm(<p) is a topologically transitive
/-cycle we have

f(Lm(<p)-S(f)) = Lm(<p);

hence by lemma 6.5 there exists («,, a,)G (Lm(<p))* with F ( M 1 ; a,) = (u, a) . Then
(w,, a , ) ^ (£„)* for all n > 0 and thus u, e jR(a,). Therefore, we can inductively find
a sequence {(«„, a n ) } n a 0 of elements of (Lm(<p))* such that (w0) a0) = (u, a ) ,
«„£/?(«„) and F(un+1, an+l) = (wn, an) for each n > 0 . Since card
( R ( l ) u i ? ( - l ) ) < + o o there exist n > 0 and 7 > 1 such that («,-+„, a^+n) = (Mn, an).
Hence (M7, a^) = (u0, a0) a n d t n u s f ' J (", «) = (« ,«) for each / > 0 . Since by
proposition 4.3(1) int (Lm(<p)) n Sink (/) = 0 there exist N > 1 and e > 0 such that

(i) for each ve R(P), /3 e {1, — 1}, / N is continuous and increasing on
Be(v, 0), FN(v, /3) = {v, 8) and B-fN{z) > /3 • z for all z e Bt(v, B)

(ii) / J ? ) u ( L m ( ? ) n 5 ( f N ) ) c D ( E ) .
Furthermore, there exist p, k > 1 and 0 < 5 < e such that

I f / N ( D ( 5 ) - S ( / N ) ) c D ( 5 ) then (since 7m(«p)cD(«)) we would have Lm((p)^
Uh=o' f'(D{8) ~ S(f)) s Ep+N_x which contradicts our assumption. Hence there
exists xe D(8) w i t h / N ( x ) e Lm(<p)-D(S). Without loss of generality let us assume
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that /N is increasing in x and tha t / N (x)e (c,c + 8] for some ce R(\). Put

y = m a x { z < x : z e S ( / N ) u B ( l ) } ;

so y<x and fN({y,x))c (c,c +8). If yeS(JN) or y e B ( l ) - K ( l ) then we would
have (>>, x) n £k 5̂  0 and thus fN((y, x)) n Ek+N # 0 ; but this is not possible since
Ek+Nn(c, c + 8) = 0. Hence ye R(l). Since xeD(S) we have Bs(>>, l)<=(y,x) and
so fN{Bs(y, l ) ) c (c, c + 5). But again this is not possible since by (i) the length of
the interval fN(BB(y, 1)) is strictly larger than 8. Therefore, Lm(<p) = En for some
n>0. •

PROPOSITION 6.9. C is a topologically transitive f-cycle if and only if C is a strongly
transitive f-cycle.

Proof. If C is a strongly transitive /-cycle then clearly, by proposition 4.2, C is
topologically transitive. Conversely, suppose that C is a topologically transitive
/-cycle. By theorem 5.9 there exist <p e S(f) with int (A(<p)) ̂  0 and m > 1 such that
C = Ln(<p) for all n > w. Now let I / c C be non-empty and open. Since [ / sCsA((p )
we have Ij((p)^fq(U-S(fq)) for some ^ > 0 and j> w. Hence by proposition 6.8
there exists p > q such that

Since L,(<p) = C this shows that C is strongly transitive. •

Remark. We call (x, a)e I* periodic if F"(x, a) = (x, a) for some n > 1. We say that
geJf(I) is uniformly piecewise linear with slope rj > 0 if on each component U of
/ - S(f) g is linear with slope 17 or -TJ. Suppose that / is a strongly transitive/-cycle,
and assume further that either/(U) n / ( V) ̂  0 for some components L/ and V of
I — S(f) with [/^ V or that /* contains no periodic element. As in [13, Theorem
5] it can be shown tha t / is then conjugate to a uniformly piecewise linear mapping
geJi(I) (with slope 17 >1), i.e. there exists a homeomorphism \\i of / ' such that

Let C be an /-cycle and assume that there exists a continuous function g: C -> C
such that /(x) = g(x) for all x e C - S ( / ) . Then we can label the components
Bx,...,Bm of C in such a way that g(Bi)^B,+, for l < i < m - l and g ( B J c B , .
For n>0 define inductively g°(x) = x and gn+l(x) = g(g"(x)) for all xeC . Let
1< i s m; then gm(Bi)<=,Bi, and if in addition C is strongly transitive then for each
non-empty open subset U^ Bt there exists p > 0 such that {Jk=ogmk(U) = Bt.
The next result shows that in this situation proposition 6.9 can be improved.

PROPOSITION 6.10. Let C be a topologically transitive f-cycle with m components, let
B be a component of C and suppose that there exists a continuous function g:C->C
such that g(x) = / ( x ) for allxeC - S(f). Then exactly one of the following statements
holds:

(1) For each non-trivial interval / s B there exists fc>0 with gkm(J) = B.
(2) There exists a closed interval D withD\jgm(D) = B, int (D) n int (gm(D)) = 0

and g2m(D) = D such that for each non-trivial interval J<=,D there exists fc>0 with
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Proof. Put B = [c, d] and h-gm. By Proposition 6.9, C is strongly transitive; in
particular, we have h(B) = B and h(u) — u for some u e (c, d). Suppose that there
exists a non-trivial interval J <= B such that h"(J)^B for all n > 0 . Since C is
strongly transitive there exists j > 0 such that u e h"(J) for all n >j; hence [c, u] c
ft"(/) for some p>j. Since h"(J)i* B for all « > 0 we have cih{[c, «]), and thus
ce h([u, d]). The same argument shows that d e h{[c, «]). Therefore, for all « >0
we have

[c,u]Qh2n([c,u])^hp+2n(J)^[c,d)

and
[u,d]cLh2n+\[c,u])^h*+2n+\J)ci(c,dl

For n > 0 put

Dn = / ip + 2 n( /)n/i ' I + 2 n + 1( /) .

Then Dn is an interval with ue Dn and h(Dn)^ Dn + , c (c, d) for each n >0 . Hence
Dn = {«} for all n > 0 because C is strongly transitive. Therefore, putting D = [c, u]
we have h(D) = [u, d] and h2(D) = D. Now let / ' c D b c a non-trivial interval; as
above we have [c,u]Qhk(J') for some fc>0, and thus [c, u ] c hk(J')^ hk(D) =
[c, u]. Finally, it is clear that (1) and (2) cannot both hold.

7. Some examples
In this section we want to apply our results to some examples. We will make use
of the following fact.

PROPOSITION 7.1. Suppose that Sink (f) = Homt (/) = 0 and that I is the only f-cycle
K with int (K) n S(f) n (a, b) •£ 0 . Then I is strongly transitive.

Proof. By proposition 4.4(2) there are no /-register-shifts. Thus by theorem 5.1
there exists a topologically transitive /-cycle K. We have K = I since by
proposition 4.3(3) int (K) n S{f) n (a, b) ̂  0 , and by proposition 6.9 / is strongly
transitive. •

Suppose that geJf([0,1]) is given by g(x) = Bx mod 1 for all xe (0 ,1 ) with
and some /8 > 1 (such transformations were discussed in [17]). Then / is a
strongly transitive g-cycle; this follows immediately from the next corollary.

For an interval / c / let | / | denote the length of /.

COROLLARY 7.2. Suppose that f(a,\) = a, f{(p,l) = a and f((p,-l) = b for all
cp e S(f)n (a, b) and that | / ( / ) | > | / | for each interval J^l with JnS(f) = 0.
Then I is a strongly transitive f-cycle.

Proof. Since | / ( / ) | > | J | for each interval / c / with JnS(f) = 0 we clearly have
Sink (J) = Homt (J) = 0 . Let K be an /-cycle with int (K)n S(f) n (a, b) * 0 . Then
f(<p,\) = a for each <pe S(f)n(a, b) implies that ae K. Since/(a, 1) = a,f(cp, -1) = b
for each <pe S(f)n(a,b) and Sink, (f) = 0 it follows that K = /. Therefore, by
proposition 7.1, / is strongly transitive. •

The next class of function we consider contains the Poincare map of the geometric
Lorentz attractor already mentioned in the Introduction.
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COROLLARY 7.3. Suppose that f is continuous and strictly increasing on (a, <p) and
(<p, b) for some a < <p < b, that f{cp, 1) = a and f(<p, -1 ) = b and that \f{J)\ >v /2 | / | for
each interval J c J with J n S(/) = 0 . Then I is a strongly transitive f-cycle.

Proof. Since [f(J)\ > V2\J\ for each interval J g / with / n S(/) = 0 we have Sink (/) =
Homt (/) = 0 . Let K be an /-cycle with <p e int (K) n S{/) n (a, b) and let B = [c, d]
be the component of K with ipeB. Put Ul = {c,<p) and U2 = (<p,d). Without loss
of generality we can assume that | Ux\ > | U2\ (otherwise 'turn / upside down'). Put
n=min{k>l:fk(Ui)nB*0}. Then/"(I/,)s B, and we have

hence n = 1 and d = b (because/((p, -1) = b). Moreover, we have \fl{<p - a) < b - a;
thus

and

Therefore, | B\ +1/( U2)\ >b-a which gives us that/( U2)nB*0 and thus/( t/2) s B.
Hence B is the only component of K. Since f(<p, 1) = a we have c = a and therefore
K = I. Thus, by proposition 7.1, / is strongly transitive. •

Finally we will apply our results to interval exchange transformations (see for
instance [4] or [8]).

Let S(f) = {d0,,,,. dm+l} with a = do<d1<- • -<dm+1 = b. f is said to be an
interval exchange transformation (on / ) if / 'exchanges' the open intervals
(dk, dk+x), k = 0 , . . . , m according to a permutation of { 0 , 1 , . . . , w}, i.e. if

(7.1) / i s linear with slope 1 on each ofthe open intervals (dk, dk+i), k = 0,..., m;
and

Now suppose that / is an interval exchange transformation. Then
Fn(x, 1) = (/•"(*, 1), 1) for all n>\, xe[a,b), F: /*-> I* is bijective and

Moreover, / " is also an interval exchange transformation for each n > 1, and it is
not difficult to see that for each /-cycle K we have f~l(K)c K; in particular, this
gives us that A(K,f)c K.

PROPOSITION 7.4. Suppose that f is an interval exchange transformation. Then:
(1) If xe I with/"(x) = x for some n > 1 then x is contained in some sink off.
(2) Sink(/) = {xe/: there exists n> l and u,veS(f") with u<x<v such that

r(z) = zforallze(u,v)}.
(3) Homt (J) = 0.

Proof. (1) Suppose that xel with f"{x) = x for some « > 1 . Then there exist
M, ve S(/") with u<x<v and (H, i>)nS(/") = 0 . Since / " is linear on (M, V) with
slope 1 we have/"(z) = z for all ze(u, v). Hence (w, v) is a sink of /wi th xe(u, v).
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(2) Clearly, if u, v e S(f") with n a 1, u < v and /"(z) = z for all ze(u,v) then
(u, f) is a sink of/ and thus (w, u)c Sink (J). Conversely, let J be a sink of/ and
let n > l with / " ( / ) £ / Then there exist u,veS(f") with 7 c ( « , u) and
(«, u) n 5(/") = 0 . Since / " is linear on (w, V) with slope 1 we have f"(z) = z for
all ze (u, t>). Moreover, since / " ( / ) = / it follows that

{x 6 / : /"(x) e J for some n > 0} = U£=!>/V),

and thus each element of Sink (f) is already contained in a sink of/
(3) This follows immediately from Proposition 3.3(3) and from the fact that if

/ c / is an interval with / n S(J) = 0 then \J\ = [f(J)\. D

COROLLARY 7.5. Suppose that f is an interval exchange transformation and let
C , , . . . , Cr be the topologically transitive f-cycles. Then:

(1) There are no f-register-shifts.
(2) Sink(/) u C, u • • • u Cr is dense in I.

Proof. (1) Let R be an /-register-shift. By theorem 5.9 and proposition 5.6 there
exists <pe S(f) with int A(<p)i*0 and m a 1 such that R =Pl n a i Ln(<p) and Ln(<p)g
A(«p) for all n^m. But since / ^ ' (Ln(<p))c Ln(<p) we have A((p)c Ln{<p) and thus
Ln(<p) = &(<p) for each n s m. This is not possible since int (i?) = 0 .

(2) Since A(K,f)c K for each /-cycle K and since by proposition 7.4(3),
Homt (f) = 0 this follows immediately from theorem 5.1. •

Finally, we show that if the orbits Of(<p, 1) of the singular points <p in (a, b) are
infinite and disjoint then / is a strongly transitive /-cycle.

COROLLARY 7.6 (cf. [8].) Suppose that f is an interval exchange transformation with
S(f)n(a,b)*0 and assume that card (Of(cp, 1)) = +oo and f1 (<P, D * S(f) n (a, b)
for all <p e S(f) n (a, b) and n > 1. Then I is a topologically transitive f-cycle. Moreover,
we have Of(x, 1) is dense in I for each x e [a, b).

Proof. We will first show that Sink(/) = 0 . Assume that Sink(/) ^ 0 . By proposition
7.4(2) there exist n > 1 and u,ve S(f) with u < v such that/"(z) = z for all z e (w, v);
then fk(u)eS(f) for some 0 s fc< n, Put (p=fk{u); so <p<b and /"(<?, 1) = <p. Thus
by assumption we have <p = a. Since a =f{rj, 1) for some unique 7? e 5(/) n [a, b) it
follows that /"(??, 1) = r). But again this is only possible if 77 = a; hence /(a, 1) = a,
and thus/(z) = z for all ze (a, f) where £ = min (S(/)n(a, fc)). But then there exists
i//6 S(f)n[£;, b) with f(if/,l) = $, which contradicts our assumption. Therefore,
Sink {f) = 0 .

Let C \ , . . . , Cr be the topologically transitive/-cycles. Then by corollary 7.5(2) / =
C, u • • • u Cr. Assume that r > 2. Then C, n Cj 5* 0 for some 1 < 1 <j < r. Let z 6 C, n
C,. Suppose first that z£M(f). Then/"(z) 6 Q n ^ for all n>0 , and thus there
would exist p>\ and m > 0 such that f(f"(z)) =/"(z); by proposition 7.4(1) this
is not possible. Suppose next that zeM(f); then / m (z )e S( / )n(a , fe) for some
m > 0 and there exists (x, I) el* with/(x, 1) = z. Since f"(<p, \)i S(f)n (a, b) for
all <p e S(/) n [fl, b) and n > 1 (/"(a, 1) £ S(f) n (a, 6) for all n > 1 because a = / ( | , 1)
for some £zS(f)n(a, b)) it follows that x£ S(f). Thus
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Repeating this argument shows that there exists p > l with f(x) = x which by
proposition 7.4(1) is not possible. Hence r= 1.

Let xe[a, b) and let J c / be a non-trivial closed interval. By proposition 6.9 /
is strongly transitive; thus we have I = {J™=of"(J-S(f")) for some m > 0 . Let
z=fm(x, 1). It follows from lemma 6.5 that there exist yeJ and 0 < fc< m such that
fk{y, 1) = z. But this immediately gives us that/m"fc(x, 1) = y e J. Therefore, Of(x, 1)
is dense in /. •
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