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Abstract

In this paper, we present a solution to the problem of the analytic classification of
germs of plane curves with several irreducible components. Our algebraic approach
follows precursive ideas of Oscar Zariski and as a subproduct allows us to recover some
particular cases found in the literature.

1. Introduction

A remarkable step towards the understanding of the local structure of a germ of complex plane
curve was the characterization of its topological type. Let C1 and C2 be germs of analytic reduced
plane curves at the origin of C2. We say that C1 and C2 are topologically equivalent (as embedded
germs) if there exist U and V neighborhoods at the origin of C2 and a homeomorphism Φ : U → V
such that Φ(C1 ∩ U) = C2 ∩ V . In this case, Zariski in [Zar71, Zar06] says that C1 and C2 have the
same topological type or they are equisingular. When Φ is an analytic isomorphism, the curves
are called analytically equivalent.

The local topology of plane curves has been studied since the first decades of the last century,
with important contributions from Brauner, Burau, Zariski, Milnor, and others (see [BK86]). For
an irreducible plane curve (branch) the topological type of the curve is equivalent to the topology
of the complement of the associated link, that is, the intersection of the curve with a small
sphere centered at the origin. This intersection is an iterated torus knot. The topological type
of the curve is completely described by the type of the knot which is characterized by pairs of
integers called Puiseux pairs. There are many complete discrete invariants that determine and are
determined by Puiseux pairs, for instance, the characteristic exponents, the value semigroup of
the curve, the multiplicity sequence associated to the canonical resolution, and others. For plane
curves with several branches, the local topology can be described by the value semigroup of the
curve or, equivalently, by the value semigroup of each branch and the intersection multiplicities
of pairs of branches (see [Wal72, Zar71]).

With regard to analytic equivalence, there are many hard problems. For instance, how
we can decide if two curves are analytically equivalent? What is the associated moduli
space?

Any introduction to the analytic classification subject of plane curves is hardly comparable
to the review by Washburn presented in [Was88]. We just cite some contributions to the theme
in chronological order.
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In 1965, Ebey [Ebe65] presented normal forms for some classes of irreducible curves given by
parameterizations. In a course given at the Centre de Mathématiques de l’École Polytechnique in
1973, Zariski [Zar06] considered an irreducible analytic plane curve C and denoted by L = L(C)
the equisingular class of C, that is, the set of all branches equisingular to C. The moduli space M

is the quotient space of L by the analytic equivalence relation. Zariski studied the moduli space
for some equisingular classes and gave a formula for the dimension of the generic component Mg

of M for curves with semigroup 〈n,m〉 in which 1 < n < m and m ≡ 1 mod n. A few years later,
Delorme (in 1978; see [Del78]), considering irreducible curves with semigroup 〈n,m〉, presented
a combinatorial method to obtain the dimension of the generic component of the moduli space.
In 1979, Granger presented normal forms for plane curves with nonsingular transversal branches
(an ordinary multiple point) and gave a formula to compute the dimension of Mg (see [Gra79]).

Bruce and Gaffney in 1982 (see [BG82]), classified the simple irreducible plane curves, that
is, when the moduli space is a zero-dimensional space. A more general approach for the moduli
space was presented by Laudal and Pfister in 1988 (see [LP88]) where, for irreducible plane
curves with semigroup 〈n,m〉, they fixed an analytic invariant (the Tjurina number) in order to
describe normal forms given by elements in C[X,Y ]. In 1994, Greuel and Pfister (see [GP94])
developed a general method to construct coarse moduli spaces for singularities in the sense of
Mumford Geometric Invariant Theory. Kang (in 2000; see [Kan00]) and Câmara and Scárdua (in
2018; see [CS18]), using different methods, classified analytic plane curves defined by weighted
homogeneous polynomials. Kolgushkin and Sadykov (in 2001; see [KS01]) obtained normal forms
for stably simple reducible curve singularities in complex spaces of any dimension.

In 2011, Hefez and the first author (see [HH11]) presented a solution for the analytic classifi-
cation of irreducible plane curves as considered by Zariski in [Zar06] (see also [HH21]). Stratifying
each equisingularity class by the analytical invariant given by the set of values of Kähler differ-
entials, they presented normal forms for each stratum that allowed them to describe the moduli
space. Later, the authors in a joint work with Hefez (in 2015; see [HHR15]), generalized such
method to obtain the analytic classification of plane curves with two irreducible components.

Genzmer and Paul (in 2016; see [GP16]), using tools of Foliation theory, described the moduli
space for generic plane curves such that every branch admits semigroup 〈n,m〉 and they presented
a method to obtain the normal form for the generic case. Ayuso and Ribón (in 2020; see [AR20]),
using holomorphic flows recovered the normal forms for branches presented in [HH11]. In 2022,
Genzmer [Gen22] obtained a formula for the dimension of Mg for any irreducible plane curve.

It is remarkable to observe that for about 50 years the questions proposed by Oscar Zariski
in [Zar06], directly or indirectly, motivated these and so many other researchers that we could
not possibly mention them all. The aim of this work is to present an answer to the intricate
problem of the analytic classification of reduced plane curves in a fixed topological class. The
combinatorial issues involved in this problem were probably our biggest challenge and makes
this case not a simple generalization of the results about curves with two irreducible components
presented in [HHR15].

We consider a topological class fixing the value semiring Γ of a reduced plane curve C. The
value semiring is equivalent, as a set, to the classical value semigroup. The main difference is
that the value semiring, equipped with the tropical operations, admits a finite minimal set of
generators in contrast to the value semigroup (see [CH20a]), and such generators allow us to
recover directly the topological data pointed out by Zariski, that is, the value semigroup of each
branch and their mutual intersection multiplicities. With our approach we recover the normal
forms for the irreducible and two branches cases, presented in [HH11] and [HHR15], but it is
not a simple induction step. In fact, the passage 1 → 2 → r branches requires extra efforts and
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finer analysis in several situations. For example, understanding the semigroup for two branches
as presented by Garcia (see [Gar82]) is not sufficient to describe the semigroup for r � 3. In fact,
Mata (see [Mat87]) introduced new ingredients and non-trivial combinatorial aspects to perform
this task. This important object and other invariants defined by a set of values of fractional
ideals are described in § 2.

Our strategy is, under the action of a permutation group, to consider the branches of the
curve in blocks according to their tangent lines, then we order the blocks and their elements by
the multiplicities of the branches. In addition, we identify the appropriated group G of local diffeo-
morphisms that preserve such properties. This is done in § 3. In § 4 we obtain the Puiseux block
form of a multigerm (Proposition 4.6) that is a convenient parameterization of each component
of the multigerm.

Section 5 contains the main results of this work. We introduce the G-invariant ΛG that
corresponds to values of elements in a fractional ideal IG of the local ring O of C. The elements
of IG are closely related to elements of the tangent space to the G-orbit of the multigerm ϕ
associated to the curve C (Proposition 5.1). In Theorem 5.8 we present a G-normal form of ϕ by
a reduction process using the set ΛG , more specifically by their fibers. Theorem 5.10 takes into
account the homothety group action and by this result we can decide whether two curves are
analytically equivalent or not as we discuss in the end of the section.

Finally, in § 6 we apply our techniques to recover some known results related with the ana-
lytic equivalence of plane curves: the irreducible case, bigerms, and the ordinary multiple point
singularity. Concerning the case of plane curves in which each branch admits value semigroup
〈n,m〉 and mutual intersection multiplicities equal to nm we apply our results to obtain a pre-
normal form taking into account the value semiring Γ (Proposition 6.7) and we discuss about
the generic component of the corresponding moduli space (Proposition 6.8 and Corollary 6.10).

2. Analytic equivalence and invariants

We denote by C{X,Y } the power series ring with complex coefficients in the variables X and
Y , which are absolutely convergent in a neighborhood of the origin in C2 and by M = 〈X,Y 〉
its maximal ideal. Let C be the germ of an analytic reduced plane curve in (C2, 0) defined
by a reduced element f ∈ M \ {0}, or in other words, C = f−1(0) ∩ U , where U is an open
neighborhood at the origin 0 in C2.

If f = f1 · · · fr is the decomposition of f into irreducible factors, then each fi defines a branch,
that is, an irreducible analytic plane curve, denoted by Ci for i = 1, . . . , r.

Given a branch Ci of C with multiplicity ni, that is, fi ∈ Mni \Mni+1, we can parameterize
it by (aitni

i + · · · , bitni
i + · · · ) ∈ C{ti} × C{ti} with ai �= 0 or bi �= 0. In what follows, we consider

primitive parameterizations, that is, those that cannot be obtained from others composed with
higher powers of ti. We often identify such parameterization with the smooth map-germ ϕi :
(C, 0) → (C2, 0) defined by ti 	→ (xi, yi) := (aitni

i + · · · , bitni
i + · · · ).

We call

[ϕ1, . . . , ϕr] =
[
x1 · · · xi · · · xr
y1 · · · yi · · · yr

]
a multigerm for C and we denote by P the set of multigerms of plane curves with r branches.

The analytic equivalence of reduced plane curves with r branches is translated, as we noted
in [HHR15], into S ×A-equivalence on P, where S is the symmetric group on r elements and
A = {(ρ1, . . . , ρr, σ); ρi ∈ Diff(C, 0) and σ ∈ Diff(C2, 0), 1 � i � r} is the group of right–left
equivalence, where Diff(Cl, 0) denotes the diffeomorphism group of (Cl, 0).
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Given (ρ1, . . . , ρr, σ) ∈ A and ϕ = [ϕ1, . . . , ϕr] ∈ P the action of A on P is defined as

(ρ1, . . . , ρr, σ) · ϕ := [σ ◦ ϕ1 ◦ ρ−1
1 , . . . , σ ◦ ϕr ◦ ρ−1

r ]

=
[
σ1(x1 ◦ ρ−1

1 , y1 ◦ ρ−1
1 ) · · · σ1(xr ◦ ρ−1

r , yr ◦ ρ−1
r )

σ2(x1 ◦ ρ−1
1 , y1 ◦ ρ−1

1 ) · · · σ2(xr ◦ ρ−1
r , yr ◦ ρ−1

r )

]
,

where σ = (σ1, σ2).
We say that ϕ,ψ ∈ P are A-equivalent, denoted by ϕ ∼

A
ψ, if and only if they are in the same

A-orbit. Now, the group S ×A acts on P by(
π, (ρ1, . . . , ρr, σ)

)
· ϕ := π((ρ1, . . . , ρr, σ) · ϕ) := [σ ◦ ϕπ(1) ◦ ρ−1

π(1), . . . , σ ◦ ϕπ(r) ◦ ρ−1
π(r)],

for all π ∈ S, (ρ1, . . . , ρr, σ) ∈ A and ϕ ∈ P.
It is a well known fact that for a plane curve C defined by f ∈ C{X,Y }, the isomorphism

class of its local ring O := C{X,Y }/〈f〉 completely determines the analytic class of C. The aim
of this section is to present discrete A-invariants related to some fractional ideals of O.

A parameterization ϕi = (xi, yi) ∈ C{ti} × C{ti} of a branch Ci given by fi ∈ C{X,Y }
provides the exact sequence

{0} → 〈fi〉 → C{X,Y } →
ϕ∗

i

C{xi, yi} → {0},

where ϕ∗
i (h) := h(xi, yi). In what follows, we identify Oi := C{X,Y }/〈fi〉 with the subalgebra

C{xi, yi} ⊆ C{ti}. In particular, the integral closure of Oi in its quotient field Qi = C((ti)) is
Oi = C{ti} and Oi = Oi if and only if ni = 1.

We consider the natural discrete normalized valuation

νi : Qi −→ Z := Z ∪ {∞}
p

q
	−→ νi

(
p

q

)
:= ordti(p) − ordti(q),

where p, q ∈ Oi, q �= 0 and νi(0) = ∞. The set

Γi = {νi(p); p ∈ Oi} = {νi(h) := νi(ϕ∗
i (h)); h ∈ C{X,Y }}

is a submonoid of N := N ∪ {∞} and Si = Γi ∩ N is the classical value semigroup of the branch
Ci, which is an A-invariant and a complete topological invariant.

The conductor ideal of Oi in Oi is (Oi : Oi) = {h ∈ Oi; hOi ⊆ Oi} = 〈tμi
i 〉, where μi, called

conductor of Γi, satisfies μi − 1 �∈ Γi and μi + N ⊂ Γi. In this case, the conductor of Γi coincides
with the Milnor number of Ci, that is, μi = dimC(C{X,Y }/〈(fi)X , (fi)Y 〉) where (fi)X and (fi)Y
indicate the derivatives of fi with respect to X and Y , respectively.

The previous concepts can be extended for a reduced curve C with r branches defined by
f = f1 · · · fr.

Considering I = {1, . . . , r} and the monomorphism

O →
⊕

i∈I Oi

p 	→ (p1, . . . , pr),

where pi denotes the class of p ∈ O in Oi, it is possible to verify that the total ring of frac-
tions of O is Q =

⊕
i∈I Qi and the integral closure of O in Q is O =

⊕
i∈I C{ti}. As before,

if ϕ = [ϕ1, . . . , ϕr] ∈ P is a multigerm associated to C, then we identify O with the subalgebra
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{ϕ∗(h) := (ϕ∗
1(h), . . . , ϕ

∗
r(h)), h ∈ C{X,Y }} ⊆

⊕
i∈I Oi and we set

Γ =
{
ν(h) :=

(
ν1(h), . . . , νr(h)

)
; h ∈ C{X,Y }

}
⊂ Γ1 × · · · × Γr.

The conductor ideal of O in O is

(O : O) =
⊕
i∈I

(
(Oi : Oi) ·

∏
j∈I
j �=i

ϕ∗
i (fj)

)
=
⊕
i∈I

〈tκi
i 〉,

where κi = μi +
∑

j∈I
j �=i

νi(fj). The element κ = (κ1, . . . , κr), called the conductor of Γ, satisfies

κ+ N
r ⊂ Γ and κ− ei �∈ Γ for any element ei in the canonical basis of Qr (see [Gor52]).

Zariski in [Zar71] showed that (up to permutation of the branches) the topological class
of C is totally characterized by Γi ∩ N and the intersection multiplicity νi(fj) (= νj(fi)) of Ci
and Cj for i, j ∈ I with i �= j. On the other hand, Waldi (see [Wal72]) proved that Γ ∩ Nr is
also a complete topological invariant and Mata, in [Mat87], showed that Γ determines and it is
determined by Γi and νi(fj) for all i, j ∈ I, i �= j, connecting the results of Waldi and Zariski.

In contrast to Γi, the (additive) semigroup Γ is not finitely generated, but equipped with
the tropical operations, the set (Γ, inf,+) is a finitely generated semiring1 (see [CH20a]), where
inf{(α1, . . . , αr), (β1, . . . , βr)} = (min{α1, β1}, . . . ,min{αr, βr}), that we call the value semiring
associated to C. More precisely, there exists a minimal set of generators {vj , j = 1, . . . , g} ⊂ Γ
such that any γ ∈ Γ can be written as

γ = inf
{ g∑
j=1

a1jvj , . . . ,

g∑
j=1

arjvj

}
, (1)

where akj ∈ N, k ∈ I, 1 � j � g. The elements in {vj , j = 1, . . . , g} ∩ Nr are precisely the valua-
tion of branches that achieve maximal contact with some Ci for i ∈ I and the subset of generators
with some coordinate equal to ∞ is precisely {ν(fi), i ∈ I} (see [Mat87, CH20a]).

In a more general situation, given any (regular) fractional ideal I ⊆ Q =
⊕

i∈I Qi of O we
can consider the set of values

ν(I) =
{
ν(z) := (ν1(z1), . . . , νr(zr)); z = (z1, . . . , zr) ∈ I ⊆ Q

}
⊆ Z

r
.

The set (ν(I), inf) is a Γ-semimodule, that is, Γ + ν(I) ⊆ ν(I). Moreover, there exists
(unique) (ζ1, . . . , ζr) =: inf(ν(I)) ∈ ν(I) such that ζi � αi for every (α1, . . . , αr) ∈ ν(I) and ν(I)
admits a ‘conductor’ 
 ∈ ν(I), that is, 
+ N

r ⊆ ν(I) and 
− ei �∈ ν(I) for all ei in the canonical
Q-basis of Qr (see [GH20] for more properties concerning values set of fractional ideals of O).

The next definition generalizes the corresponding concept introduced by Garcia in [Gar82]
and Mata in [Mat87] for Γ ∩ Nr.

Definition 2.1. Let I be a fractional ideal of O with set of values Δ = ν(I). Given J ⊆ I the
J-fiber of γ = (γ1, . . . , γr) ∈ N

r with respect to Δ is the set

FΔ
J (γ) = {(δ1, . . . , δr) ∈ Δ; δj = γj for every j ∈ J and δi > γi for all i ∈ I \ J}.

We say that γ ∈ N
r is

(i) a maximal element of Δ, if FΔ
I (γ) �= ∅ (i.e. γ ∈ Δ) and FΔ

{i}(γ) = ∅ for all i ∈ I;
(ii) a relative maximal element of Δ, if γ is maximal and FΔ

J (γ) �= ∅, for all J ⊆ I with �J � 2;
(iii) an absolute maximal element of Δ, if γ is maximal and FΔ

J (γ) = ∅, for all J � I, J �= ∅.

1 The set (Γ, inf, +) is a semiring since (Γ, inf) and (Γ, +) are monoids with identity elements ∞ = (∞, . . . ,∞)
and 0 = (0, . . . , 0) respectively; inf{α + β, α + γ} = α + inf{β, γ} and ∞ + α = ∞ for every α, β, γ ∈ Γ.
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Remark 2.2. Let I be a (regular) fractional ideal of O such that inf(ν(I)) = (ζ1, . . . , ζr) and

 = (
1, . . . , 
r) is the conductor of ν(I). In [CH20b, Theorem 16], the authors presented an
algorithm to compute a finite set of generators of ν(I) (as Γ-semimodule) and showed that ν(I)
is characterized by its elements in the box R = [ζ1, 
1] × · · · × [ζr, 
r]. In particular, we have that
all maximal elements of ν(I) belong to R.

For I = O we obtain ν(O) = Γ and Γ is determined by its elements in [0, κ1] × · · · × [0, κr].

Other A-invariants that play an important role in this work are related with set of orders of
differential 1-forms.

Let Ω1 = C{X,Y } dX + C{X,Y } dY be the C{X,Y }-module of differential 1-forms. If ϕi =
(xi, yi) ∈ C{ti} × C{ti} is a parameterization of a plane branch Ci defined by fi, we extend the
homomorphism ϕ∗

i to Ω1 in the following way.
Given ω = a(X,Y ) dX + b(X,Y ) dY ∈ Ω1, we define

ϕ∗
i (ω) := ti · (ϕ∗

i (a) · x′i + ϕ∗
i (b) · y′i) ∈ Qi,

where x′i and y′i denote, respectively, the derivative of xi, yi ∈ C{ti} with respect to ti.
Note that the kernel of ϕ∗

i is

{ω ∈ Ω1; ϕ∗
i (ω) = 0} =

{
ω ∈ Ω1;

ω ∧ dfi
dX ∧ dY ∈ 〈fi〉

}
= fi · Ω(log Ci),

where Ω(log Ci) is the module of logarithmic differential forms along Ci which is the dual module
of the logarithmic vector field Der(− log Ci) along Ci (see [Sai80]).

In addition, if Fi := fi · Ω1 + C{X,Y } · dfi, then the Kähler differential module of Oi is
Ωi ≈ Ω1/Fi and its torsion submodule is given by Ti ≈ (fi · Ω(log Ci))/Fi. Moreover,

Ωi

Ti
≈ Ω1

fi · Ω(log Ci)
≈ ϕ∗

i (Ω
1).

The set ϕ∗
i (Ω

1) ⊂ Qi is a fractional ideal of Oi and

Λi = {νi(ω) := νi(ϕ∗
i (ω)); ω ∈ Ω1}

is an A-invariant of Ci. As νi(dh) = νi(h) for any h ∈ M we have Γi \ {0} ⊆ Λi. The set Λi is
one of the main tools considered in [HH11] in order to classify plane branches up to analytical
equivalence.

Similarly for a multigerm ϕ = [ϕ1, . . . , ϕr] we get the A-invariant

Λ = ν(ϕ∗(Ω1)) = {ν(ω) := (ν1(ω), . . . , νr(ω)); ω ∈ Ω1} ⊂ Λ1 × · · · × Λr ⊂ N
r
. (2)

Remark that ϕ∗(Ω1) ≈ Ω1/f · Ω(log C) is a fractional ideal of O with Γ \ {0} ⊆ Λ and conductor

 = (
1, . . . , 
r) satisfying 
i � κi for i = 1, . . . , r.

In particular, by Remark 2.2, the set Λ is characterized by its points in the box [0, 
1] ×
· · · × [0, 
r] ⊆ [0, κ1] × · · · × [0, κr]. Consequently, for each topological class determined by the
semiring Γ there is a finite number of possible Λ sets.

The set Λ is related to the Tjurina number of C (see [BGHH20]), the set ν(J(f)) = {ν(h); h ∈
J(f) := 〈f, fX , fY 〉 ⊆ C{X,Y }} and the values of residues of elements in f · Ω(log C). More
explicitly, if ω ∈ f · Ω(log C), then there exist η ∈ Ω1, g, h ∈ C{X,Y }, g �∈

⋃r
i=1〈fi〉 such that

g · ω = h · df + f · η. The class res(ω) of h/g in Q is called the residue of ω and we put Res(f) =
{res(ω), ω ∈ f · Ω(log C)} (see [Sai80]). In [Pol18], Pol showed that ν(J(f)) = Λ + κ− (1, . . . , 1)
and λ ∈ Λ if and only if −λ �∈ ν(Res(f)).

Using the value semiring Γ or more specifically the subset ν(M2) of values of M2 we can
obtain a distinguished presentation for a multigerm as we show in § 4. We consider particular
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fractional ideals of O determined by differential 1-forms that are related to the tangent space to
the orbit of a multigerm according to the action of a Lie group.

3. Group actions

Let ϕ = [ϕ1, . . . , ϕr] ∈ P such that ϕi(ti) = (aitni
i + · · · , bitni

i + · · · ) with ai �= 0 or bi �= 0. Given
(ρ1, . . . , ρr, σ) ∈ A with ρ−1

i (ti) = uiti + · · · and σ(X,Y ) = (αX + βY + · · · , γX + δY + · · · )
such that ui, αδ − βγ ∈ C∗ := C \ {0} we have

ψi(ti) := σ ◦ ϕi ◦ ρ−1
i (ti) = ((αai + βbi)uni

i t
ni
i + · · · , (γai + δbi)uni

i t
ni
i + · · · ).

Denoting by jkξ the k-jet of a map-germ ξ at the origin we put jkϕ := [jkϕ1, . . . , j
kϕr].

The invariance of the multiplicity of the branches gives us a one-to-one correspondence
between j1σ and a Möbius transformation on C := C ∪ {∞} given by T (θ) = (γ + δθ)/(α+ βθ)
such that if θi := bi/ai ∈ C is the slope of the tangent line aiY − biX = 0 of Ci at the origin,
then T (θi) is the slope of the tangent line to the curve corresponding to ψi for 1 � i � r. In this
way, up to change of coordinates, we can consider the tangent lines of the branches in a such
way that up to three chosen directions are fixed.

If all branches have the same tangent line at the origin with slope θ, considering γ = −δθ,
then T (θ) = 0. If the branches have exactly two tangent lines with distinct slopes θ1 and θ2, then
taking γ = −δθ1 and α = −βθ2 we obtain T (θ1) = 0 and T (θ2) = ∞. On the other hand, if there
exist at least three branches with distinct tangent lines of slopes θ1, θ2, and θ3, we can consider
the unique Möbius transformation T such that T (θ1) = 0, T (θ2) = ∞, and T (θ3) = 1.

By the above description and an S ×A-action, we may adjust the components of ϕ ∈ P in
a particular way.

Definition 3.1. Given ϕ = [ϕ1, . . . , ϕr] ∈ P we say that ϕ is in block form if there are sets B1 =
{ϕk1 = ϕ1, . . . , ϕk2−1}, B2 = {ϕk2 , . . . , ϕk3−1}, . . . , Bs = {ϕks , . . . , ϕr} satisfying the following.

(i) The tangent line of every branch in Bi has the same slope θi and, if i �= j then θi �= θj for
1 � i, j � s. In addition, θ1 = 0, θ2 = ∞ and θ3 = 1.

(ii) If ϕj and ϕk are elements of Bi with j < k, then nj � nk.
(iii) We have nk1 � nk2 � · · · � nks .

A set Bi as above is called a block of ϕ.

It is clear that any element in P is S ×A-equivalent to a multigerm in block form.
From now on we consider A-action on block form multigerms in P and without loss of

generality we can suppose jniϕi = (aitni
i , bit

ni
i ) such that

ai = 1, bi = 0 if ϕi ∈ B1,
ai = 0, bi = 1 if ϕi ∈ B2,
ai = 1, bi = 1 if ϕi ∈ B3 and
ai = 1, bi = θj if ϕi ∈ Bj for j > 3.

The next lemma is an immediate consequence of the above explanation and gives us the
subgroups of A that preserve the tangent cone of the curve C and the properties of the block
form.
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In what follows, we consider the subgroups of A:

H = {(ρ1, . . . , ρr, σ) ∈ A; ρi = uiti, σ = (αX, δY ) and ui, α, δ ∈ C∗},
H′ = {(ρ1, . . . , ρr, σ) ∈ A; ρi = uiti, σ = (αX,αY ) and ui, α ∈ C∗},

Ã1 = {(ρ1, . . . , ρr, σ) ∈ A; j1ρi = ti, j
1σ = (X + βY, Y ) and β ∈ C},

A1 = {(ρ1, . . . , ρr, σ) ∈ A; j1ρi = ti and j1σ = (X,Y )}.

Lemma 3.2. The subgroups of A that preserve the elements of P as in Definition 3.1, according
to number s of blocks, are as follows.

s Subgroup of A
1 H ◦ Ã1

2 H ◦ A1

� 3 H′ ◦ A1

Proof. The description follows from the correspondence between the Möbius transformation
T (θ) = (γ + δθ)/(α+ βθ) and j1σ = (αX + βY, γX + δY ) with σ ∈ Diff(C2, 0).

For s = 1, all branches have tangent line with slope 0 and to preserve it we must consider
γ = 0. Thus, the corresponding element in A is a composition of elements of H and Ã1.

If ϕ ∈ P has just two blocks with θ1 = 0 and θ2 = ∞, then we must consider T (θ) = δθ/α to
preserve the slopes of the tangent lines and consequently the corresponding elements in A are
obtained as a composition of elements of H and A1.

On the other hand, if s � 3 the branches of the first three blocks have tangent line with slope
0, ∞, and 1, respectively, and the only Möbius transformation that preserve them is the identity
(γ = β = 0 and α = δ). Consequently, the associated diffeomorphisms belong to H′ ◦ A1. �

The standard strategy to solve the analytic equivalence problem is to find a representative
element in each orbit (a normal form), for instance, with a few number of parameters, in such a
way that it is manageable to decide whether two normal forms are equivalent or not.

Note that the action of any subgroup of S ×H on an element ϕ ∈ P does not introduce
or eliminate terms in the multigerm components. Thus, to obtain equivalent multigerms in the
block form with short parameterizations it is natural to consider the A1-action or Ã1-action
according to the number s of blocks described in the previous lemma.

In a more general situation, concerning a Lie group action G on an affine space A, the com-
plete transversal theorem (CTT; see [BKP97]) provides us a method for obtaining representative
elements in the orbit G(v) of v ∈ A, if we have the description of the tangent space TG(v) to
orbit G(v) at v. More precisely, the following version will be useful for our purposes.

Theorem 3.3 (Complete transversal theorem). Let G be a Lie group acting on an affine space A

with underlying vector space V and let W be a subspace of V . Suppose that TG(v + w) = TG(v)
for all v ∈ A and w ∈W . If v ∈ A and W ⊆ TG(v), then G(v + w) = G(v), for all w ∈W , that
is, the G-orbits of v + w and v coincide.

Let us apply the above theorem in our context. To simplify the notation let G be one of the
groups A1 or Ã1 and I = {1, . . . , r}.
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The description of TA1(ϕ) for ϕ ∈ P is classical (see, for instance, [Wal81]) and we do not
need any effort to extend it to the group Ã1. Explicitly, we get

TG(ϕ) =
{[

x′1 · ε1 + ϕ∗
1(η1) . . . x′r · εr + ϕ∗

r(η1)
y′1 · ε1 + ϕ∗

1(η2) . . . y′r · εr + ϕ∗
r(η2)

]
; εi ∈ 〈t2i 〉, i ∈ I

}
,

where

{
η1, η2 ∈ M2, if G = A1,

η1 ∈ 〈X2, Y 〉, η2 ∈ M2, if G = Ã1.

(3)

Denoting by Bk the set of k-jets of elements of a set B, we know that Gk is a unipotent Lie
group that acts on Pk in the natural way:

jk(ρ1, . . . , ρr, σ) · jkϕ := [jk(σ ◦ ϕ1 ◦ ρ−1
1 ), . . . , jk(σ ◦ ϕr ◦ ρ−1

r )].

The corresponding tangent space TGk(jkϕ) is the set of k-jets of elements in TG(ϕ).
If Hk denotes the C-vector space{[

c1t
k
1 · · · crt

k
r

d1t
k
1 · · · drt

k
r

]
; ci, di ∈ C with ci = di = 0 if k � ni, i ∈ I

}
(4)

then, we can prove, similarly as in Proposition 2 of [HHR15], that TGk(jkϕ+ ζ) = TGk(jkϕ) for
any jkϕ ∈ Pk and ζ ∈ Hk.

In this way, G = Gk, A = Pk, and W ⊆ Hk ∩ TGk(jkϕ) fulfill the hypothesis of Theorem 3.3,
that is, for any w ∈W we have that jkϕ+ w is Gk-equivalent to jkϕ and, consequently, there
exists ψ ∈ P which is A-equivalent to ϕ with jkψ = jkϕ+ w.

In the next two sections we recognize elements in Hk ∩ TGk(jkϕ) using G-invariants.

4. Puiseux block form

In this section, we present a convenient parameterization for the components of the multigerm
ϕ = [ϕ1, . . . , ϕr] ∈ P preserving the block form, as in Definition 3.1. In addition, we exhibit some
elimination criteria for terms of ϕ.

For simplicity, we denote by Eji for j = 1, 2, i ∈ I, an element of the canonical basis of the
complex matrices of order 2 × r and G denotes one of the groups A1 or Ã1.

Given a multigerm ϕ = [ϕ1, . . . , ϕr] ∈ P with ϕi(ti) = (xi(ti), yi(ti)), an element[
u1 · · · ur
v1 · · · vr

]
:=

r∑
i=1

(uiE1i + viE2i)

with ui, vi ∈ C{ti} belongs to TG(ϕ) if and only if there exist εi for i = 1, . . . , r and η = (η1, η2)
satisfying (3) such that {

ui = x′i · εi + ϕ∗
i (η1),

vi = y′i · εi + ϕ∗
i (η2).

(5)

As we remarked in § 3 describing Hk ∩ TGk(jkϕ) we can apply Theorem 3.3 in order to
obtain representative elements in a same Gk-orbit.

Note that our analysis, up to this point, has taken into account a few A-invariants, just the
multiplicities of the branches and the behavior of the tangent cone. It is time to consider finer
invariants as defined in § 2.

Let ϕ = [ϕ1, . . . , ϕr] ∈ P be a multigerm of plane curve in block form, with local ring O. The
(fractional) ideal ϕ∗(M2) of O plays a relevant role and provides us an elimination criterion for
terms in ϕ.

923

https://doi.org/10.1112/S0010437X24007061 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007061


M. E. Hernandes and M. E. R. Hernandes

Lemma 4.1. With the standard notation, if k = γ +
∑

j∈I
j �=i

νi(fj) ∈ νi(M2) with γ ∈ Γi, then

there exists ψ = [ψ1, . . . , ψr] G-equivalent to ϕ such that jkϕj = jkψj for all j ∈ I \ {i} and
jkψi = jk−1ϕi.

Proof. By hypothesis, there exists an element h ∈ C{X,Y } with h ·
∏

j∈I
j �=i

fj ∈ M2 and jk(ϕ∗
i (h ·∏

j∈I
j �=i

fj)) = tki .

Taking εj = 0 for j ∈ I and ηl = αlh ·
∏

j∈I
j �=i

fj for l = 1, 2 in (5), we get

α1t
k
iE1i + α2t

k
iE2i =

[
0 · · · α1t

k
i · · · 0

0 · · · α2t
k
i · · · 0

]
∈ Hk ∩ TGk(jkϕ).

By Theorem 3.3, we obtain ψ ∈ G(ϕ) with jkψ = jkϕ+ α1t
k
iE1i + α2t

k
iE2i and for a convenient

choice of α1, α2 ∈ C we have jkψj = jkϕj for all j ∈ I \ {i} and jkψi = jk−1ϕi. �
Remark 4.2. Note that the description of tangent vector α1t

k
iE1i + α2t

k
iE2i ∈ Hk ∩ TGk(jkϕ),

k = γ +
∑

j∈I
j �=i

νi(fj) ∈ νi(M2) with γ ∈ Γi in the previous lemma gives us a clue to obtain ele-

ments (ρ1, . . . , ρr, σ) ∈ G such that (ρ1, . . . , ρr, σ) · ϕ = ψ with jkψj = jkϕj for all j ∈ I \ {i} and
jkψi = jk−1ϕi. In fact, with the above notation, it is sufficient to consider ρj(tj) = tj for j ∈ I
and σ(X,Y ) = (X − α1 · h ·

∏
j∈I
j �=i

fj , Y − α2 · h ·
∏

j∈I
j �=i

fj) with appropriate α1, α2 ∈ C.

As a consequence of the above lemma we obtain an estimate for the finite determinacy of a
given ϕ ∈ P.

Denoting (O : O)c the contraction of (O : O) by ϕ∗ we have the following result.

Proposition 4.3. If di is the conductor of the set νi
(
M2 ∩ (O : O)c

)
for i = 1, . . . , r, then

ϕ ∼
G

[jd1−1ϕ1, . . . , j
dr−1ϕr].

Proof. For each i ∈ I we put ϕi − jdi−1ϕi = (tdi
i ui1, t

di
i ui2) with uil ∈ C{ti} for l = 1, 2. As di is

the conductor of νi
(
M2 ∩ (O : O)c

)
there exists hil ·

∏
j∈I
j �=i

fj ∈ M2 ∩ (O : O)c such that ϕ∗
i (hil ·∏

j∈I
j �=i

fj) = tdi
i uil for l = 1, 2.

Now, taking (ρ1, . . . , ρr, σ) ∈ G, where ρj(tj) = tj for j ∈ I and

σ(X,Y ) =

(
X −

∑
i∈I

hi1 ·
∏
j∈I
j �=i

fj , Y −
∑
i∈I

hi2 ·
∏
j∈I
j �=i

fj

)
,

we obtain ψ = (ρ1, . . . , ρr, σ) · ϕ = [jd1−1ϕ1, . . . , j
dr−1ϕr]. �

Since κ = (κ1, . . . , κr) is the conductor of the semiring Γ, the above-mentioned integer di
satisfies di � κi with equality if (O : O)c ⊆ M2. More precisely, we have the following.

Proposition 4.4. Let ϕ = [ϕ1, . . . , ϕr] ∈ P be a block form multigerm and s the number of
blocks. For each i ∈ I, the integer di in the last proposition satisfies

di =

⎧⎪⎨⎪⎩
κi + 2 if r = 1 and ni � 2;
κi + 1 if r = s = 2 and n1 = n2 = 1;
κi otherwise.

Proof. Let us consider the cases r = 1, r = 2, and r � 3 separately.

Case r = 1. Let ϕ1 be a parameterization of a branch with multiplicity n1. As we remarked in
§ 2, κ1 is the Milnor number μ1.
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If n1 = 1, then μ1 = 0 and O = O. Thus, d1 = min νi
(
M2 ∩ (O : O)c

)
= 2 = μ1 + 2 = κ1 + 2.

For n1 > 1 we have O �= O and (O : O)c ⊆ M. Setting m = min(Γ \ n1N), we have

ν1(M\M2) =
{
n1, 2n1, . . . ,

[
m

n1

]
n1,m

}
.

If n1 = 2, then Γ = 〈2,m〉 = 2N +mN and μ1 = m− 1, which implies that ν1((O : O)c) =
{γ ∈ N; γ � m− 1}. Thus, the conductor d1 of ν1

(
M2 ∩ (O : O)c

)
satisfies d1 = m+ 1 = μ1 + 2.

On the other hand, for n1 > 2 we have μ1 > m, (O : O)c ⊆ M2 and consequently d1 = κ1.

Case r = 2. Consider a plane curve C given by f = f1 · f2 with corresponding multigerm [ϕ1, ϕ2].
As (O : O) = (O1 : O1) · ϕ∗

1(f2) ⊕ (O2 : O2) · ϕ∗
2(f1) and f1, f2 ∈ M, it follows that if ni > 1

for some i ∈ {1, 2}, then (O : O)c ⊆ M2 and di = κi.
Let us consider n1 = n2 = 1. In this case we have κ = (κ1, κ2) = (ν1(f2), ν2(f1)). If s = 1,

then ϕ1, ϕ2 ∈ B1 and ν1(f2) = ν2(f1) > 1. Hence, (O : O)c ⊆ M2 and di = κi for i = 1, 2. If
s = 2, then ϕ1 ∈ B1 and ϕ2 ∈ B2. Thus, ν1(f2) = ν2(f1) = 1 and di = min νi

(
M2 ∩ (O : O)c

)
=

2 = κi + 1 for i = 1, 2.

Case r � 3. Now, we consider a plane curve C given by f = f1 · · · fr with fi ∈ M.
As (O : O) =

⊕
i∈I(Oi : Oi) ·

∏
j∈I
j �=i

ϕ∗
i (fj), we get (O : O)c ⊆ M2 and di = κi for i ∈ I. �

Another direct application of Theorem 3.3 is obtained as a consequence of the following
lemma.

Lemma 4.5. Let ϕ = [ϕ1, . . . , ϕr] ∈ P be a block form multigerm associated to a curve C and
θi = bi/ai ∈ C the slope of the tangent line to Ci at the origin. For each i ∈ I, if k > ni, then

tki (aiE1i + biE2i) ∈ Hk ∩ TGk(jkϕ).

Proof. As ϕi(ti) = (aitni
i + · · · , bitni

i + · · · ) and k > ni, taking εi = (1/ni)tk−ni+1
i ∈ 〈t2i 〉, εl = 0

for l ∈ I \ {i}, and η1 = η2 = 0 in (5), we obtain

tki (aiE1i + biE2i) =
[

0 · · · ait
k
i · · · 0

0 · · · bit
k
i · · · 0

]
∈ Hk ∩ TGk(jkϕ). �

By the above lemma and Theorem 3.3, for every k > ni there exists a block form multigerm
ψ ∈ G(ϕ) with jkψ = jkϕ+ αtki (aiE1i + biE2i) for any α ∈ C. Thus, if ϕi = (xi, yi) ∈ B1, that
is, ai = 1 and bi = 0, then we can choose α in such way that jkψi = (jk−1xi, j

kyi), that is, we
eliminate the k-order term of the first component of ϕi. On the other hand, for ϕi ∈ B2 there
exists α such that jkψi = (jkxi, jk−1yi). Finally, for ϕi ∈ Bj with j > 2, as ai · bi �= 0, we can
choose α to obtain jkψi = (jk−1xi, j

kyi) or jkψi = (jkxi, jk−1yi).
Similarly to Remark 4.2, as consequence of the previous lemma, we can exhibit an element

of G to perform the proposed action. In fact, with the above notation, it is sufficient to consider
ρ−1
i (ti) = ti + αεi with α ∈ C, εi ∈ 〈t2i 〉 given as in the proof of Lemma 4.5, εj = 0 for j ∈ I \ {i}

and σ(X,Y ) = (X,Y ).
Thus, we recover the classical Puiseux expansion for plane curves.
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Proposition 4.6. Any multigerm ϕ = [ϕ1, . . . , ϕr] ∈ P is G-equivalent to a block form multi-
germ ψ = [ψ1, . . . , ψr] with

ψi(ti) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
tni
i , θlt

ni
i +

∑
j>ni

aijt
j
i

)
for ψi ∈ Bl, l �= 2;(∑

j>ni

aijt
j
i , t

ni
i

)
for ψi ∈ B2;

(6)

with θ1 = 0, θ3 = 1, and θk �= θl for 1 � k, l � r, and k �= l.

Proof. We may suppose that ϕ is given by a block form multigerm. For each i ∈ I and for
every k > ni we consider elements in G to apply the process described after Lemma 4.5.
If ϕi = (xi, yi) ∈ Bl with l � 3, then we choose jkψi = (jk−1xi, j

kyi).
Repeating this process for all k satisfying ni < k < di we obtain jdiψi = (tni

i , j
diyi) for ψi �∈

B2 and jdiψi = (jdixi, t
ni
i ) for ψi ∈ B2. The result follows from Proposition 4.3. �

We call the multigerm as highlighted in the above result the Puiseux block form of ϕ.
From the above results, we obtain the well-known representative in the analytical class for

the particular cases of Proposition 4.4. More explicitly, if ϕ is a Puiseux block form, then:

ϕ ∼
A

(t, 0) if r = n1 = 1;

ϕ ∼
A

(t2, tm) if r = 1, n1 = 2 and m = min(Γ \ 2N);

ϕ ∼
A

[ψ1, ψ2]; ψ1 = (t1, 0), ψ2 = (0, t2) if r = s = 2, n1 = n2 = 1.

Note that if r = 1, n1 = 2, and m = min(Γ \ 2N) the previous results provide us with the
result ϕ ∼

A
(t2, atm) with a �= 0. However, considering ρ(t) = t and σ(X,Y ) = (X, a−1Y ) we

obtain the above equivalence.
In what follows, we consider the non-exceptional cases and consequently we can suppose that

the finite determinacy order for each ϕi of a Puiseux block form multigerm is κi.

5. G-Normal forms and analytic equivalence

In § 4, we apply the CTT (Theorem 3.3) to reduce a multigerm ϕ ∈ P to its Puiseux block form
taking into account only a few topological invariants. Although such forms are a shorter way
of presenting a multigerm, it is not easy to decide whether two Puiseux block form multigerms
correspond to analytically equivalent plane curves.

Our goal in this section is to partition a topological class into a finite number of strata so
that in each stratum we have a constant A-invariant and every element belonging to it admits
a particular Puiseux block form, that we call a normal form, which will allow us to distinguish
them from the analytical equivalence viewpoint.

As before, according to Lemma 3.2, G denotes A1 if the Puiseux block form of ϕ ∈ P has at
least two blocks and Ã1 if there is a single block.

Recall that as a consequence of Lemma 4.5, {
∑

ϕi �∈B2
C · tkiE1i +

∑
ϕi∈B2

C · tkiE2i} ∩Hk ⊆
TGk(jkϕ) for every k. Thus, in order to obtain a Puiseux block form multigerm with a smaller
number of terms, it is sufficient to describe elements in the set Dk := {

∑
ϕi �∈B2

C · tkiE2i +∑
ϕi∈B2

C · tkiE1i} ∩Hk that belong to TGk(jkϕ). In fact, if ζ ∈ Dk ∩ TGk(jkϕ), then ϕ is
G-equivalent to a Puiseux block form multigerm such that its k-jet is jkϕ+ ζ, that is, there
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exists a multigerm ψ, A-equivalent to ϕ, with jk−1ψ = jk−1ϕ and, by adjusting coefficients in ζ,
the element jkψ has a smaller number of non-zero terms than jkϕ.

The key to obtain our normal form is the connection between Dk ∩ TGk(jkϕ) and the set of
values of a particular fractional ideal as we describe in the following.

Considering ϕ ∈ P and

ΩA1 =
{
η2 dX − η1 dY ; η1, η2 ∈ M2

}
, ΩÃ1

=
{
η2 dX − η1 dY ; η1 ∈ 〈X2, Y 〉and η2 ∈ M2

}
,

we get the fractional ideal

IG =
{(

ϕ∗
1(ω)
n1t

n1
1

, . . . ,
ϕ∗
r(ω)
nrt

nr
r

)
; ω ∈ ΩG

}
of O according to the group G.

We define ΛG := {ν(w); w ∈ IG} ⊂ Λ − n ⊆ N
r, where Λ is the A-invariant defined in (2)

and n := (n1, . . . , nr) with ni the multiplicity of the branch ϕi.
Note that the conductor 
′ = (
′1, . . . , 
′r) of ΛG satisfies 
′i � 
i − ni < κi, where (
1, . . . , 
r)

and (κ1, . . . , κr) are the conductors of Λ and Γ, respectively. As a consequence of Remark 2.2, for
each fixed value semiring Γ there are only finitely many A-invariants ΛG that can be computed
by the algorithm presented in Theorem 16 of [CH20b].

In what follows, we consider the set ΣΓ,ΛG of all Puiseux block form multigerms in P, as
given in (6), with semiring Γ and ΛG fixed.

Proposition 5.1. Given ϕ = [ϕ1, . . . , ϕr] ∈ ΣΓ,ΛG and k ∈ N∗ there exists w = (w1, . . . ,wr) ∈
IG with jkwi = αit

k
i , α ∈ C if and only if

∑
ϕi �∈B2

αit
k
iE2i −

∑
ϕi∈B2

αit
k
iE1i ∈ TGk(jkϕ).

Proof. Let w = (w1, . . . ,wr) ∈ IG with jkwi = jk
(
ϕ∗
i (ω)/nitni

i

)
= αit

k
i for i ∈ I and some ω =

η2 dX − η1 dY ∈ ΩG .
As εi = −(ϕ∗

i (η1)/nitni−1
i ) ∈ 〈t2i 〉 for ϕi �∈ B2, εi = −(ϕ∗

i (η2)/nitni−1
i ) ∈ 〈t2i 〉 for ϕi ∈ B2, η1

and η2 satisfying (5) we have the desired element in TGk(jkϕ).
Conversely, if

∑
ϕi �∈B2

αit
k
iE2i −

∑
ϕi∈B2

αit
k
iE1i ∈ TGk(jkϕ), then there exist εi ∈ 〈t2i 〉, i ∈ I,

η1, and η2 as given in (3) such that{
x′i · εi + ϕ∗

i (η1) = Pi

y′i · εi + ϕ∗
i (η2) = αit

k
i +Qi

if ϕi �∈ B2,

{
x′i · εi + ϕ∗

i (η1) = −αitki + Pi

y′i · εi + ϕ∗
i (η2) = Qi

if ϕi ∈ B2, (7)

with νi(Pi) > k and νi(Qi) > k for i ∈ I. Considering ω = η2 dX − η1 dY ∈ ΩG we provide the
element w ∈ IG satisfying the proposition. �

Note that if k � ni, then, by the definition of IG , αi should be zero in (7).
In order to simplify the notation, from now on given a non-empty subset J ⊆ I, we denote the

J-fiber of k = (k, . . . , k) ∈ Nr with respect to ΛG by FJ(k). The following corollary is immediate.

Corollary 5.2. We have FJ(k) �= ∅ if and only if there exist αi �= 0 for every i ∈ J and αi = 0
for every i ∈ I \ J such that

∑
ϕi �∈B2

αit
k
iE2i −

∑
ϕi∈B2

αit
k
iE1i ∈ TGk(jkϕ).

The next proposition describes subspaces of Dk ∩ TGk(jkϕ) in order to choose terms which
can be eliminated by G-action. Such subspaces are related to the fibers of k with respect to ΛG .

Proposition 5.3. Given k ∈ N∗ there exists a d-dimensional subspace in Dk ∩ TGk(jkϕ) if and
only if there exists L = {l1, . . . , ld} ⊆ I satisfying the following condition:

for each l ∈ L, there exists Jl ⊆ I with l ∈ Jl \
⋃

i∈L\{l} Ji, and FJl
(k) �= ∅. (�)
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Proof. We show that there exist v1, . . . , vd ∈ Dk ∩ TGk(jkϕ) linearly independent if and only if
there exists L = {l1, . . . , ld} ⊆ I satisfying (�).

Let {vi :=
∑

ϕj �∈B2
αijt

k
jE2j +

∑
ϕj∈B2

αijt
k
jE1j ∈ Dk ∩ TGk(jkϕ); 1 � i � d} be a set of

linearly independent vectors. Then there exists L = {l1, . . . , ld} ⊆ I with [αilj ]1�i,j�d ∈ Gld(C).
In this way, for each 1 � i � d there exists wi =

∑
ϕj �∈B2

βijt
k
jE2j +

∑
ϕj∈B2

βijt
k
jE1j ∈

span{v1, . . . , vd} ⊆ Dk ∩ TGk(jkϕ) with βili = 1 and βij = 0 for j ∈ L \ {li}. Taking the set
Jli = {j ∈ I; βij �= 0}, the previous corollary ensures the condition (�).

On the other hand, suppose that there is L = {l1, . . . , ld} ⊆ I satisfying the condi-
tion (�). Thus, by Corollary 5.2, for each i = 1, . . . , d, there exists vi =

∑
ϕj �∈B2

αijt
k
jE2j +∑

ϕj∈B2
αijt

k
jE1j ∈ Dk ∩ TGk(jkϕ) such that αij �= 0 if j ∈ Jli and αij = 0 for j ∈ I \ Jli . As

the matrix [αilj ]1�i,j�d is invertible, it follows that v1, . . . , vd are linearly independent. �
Remark 5.4. Note that, by the previous result, if L = {l1, . . . , ld} ⊆ I satisfies the condition (�),
then there exist v1, . . . , vd ∈ Dk ∩ TGk(jkϕ) linearly independent with vi =

∑
ϕj �∈B2

αijt
k
jE2j +∑

ϕj∈B2
αijt

k
jE1j such that αij �= 0 if j ∈ Jli and αij = 0 for j ∈ I \ Jli . In particular, for any

bl1 , . . . , bld ∈ C there exists v ∈ span{v1, . . . , vd} with v =
∑

ϕj �∈B2
bjt

k
jE2j +

∑
ϕj∈B2

bjt
k
jE1j ∈

Dk ∩ TGk(jkϕ) or, equivalently, by Proposition 5.1, there exists w = (w1, . . . ,wr) ∈ IG with
jkwj = bjt

k
j for any bl1 , . . . , bld ∈ C.

As an immediate consequence we can establish an elimination criterion based on the set ΛG .

Corollary 5.5. Let k ∈ N∗, ϕ ∈ P as in (6), and L = {l1, . . . , ld} ⊆ I satisfying the
condition (�). Then there exists ψ ∈ P such that ψ ∼

G
ϕ, jk−1ψ = jk−1ϕ, and jkψl = jk−1ϕl

for all l ∈ L.

Proof. Since ϕ is given as in (6) we have that jkϕ = jk−1ϕ+ w, with w =
∑

ϕj �∈B2
βjt

k
jE2j +∑

ϕj∈B2
βjt

k
jE1j ∈ Dk. By the above remark, there exists v =

∑
ϕj �∈B2

bjt
k
jE2j +

∑
ϕj∈B2

bjt
k
jE1j

∈ Dk ∩ TGk(jkϕ) with bl = −βl for all l ∈ L. By Theorem 3.3, it follows that ϕ is G-equivalent
to some ψ ∈ P with jkψ = jkϕ+ v = jk−1ϕ+ w + v, that is, jk−1ψ = jk−1ϕ and jkψl = jk−1ϕl
for all l ∈ L. �

Given k > 0 the parameter elimination method established in the above result depends upon
a set L satisfying the condition (�) in Proposition 5.3. The aim is to eliminate terms of order k
from the greater number of branches prioritizing the first ones. We can formalize this by defining
the injective map S : {L; L ⊆ I} → Nr given by S(L) = (z1, . . . , zr), where

zi =

{
1 if i ∈ L,

0 if i �∈ L.

Definition 5.6. For each fixed k, we consider the set of indices Lk ⊆ {1, . . . , r} such
that S(Lk) = maxGLex{S(L); L satisfying (�) in Proposition 5.3}, where maxGLex means the
maximum with respect to graded lexicographic order.

Remark 5.7. Let 
 be the conductor of ΛG and k ∈ 
+ Nr. We have that F{i}(k) �= ∅ for all i ∈ I,
consequently Lk = I.

If k is an absolute maximal of ΛG , then FI(k) �= ∅ and FJ(k) = ∅ for all J � I. In this case,
Lk = {1}.

If k is a relative maximal of ΛG , then F{i}(k) = ∅ for all i ∈ I and FJ(k) �= ∅ for all J ⊆ I
with �J > 1. Note that for any i0 ∈ I, the set L = I \ {i0} and Jl = {l, i0} for all l ∈ L satisfy
the condition (�). Then, in this case we have Lk = I \ {r}.
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Now we can establish one of the main results of this paper:

Theorem 5.8 (G-normal form). With the above notation any ϕ = [ϕ1, . . . , ϕr] ∈ ΣΓ,ΛG is
G-equivalent to ψ = [ψ1, . . . , ψr] ∈ P such that

ψi(ti) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
tni
i , θlt

ni
i +

∑
j>ni
i�∈Lj

aijt
j
i

)
for ψi ∈ Bl, l �= 2;

(∑
j>ni
i�∈Lj

aijt
j
i , t

ni
i

)
for ψi ∈ B2,

(8)

where Lj is given in Definition 5.6, θ1 = 0, θ3 = 1, and θk �= θl for 1 � k, l � r with k �= l.
Moreover, if ψ′ = [ψ′

1, . . . , ψ
′
r] ∈ P is another multigerm G-equivalent to ϕ as (8), then ψ′ = ψ,

that is, the G-normal form of ϕ is unique.

Proof. By Proposition 4.6 we can consider ϕ ∈ P in its Puiseux block form. For all k > 0 taking
Lk as defined previously and applying the Corollary 5.5 we obtain a G-normal form ψ as (8).
Remark that by Proposition 4.3 it is sufficient to consider k < max{di; i ∈ I} where di is given
in Proposition 4.4.

Now suppose ψ′ = [ψ′
1, . . . , ψ

′
r] ∈ P as (8), G-equivalent to ϕ and ψ′ �= ψ. Let us consider

k = min{l; jlψ �= jlψ′}.
By Proposition 5.3 there exists {vi ∈ Dk ∩ TGk(jkψ); li ∈ Lk} linearly independent (pos-

sibly empty) and subsets Jli ⊆ I satisfying the condition (�) with vi =
∑

ψj �∈B2
αijt

k
jE2j +∑

ψj∈B2
αijt

k
jE1j such that αij �= 0 if j ∈ Jli and αij = 0 for j ∈ I \ Jli .

Let Fk ⊆ Gk be the subgroup that leave invariant the affine space Nk = jk−1ψ + V where

V =
{ ∑
ψj �∈B2

βjt
k
jE2j +

∑
ψj∈B2

βjt
k
jE1j ∈ Dk; βj ∈ C and βl = 0 for all l ∈ Lk

}
.

As the ground field is C and Fk is unipotent it follows that Fk is a connected group.
Thus, the orbit Fk(jkψ) ⊆ Nk ⊆ Gk(jkψ) is connected and it contains jkψ and jkψ′. Let w :=∑

ψj �∈B2
γjt

k
jE2j +

∑
ψj∈B2

γjt
k
jE1j ∈ TFk(jkψ) ⊆ V ⊆ TGk(jkψ) be a non-zero vector and use

the notation J ′ = {j; γj �= 0} ⊆ I. Remark that l �∈ J ′ for all l ∈ Lk.
Choosing j0 ∈ J ′ =: J ′

j0
, taking the element wl := vl − (αlj0/γj0)w ∈ TGk(jkψ) and setting

J ′
l = {j ∈ Jl \ {j0}; αljγj0 �= αlj0γj} for all l ∈ Lk, it follows by Corollary 5.2 that FJ ′

l
(k) �= ∅. In

addition, for each l ∈ L′ := Lk ∪ {j0} we have that l ∈ J ′
l \
⋃
i∈L′\{l} J

′
i and FJ ′

l
(k) �= ∅. In this

way, L′ � Lk satisfies the condition (�) in Proposition 5.3, which contradicts the maximality of
the set Lk.

Hence, ψ = ψ′ and the G-normal form of ϕ, as (8), is unique. �
Remark 5.9. Note that the parameters aij in the G-normal form (8) are not necessarily free
because, in order to guarantee that the multigerm is in ΣΓ,ΛG , some algebraic conditions must be
imposed on the coefficients. The conditions imposed to have the semiring Γ are easily determined
by the non-zero coefficients of the terms with characteristic exponents and some conditions to get
the intersection multiplicity of each pair of branches. On the other hand, the algebraic conditions
related with ΛG can be obtained applying the algorithm presented in [CH20b].

As we remarked in § 2, the analytic equivalence of plane curves with r irreducible components
can be translated by the S ×A-action on P. Any element in P is S ×A-equivalent to a multigerm
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given in a Puiseux block form and the A-action on such elements splits according to the action
of subgroups given in Lemma 3.2, namely H ◦ Ã1, H ◦ A1, or H′ ◦ A1.

In Theorem 5.8 we presented G-normal forms for Puiseux block form multigerms with G = Ã1

or G = A1. In this way, to present A-normal forms of such multigerms we have to consider the
action of H or H′, that we call homothety actions, on the respective G-normal forms. Recall that
an action by a subgroup of H does not introduce nor eliminate terms in a multigerm.

Let us consider ϕ = [ϕ1, . . . , ϕr] ∈ P given as (8) and the parameter vector

p = (a1,n1+1, . . . , a1,k0 , a2,n2+1, . . . , a2,k0 , . . . , ar,nr+1, . . . , ar,k0), (9)

where k0 = min{z ∈ N; z ∈ 
+ Nr} (see Remark 5.7).
Given an element (ρ1, . . . , ρr, σ) ∈ H where ρi(ti) = uiti and σ(X,Y ) = (αX, γY ) with

α, γ, ui ∈ C∗ for i ∈ I, in order to keep ψ = σ ◦ ϕ ◦ ρ−1 as in (8), that is, jni(ϕi) = jni(ψi) for all
i ∈ I, we must have

ui = α−(1/ni) if ϕi �∈ B2, ui = γ−(1/ni) if ϕi ∈ B2

and θlγα−1 = θl for all ϕi ∈ Bl with l �= 2. Remark that α = γ for (ρ1, . . . , ρr, σ) ∈ H′ ⊂ H, that
is, if we have s > 2 blocks.

The corresponding parameter vector of ψ is (b1,n1+1, . . . , b1,k0 , . . . , br,nr+1, . . . , br,k0) with

bij =

{
γα−(j/ni)aij if ψi ∈ B1

αγ−(j/ni)aij if ψi ∈ B2

for s � 2, and bij = α(ni−j)/niaij for all i ∈ I, if s � 3.

(10)
Note that the parameter vector p is null if and only if

ϕ1 = ψ1 = (t1, 0), ϕ2 = ψ2 = (0, t2), ϕi = ψi = (ti, θiti) for all 3 � i � r, (11)

with θi �= θj for i �= j.
On the other hand, if p is a non-zero vector and ai0j0 is the first non-zero coordinate, then ψi

(and ϕi) for all i < i0 is given as (11) and we can choose α ∈ C∗ in (10) corresponding to ai0j0
in order to normalize the corresponding coefficient in ψ, that is, to obtain bi0j0 = 1.

Eventually (10) allow us to normalize one more coefficient, but for this purpose a finer
analysis would be necessary. However, the above description it is sufficient to present the following
theorem that gives a solution (up to S-action) for the analytical equivalence problem for plane
curves with r irreducible components.

Theorem 5.10 (A-normal form). Let ϕ = [ϕ1, . . . , ϕr] ∈ ΣΓ,ΛG be a multigerm associated
to the curve C. Then ϕ is A-equivalent to ψ = [ψ1, . . . , ψr] as (8) with parameter vector
p = (b1,n1+1, . . . , br,k0) such that the following hold.

– If p = (0, . . . , 0), then ψ1 = (t1, 0), ψ2 = (0, t2), ψi = (ti, θiti) for all 3 � i � r.
– If p �= (0, . . . , 0), then bi0j0 = 1 is the first non-zero coordinate of p. In addition, ψ′ ∈ ΣΓ,ΛG

as (8) with parameter vector p′ = (b′1,n1+1, . . . , b
′
r,k0

) and first non-zero coordinate b′i0j0 = 1 is
A-equivalent to ψ if and only if we have the following conditions according to the number s
of blocks.

s = 1 There exists c ∈ C∗ such that bij = c(jni0−j0ni)/nini0 b′ij for all coordinates of p and p′.
If ψi0 ∈ B1 there exists c ∈ C∗ such that:

bij = c(jni0−j0ni)/nini0 b′ij for all coordinates of p and p′ with ψi ∈ B1;

s = 2 bij = c(jj0−ni0ni)/nini0 b′ij for all coordinates of p and p′ with ψi ∈ B2.

If ψi0 ∈ B2 there exists c ∈ C∗ and bij = c(jni0−j0ni)/nini0 b′ij for all entries of p and p′.

s � 3 There exists c ∈ C∗, c(j0−ni0 )/ni0 = 1, and bij = c(j−ni)/nib′ij for all entries of p and p′.
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Proof. By Theorem 5.8 we obtain a unique G-normal form for ϕ as (8) and, as described
previously, if the parameter vector is non-zero, then the G-normal form is H-equivalent (or
H′-equivalent if s � 3) to ψ = [ψ1, . . . , ψr] as (8) with parameter vector p = (b1,n1+1, . . . , br,k0)
such that its first non-zero coordinate is bi0j0 = 1.

Now it is sufficient to describe the parameter vector p′ = (b′1,n1+1, . . . , b
′
r,k0

) of a multigerm
ψ′ ∈ ΣΓ,ΛG as (8) with the first non-zero coordinate b′i0j0 = 1 in the orbit H(ψ) if s � 2 or in
H′(ψ) if s � 3. This will be done using (10).

If s = 1, by (10) we have γα−(j0/ni0
) = 1 and γα−(j/ni)bij = b′ij . Consequently, γ = αj0/ni0

and bij = α(jni0
−j0ni)/nini0 b′ij for all coordinates of p and p′.

For multigerms with two blocks it follows, by (10), that b′ij = γα−(j/ni)bij if ψi ∈ B1 and b′ij =
αγ−(j/ni)bij if ψi ∈ B2. If ψi0 ∈ B1, then γ = αj0/ni0 and bij = α(jni0

−j0ni)/nini0 b′ij for coordinates
of p and p′ with ψi ∈ B1 and bij = α(jj0−ni0

ni)/nini0 b′ij for all coordinates of p and p′ with ψi ∈ B2.
If ψi0 ∈ B2, then α = γj0/ni0 and bij = γ(jni0

−j0ni)/nini0 b′ij for all entries of p and p′.
Finally, for s � 3 we have α(ni0

−j0)/ni0 = 1 and α(ni−j)/nibij = b′ij for all i ∈ I and ni + 1 �
j � k0. �

The above theorem provides a method to decide whether two plane curves are analytically
equivalent. In fact, considering an associated multigerm to a plane curve C with r irreducible
components we compute their A-invariants Γ and ΛG using the appropriate group G and the
algorithms in [CH20b] for instance. Applying the results in this section, we obtain an A-normal
form ϕ = [ϕ1, . . . , ϕr] for the multigerm of C.

Given another plane curve C′ with multigerm associated ψ = [ψ1, . . . , ψr], if the A-invariants
Γπ and ΛπG of π(ψ) are distinct to the corresponding ones of ϕ for every π ∈ S, then C and C′ are
not analytically equivalent. If it is not the case, we consider the subgroup R of S such Γπ = Γ
and ΛπG = ΛG for all π ∈ R. The curves C and C′ are analytically equivalent if and only if there
exists π ∈ R such that ϕ and an A-normal form for π(ψ) satisfy the corresponding condition in
Theorem 5.10.

6. Particular cases

In this final section, we recover some known results regarding the analytic classification of plane
curves using Theorems 5.8 and 5.10 and we illustrate how we can apply them in particular
topological classes.

6.1 Irreducible case and bigerms
For the irreducible case, i.e. s = r = 1, we must consider G = Ã1 and the normal form described
in Theorem 5.8 is rewritten as ϕ = (tn,

∑
j>n

Lj=∅
cjt

j).

Note that Lj = ∅ if and only if F{1}(j) = ∅, that is, j �∈ ΛG .
If n = 1, then ΛG = N \ {0, 1} and ϕ is A-equivalent to (t, 0).
Let us suppose that n � 2 and Γ ∩ N = 〈n, v1, . . . , vg〉. Thus, ϕ = (tn, cv1t

v1 +
∑

j �∈ΛG cjt
j)

with cv1 �= 0 and, by Theorem 5.10, we have ϕ ∼
A

(tn, tv1 +
∑

j �∈ΛG bjt
j).

If j ∈ ΛG for every j > v1, then ϕ ∼
A

(tn, tv1). By [Zar66], this is equivalent to claim that

Λ \ Γ = ∅.
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If there exists j �∈ ΛG for some j > v1, then setting λ = min{j > v1; j �∈ ΛG} we have

ϕ ∼
A

(
tn, tv1 + bλt

λ +
∑

λ<j �∈ΛG

bjt
j

)
(12)

with bλ �= 0 and λ+ n = ν(ϕ∗(ω0)) where ω0 := v1Y dX − nX dY .

Remark 6.1. Note that {j > λ; j �∈ ΛG} = {j > λ; j �∈ Λ − n}. In fact, by definition we have
ΛG ⊂ Λ − n. On the other hand, given ω = (α0 + α1X + α2Y + h1) dX + (α3 + α4X + h2) dY ∈
Ω1 with αi ∈ C and ω1 = h1 dX + h2 dY ∈ ΩG in order to have ν(ϕ∗(ω)) − n > λ we must have
α0 = α1 = α3 = 0 and nα2 + v1α4 = 0. In this way, ω = (α2/v1)ω0 + ω1, as ν(ϕ∗(ω0)) − n = λ �=
ν(ϕ∗(ω1)) − n ∈ ΛG (by (12)), we have ν(ϕ∗(ω)) − n = ν(ϕ∗(ω1)) − n ∈ ΛG .

By the above remark, if Λ \ Γ �= ∅, that is, there exists λ = min{j > v1; j �∈ ΛG}, then ϕ ∼
A

(tn, tv1 + bλt
λ +
∑

λ<j �∈Λ−n bjt
j) with bλ �= 0.

Taking c ∈ C∗ with cλ−v1 = bλ, ρ(t) = ct and σ(X,Y ) = (cnX, cv1Y ) we obtain (ρ, σ) · ϕ =
(tn, tv1 + tλ +

∑
λ<j �∈Λ−n ajt

j), that is, the normal form presented in Theorem 2.1 in [HH11].
For bigerms, we have two distinct cases according to the number s ∈ {1, 2} of Puiseux blocks.
By Theorem 5.8 we get

ϕ1 =

(
tn1
1 ,
∑
j>n1
1�∈Lj

a1jt
j
1

)
and ϕ2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
tn2
2 ,
∑
j>n2
2�∈Lj

a2jt
j
2

)
if s = 1;

( ∑
j>n2
2�∈Lj

a2jt
j
2, t

n2
2

)
if s = 2.

Note that 1 �∈ Lj if and only if F{1}(j) = F{1,2}(j) = ∅, that is, F{1}(j) = ∅ and j is not a
maximal point of ΛG . On the other hand, 2 �∈ Lj means that F{2}(j) = ∅.

Hence, for curves with two branches, Theorem 5.8 recovers Theorem 6 of [HHR15].

6.2 Singular ordinary point
Let us consider a plane curve C with a singular ordinary point at the origin of multiplicity r > 1,
that is, C has r irreducible regular components given by fi ∈ M \M2 such that the slopes θi of
their tangent lines satisfy θi �= θj for all i, j ∈ I, i �= j.

Applying Proposition 3.9 of [CH20a] for this case we obtain that the value semiring Γ is
minimally generated by

vi = ν(fi) = (1, . . . , 1,∞, 1, . . . , 1); i ∈ I

where the symbol ‘∞’ occupies the ith coordinate. In particular, any element γ ∈ Γ can be
written as (1), i.e. γ = inf

{∑
i∈I a1ivi, . . . ,

∑
i∈I arivi

}
. If ali �= 0 for all i ∈ I, then

∑
i∈I alivi =

(∞, . . . ,∞) which is irrelevant for the computation of γ. Thus, we can assume ali = 0 for every
l ∈ I and some i ∈ I which depends on l.

Note that μi = 0 and νj(fi) = 1 for all i, j ∈ I with i �= j, then the conductor of Γ is κ =
(r − 1, . . . , r − 1). In particular, FΓ

J (k) �= ∅ for every k � r − 1 and all ∅ �= J ⊆ I.
By Propositions 4.3 and 4.4, for r ∈ {1, 2, 3} the plane curve C admits a multigerm ϕ that is

A-equivalent to [(t1, 0)], [(t1, 0), (0, t2)], or [(t1, 0), (0, t2), (t3, t3)], respectively.
In what follows we consider r � 4. Note that the appropriated subgroup to apply Theorem 5.8

is G = A1.
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Using the generators of the value semiring Γ we can describe the non-empty fibers FΓ
J (k) for

0 � k < r.

Lemma 6.2. For a singular ordinary point with multiplicity r the J-fiber of k ∈ Nr of Γ is
non-empty if and only if �J � r − k. Moreover, for any J ⊆ I with �J � r − k we have

FΓ
J (k) = {k + α; α = (α1, . . . , αr) ∈ N

r
with αj = 0 if j ∈ J and αj �= 0 if j ∈ I \ J}.

Proof. As the conductor of Γ is κ = (r − 1, . . . , r − 1) it is sufficient to describe the fiber FΓ
J (k)

for every k = (k, . . . , k) ∈ Nr, 0 � k � r − 1 and every J ⊆ I with J �= ∅.
First, note that if FΓ

J (k) �= ∅, then �J � r − k. In fact, let γ ∈ FΓ
J (k). Since γ ∈ Γ, there exists

h ∈ C{X,Y }, namely of multiplicity nh, such that γ = ν(h). If �J < r − k, as ni = 1, θi �= θl for
all i, l ∈ I with i �= l, we must have mh � nh � νj(h) = k < r − �J , for all j ∈ J , where mh is
the number of distinct tangent lines of h. However, in this way, there exists i ∈ I \ J such that fi
and h do not share the same tangent line. Thus, νi(h) = nh � k and, therefore, γ �∈ FΓ

J (k) which
is a contradiction.

Now we describe FΓ
J (k) with �J � r − k.

For 0 � k � r − 1 we take any J0 ⊆ I with �J0 = r − k (� 1) and let us consider the sets
I \ J0 = {i1, . . . , ik} and {i1, . . . , îm, . . . , ik} := {i1, . . . , ik} \ {im}.

Fixing i0 ∈ J0 we set

ζ0 =
∑

l∈{i1,...,ik}
ν(fl), ζm =

∑
l∈{i1,...,îm,...,ik}

ν(fl) + (1 + αm)ν(fi0) ∈ N
r
,

with 1 � m � k and α1, . . . , αk ∈ N. Note that the coordinates of ζ0 and ζm, respectively, satisfy

ζ0j =

{
k if j ∈ J0,

∞ if j ∈ I \ J0,
ζmj =

{
∞ if j ∈ {i0, i1, . . . , îm, . . . , ik},
k + αm if j �∈ {i0, i1, . . . , îm, . . . , ik}.

Thus, γ = (γ1, . . . , γr) := inf {ζ0, ζ1, . . . , ζk} ∈ Γ is such that γj = k if j ∈ J0, γj = k + αj
with αj ∈ N for j ∈ I \ J0.

Hence, the above construction ensures that for any J ⊆ I with �J � r − k we have

FΓ
J (k) = {k + α; α = (α1, . . . , αr) ∈ N

r with αj = 0 if j ∈ J and αj �= 0 if j ∈ I \ J}. �
Remark that ν(M2) − 1 ⊆ ΛA1 which implies that its corresponding fibers satisfy ∅ �=

FΓ
J (k + 1) − 1 ⊆ FJ(k) for all k � 2 and �J � r − (k + 1).

Taking L = {1, . . . ,min{k + 2, r}} and Ji = {i, k + 3, . . . , r} for i ∈ L in Proposition 5.3, then
Corollary 5.5 allows us to eliminate the term corresponding to tki of the component ϕi for
all i = 1, . . . ,min{k + 2, r} preserving the analytic class of C. With this approach we obtain
Theorem 1.1 in [GP11].

Proposition 6.3. Any curve with a singular ordinary point with r branches is analytically
equivalent to a curve defined by a multigerm ψ = [ψ1, . . . , ψr] with

ψ1 = (t1, 0), ψ2 = (0, t2), ψi =

(
ti, θiti +

i−3∑
j=2

aijt
j
i

)
, i = 3, . . . , r, (13)

where θ3 = 1 and θi �= θl for i �= l.

For r � 4, Granger [Gra79] considers the generic parameter vector to obtain A-normal forms
and to compute the dimension of the moduli space. The same result was obtained with other
methods by Genzmer and Paul [GP11]. From now on, we consider the generality hypothesis and
we apply our techniques with the purpose to compute the dimension of the moduli space.
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The generality of the coefficients give us a symmetry on the coordinates of ΛA1 . In this
way, for k � 2 the set Lk ⊆ I in Theorem 5.8 is Lk = {1, 2, . . . , e(k)} for some 4 � e(k) � r. By
Remark 5.4, e(k) is the maximum integer such that for any bik ∈ C with 1 � i � e(k) there exists
w ∈ IA1 with jkw = (b1ktk1, . . . , brkt

k
r ).

Recall that w =
(
t−1
1 ϕ∗

1(ω), . . . , t−1
r ϕ∗

r(ω)
)
∈ IA1 and t−1

i ϕ∗
i (ω) = ϕ∗

i (p) · x′i + ϕ∗
i (q) · y′i ∈

C{ti} for i ∈ I where ω = p dX + q dY ∈ Ω1 and p, q ∈ 〈X,Y 〉2.
In what follows, we use the notation

ωh =
( h∑
m=0

αh,mX
h−mY m

)
dX +

( h∑
m=0

βh,mX
h−mY m

)
dY ∈ Ω1 (14)

with αh,m, βh,m ∈ C. Note that given ϕ = [ϕ1, . . . , ϕr] as (13) and ω ∈ Ω1, if we want to obtain
νi(ω) = k and consequently to determine e(k), it is sufficient to consider w =

∑k
h=2wh.

Lemma 6.4. With the above notation, if r � 4, we have e(2) = 4 and e(k) = min{2k + 1, r} for
every k � 3.

Proof. Considering a generic multigerm ϕ given as in (13) if ω = ω2, that is k = 2, then

j2(t−1
1 ϕ∗

1(ω)) = α2,0t
2
1, j2(t−1

2 ϕ∗
2(ω)) = β2,2t

2
2,

j2(t−1
i ϕ∗

i (ω)) =
(
α2,0 + (α2,1 + β2,0)θi + (α2,2 + β2,1)θ2

i + β2,2θ
3
i

)
t2i , for all 3 � i � r.

Now, it is immediate to verify that the maximum integer e(2) such that the system
j2(t−1

i ϕ∗
i (ω)) = bi2t

2
i admits solution for any bi2 ∈ C with 1 � i � e(2) is precisely e(2) = 4.

We show that for any 3 � l � [(r − 1)/2] if jl(t−1
i ϕ∗

i (ωl−1 + ωl)) = 0 for every i ∈ I, then
wl−1 = 0.

Note that for wh as (14) with h � 2, we get

jh+1(t−1
1 ϕ∗

1(ωh)) = αh,0t
h
1 ,

jh+1(t−1
2 ϕ∗

2(ωh)) = βh,ht
h
2 ,

jh+1(t−1
i ϕ∗

i (ωh)) =
(
αh,0 +

h∑
m=1

(αh,m + βh,m−1)θmi + βh,hθ
h+1
i

)
thi

+
( h−1∑
m=0

((m+ 1)αh,m+1 + (m+ 2)βh,m)θmi + (h+ 2)βh,hθhi

)
ai2t

h+1
i

for 3 � i � r. (15)

The condition jl(t−1
i ϕ∗

i (ωl−1 + ωl)) = 0 for every i ∈ I implies that αl−1,0 = αl,0 = βl−1,l−1 =
βl,l = 0 and the coefficient of tl−1 in t−1

i ϕ∗
i (ωl−1 + ωl) vanishes for every 3 � i � r, that is,⎛⎜⎝ θ3 θ2

3 · · · θl3
...

...
...

θr θ2
r · · · θlr

⎞⎟⎠ ·

⎛⎜⎝ αl−1,1 + βl−1,0
...

αl−1,l−1 + βl−1,l−2

⎞⎟⎠ =

⎛⎜⎝ 0
...
0

⎞⎟⎠ .
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Thus, αl−1,m = −βl−1,m−1 for 1 � m � l − 1. In addition, as the coefficient of tl in t−1
i ϕ∗

i (ωl−1 +
ωl) is null, by (15) we must have

⎛⎜⎝ a32 θ3a32 · · · θl−2
3 a32 θ3 · · · θl3

...
...

...
...

...
ar2 θ3a32 · · · θl−2

r ar2 θr · · · θlr

⎞⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

βl−1,0
...

βl−1,l−2

αl,1 + βl,0
...

αl,l + βl,l−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎝ 0
...
0

⎞⎟⎠ . (16)

As we suppose ϕ generic, the coefficient matrix has maximal rank min{2l − 1, r − 2} and we
get the solution βl−1,m = 0 for 0 � m � l − 2 and αl,m = −βl,m−1 for 1 � m � l. Consequently,
wl−1 = 0.

In order to obtain jk(t−1
i ϕ∗

i (
∑k

h=2 ωh)) = bikt
k
i it is necessary that jl(t−1

i ϕ∗
i (ωh)) = 0 for each

h = 2, . . . , k − 1 and for all l = h, . . . , k − 1. From this and the above discussion, it follows by
induction that ωh = 0 for 2 � h � k − 2. Thus, it is sufficient to consider ω = ωk−1 + ωk.

By a similar computation as in (15) using l = k we get the system⎧⎪⎪⎪⎨⎪⎪⎪⎩
αk,0 = b1k,

βk,k = b2k,

αk,0 +
k−2∑
m=0

βk−1,mθ
m
i ai2 +

k∑
m=1

(αk,m + βk,m−1)θmi + βk,kθ
k+1
i = bik for 3 � i � r.

Substituting the two first solutions into the other equations, we obtain a system with the same
coefficient matrix as (16). Thus, generically we can solve at most e(k) = 2 + min{2k − 1, r − 2} =
min{2k + 1, r} such equations. �

As a consequence, we recover the analytical normal form for regular transversal branches in
the generic case, as given in [Gra79, Proposition 2] and [GP11].

Proposition 6.5. Generically, any plane curve with a singular ordinary point and r � 4 is
analytically equivalent to a curve defined by a multigerm ψ = [ψ1, . . . , ψr] with

ψ1 = (t1, 0), ψ2 = (0, t2), ψ3 = (t3, t3), ψ4 = (t4, θ4t4),

ψi =

(
ti, θiti + ai2t

2
i +

[(i−2)/2]∑
k=3

aikt
k
i

)
, 5 � i � r.

Proof. The previous lemma gives us L2 = {1, 2, 3, 4} and Lk = {1, . . . ,min{2k + 1, r}} for k � 3.
Thus, by Theorem 5.8, we have the above normal form for 1 � i � 4 and

ψi =

(
ti, θiti + ai2t

2
i +

∑
k�3
i�∈Lk

aikt
k
i

)
for 5 � i � r.

The result follows since that i �∈ Lk is equivalent to k � [(i− 2)/2] for k � 3. �
Note that for r � 3 the moduli space corresponding is a single point and for r = 4 is a

one-dimensional space.
For r � 5 the parameter vector associated to the normal form ψ presented in the previous

result is
(
a5,2, a6,2, a6,3, . . . , ar,2, . . . , ar,[(r−2)/2]

)
. Generically, a5,2 �= 0 and by Theorem 5.10 we get

a multigerm A-equivalent to ψ with parameter vector p =
(
1, a′6,2, a′6,3, . . . , a′r,2, . . . , a′r,[(r−2)/2]

)
.
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In particular, the dimension of the moduli space Mr for multigerm of curves with singular
ordinary point and r � 5 branches is the number of parameters in p plus r − 3 which corresponds
to �{θi; 4 � i � r}. If we denote L1 = {1, 2, 3} just to unify the notation, we have that �I \ L1 =
�{θi; 4 � i � r}. Thus,

dimC Mr =
∑
k�1

(�I \ Lk) − 1 =
[(r−2)/2]∑
k=1

(r − 2k − 1) =

⎧⎪⎪⎨⎪⎪⎩
(r − 2)2

4
for r even,

(r − 1)(r − 3)
4

for r odd,

as originally obtained by Granger [Gra79].

6.3 Multigerms with Γi ∩ N = 〈n, m〉 and νi(fl) = nm
We have just studied a class of multigerms in which each block has just one element. In this
subsection, we consider the opposite situation, that is, curves such that we have only one block.

Let C be a plane curve defined by a reduced element f =
∏r
i=1 fi ∈ C{X,Y } such that each

branch Ci admits Γi ∩ N = 〈n,m〉, GCD(n,m) = 1 < n < m, and νi(fl) = nm for all i, l ∈ I with
i �= l. We present a pre-normal form considering just the topological data and we express the
dimension of the generic component Mr(n,m) of the moduli space by means of the sets Lk. For
the specific case of n = 2 and m = 3 we present a closed formula for dimC Mr(2, 3).

The curve C admits a multigerm with Puiseux block form ϕ = [ϕ1, . . . , ϕr] where

ϕi =
(
tni , aimt

m
i +

∑
j>m

aijt
j
i

)
with anim �= anlm, aim �= 0 �= alm for every 1 � i, l � r, and i �= l. In this situation we have a single
block and consequently the corresponding group to consider in Theorem 5.8 is G = Ã1.

The topological class of C can be characterized by the value semiring Γ that, according to
Proposition 3.9 of [CH20a], is Γ = 〈v1, v2, . . . , vr+2〉 with

v1 = (n, . . . , n), v2 = (m, . . . ,m), vi+2 = (nm, . . . ,∞, . . . , nm) i ∈ I, (17)

where the symbol ‘∞’ occupies the ith coordinate in vi+2.
The conductor of Γ is κ = (κ1, . . . , κr) with κi = rnm− n−m+ 1 for all i ∈ I. In particular,

if k � rnm, then FΓ
J (k) �= ∅ for every ∅ �= J ⊆ I and as Γ ⊂ Γ1 × · · · × Γr, if k �∈ 〈n,m〉, then

FΓ
J (k) = ∅.

The next lemma characterizes the non-empty fibers of k ∈ Nr with respect to Γ for k < rnm.

Lemma 6.6. Given k ∈ 〈n,m〉 with cnm � k < (c+ 1)nm and 0 � c � r − 1 we have

FΓ
J (k) �= ∅ ⇔

{
�J � r − c if k − cnm ∈ 〈n,m〉,
�J � r − (c− 1) if k − cnm �∈ 〈n,m〉.

Proof. Remark that FΓ
J (k) �= ∅ if and only if there exists γ = (γ1, . . . , γr) ∈ Γ with γj = k for

every j ∈ J and γj > k for every j ∈ I \ J . By (1), γ ∈ Γ can be expressed as

γ = inf
{ r+2∑
s=1

α1,svs, . . . ,
r+2∑
s=1

αr,svs

}
, (18)

where vs = (vs1, . . . , vsr) is given in (17) for 1 � s � r + 2.
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For j ∈ J there exists l ∈ I such that

γj = k =
r+2∑
s=1

αl,svsj = αl,1n+ αl,2m+
r+2∑
s=3

αl,snm

with αl,j+2 = 0. In particular, �J � �{i ∈ I; αl,i+2 = 0} = r − �{i ∈ I; αl,i+2 �= 0}.
If k − cnm �∈ 〈n,m〉, then

∑r+2
s=3 αl,s � c− 1 and �J � r − (c− 1). If k − cnm ∈ 〈n,m〉, then∑r+2

s=3 αl,s � c and �J � r − c.
On the other hand, if k − cnm = α1n+ α2m ∈ 〈n,m〉, considering any non-negative inte-

gers α3, . . . , αr+2 such that c =
∑r+2

s=3 αs we get �{i ∈ J ; αi+2 �= 0} � c,
∑r+2

s=1 αsvs ∈ FΓ
J (k) for

J = {i ∈ I; αi+2 = 0} and �J � r − c. If k − cnm = g �∈ 〈n,m〉, then k = g + nm+ (c− 1)nm =
α1n+ α2m+ (c− 1)nm and considering c− 1 =

∑r+2
s=3 αs we have

∑r+2
s=1 αsvs ∈ FΓ

J (k) for J =
{i ∈ I; αi+2 = 0} and �J � r − (c− 1). �

Given k > m we have that k ∈ ν(M2) ⊂ ΛÃ1
. Thus, considering FJ(k) the J-fiber of k with

respect to ΛÃ1
we get FΓ

J (k + n) − n ⊂ FJ(k) and, by the previous lemma, we obtain

FΓ
J (k + n) − n �= ∅ ⇔

{
�J � r − c if k − cnm ∈ 〈n,m〉 − n,

�J � r − (c− 1) if k − cnm �∈ 〈n,m〉 − n.

For each k > m with cnm− n � k < (c+ 1)nm− n taking

L = {1, . . . , c+ 1}, Ji = {i, c+ 2, c+ 3, . . . , r} for i ∈ L if k − cnm ∈ 〈n,m〉 − n;

L = {1, . . . , c}, Ji = {i, c+ 1, c+ 2, . . . , r} for i ∈ L if k − cnm �∈ 〈n,m〉 − n

in Proposition 5.3 and Corollary 5.5 we obtain the following result.

Proposition 6.7. Any curve with value semiring generated by (17) is analytically equivalent
to a curve defined by a multigerm ϕ = [ϕ1, . . . , ϕr] with

ϕ1 =

(
tn1 , a1mt

m
1 +

nm−n−1∑
j>m

j �∈〈n,m〉−n

a1jt
j
1

)
, ϕi =

(
tni ,

(i−1)nm−n−1∑
j=m

aijt
j
i +

inm−n−1∑
j�(i−1)nm−n

j−(i−1)nm�∈〈n,m〉−n

aijt
j
i

)
,

for 2 � i � r.

As in this topological class the value semiring Γ is totally determined by the m-jet of the
multigerm ϕ, we can proceed with the study of ΛÃ1

for the generic case and consequently we
obtain information about the generic component of the moduli space Mr(n,m) of all plane curves
with Γ generated by (17) considering the multigerm ϕ = [ϕ1, . . . , ϕr] with ϕi = (tni ,

∑
j�m aijt

j
i )

where aij ∈ C are generic, 0 �= anim �= anlm �= 0 for every i, l ∈ I and i �= l. The generic component
for the moduli space in this topological class was also considered in [GP16] by other methods.

Similarly to the case presented in the last subsection, the generality hypothesis implies that
Lk = ∅, i.e. e(k) = 0 or Lk = {1, . . . , e(k)} with e(k) � r for every k > m and, by Remark 5.4,
e(k) is the maximum integer such that there exists w ∈ IG with jk(w) = (b1ktk1, . . . , brkt

k
r ) for

any bik ∈ C and 1 � i � e(k).
In this context we have the following proposition.
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Proposition 6.8. The dimension of the generic component of the moduli space Mr(n,m) is
zero for r = 1, (n,m) ∈ {(2,m), (3, 4), (3, 5)}, and

dimC Mr(n,m) = r − 2 +
∑
k>m

(r − e(k))

for the other cases.

Proof. Zariski [Zar06] proved that for irreducible plane curves in the topological class determined
by Γ ∩ N = 〈n,m〉 with (n,m) ∈ {(2,m), (3, 4), (3, 5)} the moduli space is a single point.

By Theorem 5.10, we can normalize the coefficient a1m in ϕ1 and, thus, the number of param-
eters in the A-normal form of ϕ is r − 1 +

∑
k>m �I \ Lk = r − 1 +

∑
k>m(r − e(k)). Moreover,

if
∑

k>m(r − e(k)) � 1 there exist j = min{k > m; Lk �= I} and l = min{i ∈ I \ Lj} such that
alj �= 0. In this way, we can normalize such coefficient taking c ∈ C∗ with cj−m = alj , ρi(ti) = cti
for all i ∈ I and σ(X,Y ) = (cnX, cmY ), that is, (ρ1, . . . , ρr, σ) · ϕ = ψ = [ψ1, . . . , ψr] where the
coefficient of tjl of ψl is equal to 1. In this case, we obtain

dimC Mr(n,m) = r − 2 +
∑
k>m

(r − e(k)).

We show that, except for the above particular cases considered by Zariski, we have
∑

k>m(r −
e(k)) � 1. More specifically, we show that (r − e(m+ 1)) + (r − e(m+ 2)) � 1.

Let us compute e(m+ 1) that, as mentioned previously, it is equivalent to evaluate the maxi-
mum number of equations jm+1

(
ϕ∗
i (ω)/ntni

)
= bi,m+1t

m+1
i that admit solution for any bi,m+1 ∈ C

with 0 � i � e(m+ 1) and ω = p dX + q dY ∈ ΩÃ1
, that is, p ∈ 〈X,Y 〉2 and q ∈ 〈X2, Y 〉.

Note that it is sufficient to consider νi
(
ϕ∗
i (ω)/ntni

)
= m+ 1. Thus, if m �= n+ 1, then q = 0,

and if m+ 1 �≡ 0 mod n, then p = 0. In particular, for m �= n+ 1 and m+ 1 �≡ 0 mod n we
have e(m+ 1) = 0.

For m = n+ 1 and m+ 1 �≡ 0 mod n we get ω = αY dY , jm+1
(
ϕ∗
i (ω)/ntni

)
=

(m/n)αa2
i,mt

m+1
i , and e(m+ 1) = 1. Similarly, if m �= n+ 1 and m+ 1 ≡ 0 mod n, then ω =∑(m+1)/n

l=2 αlX
l dX, jm+1

(
ϕ∗
i (ω)/ntni

)
=
∑(m+1)/n

l=2 αlt
ln
i and e(m+ 1) = 1.

If m = n+ 1 and m+ 1 ≡ 0 mod n, then n = 2,m = 3 and we have ω = α1X
2 dX + α2Y dY ,

that is, j4
(
ϕ∗
i (ω)/2t2i

)
=
(
α1 + 3

2a
2
i,3α2

)
t4i . Thus, we get e(m+ 1) = min{2, r}.

Now, we compute e(m+ 2) for the cases e(m+ 1) > 0. As before it is sufficient to consider
ω = p dX + q dY ∈ ΩÃ1

with νi(p) � m+ 2 and νi(q) � n+ 2.
In the case m = n+ 1 and m+ 1 �≡ 0 mod n, if n > 3 we have ω = αY dY ,

jm+2

(
ϕ∗
i (ω)
ntni

)
=
m

n
αa2

i,mt
m+1
i +

(
2m+ 1
n

)
αai,mai,m+1t

m+2
i

and e(m+ 2) = 0. If n = 3 and, thus, m = 4, we have ω = α1X
2 dX + α2Y dY ,

j6
(
ϕ∗
i (ω)
3t3i

)
=

4
3
α2a

2
i,4t

5
i +
(
α1 + 3α2ai,4ai,5

)
t6i and e(m+ 2) = 1.

When m �= n+ 1 and m+ 1 ≡ 0 mod n we have the possibilities: if m �= n+ 2 and
n �= 2 then ω =

∑(m+1)/n
l=2 αlX

l dX, jm+2
(
ϕ∗
i (ω)/ntni

)
=
∑(m+1)/n

l=2 αlt
ln
i , thus e(m+ 2) = 0.

If m �= n+ 2 and n = 2, then ω =
(∑(m+1)/2

l=2 αlX
l + α1XY

)
dX + α0X

2 dY ,

jm+2

(
ϕ∗
i (ω)
2t2i

)
=

(m+1)/2∑
l=2

αlt
2l
i +

(
α1ai,m + α0

m

2
ai,m

)
tm+2
i
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and e(m+ 2) = 1. If m = n+ 2, then n = 3, m = 5, ω = α1X
2 dX + α2Y dY , and

j7
(
ϕ∗
i (ω)
3t3i

)
= α1t

6
i +

5
3
α2a

2
i,5t

7
i ,

consequently e(m+ 2) = 1.
Finally, if n = 2 and m = 3, then ω = (α1X

2 + α2XY ) dX + (α3Y + α4X
2) dY ,

j5
(
ϕ∗
i (ω)
2t2i

)
=
(
α1 +

3
2
α3a

2
i,3

)
t4i +

(
α2 +

3
2
α4 +

7
2
ai,4α3

)
ai,3t

5
i and e(m+ 2) = 1.

These computations give us that, except to the cases r = 1 and (n,m) ∈ {(2,m), (3, 4), (3, 5)},
we have that (r − e(m+ 1)) + (r − e(m+ 2)) � 1. �

To illustrate the above result in a specific case, in what follows n = 2, m = 3, and r � 2.
We compute e(k) for any k > m = 3 which allows us to exhibit normal forms to the generic

case and an explicit formula for dimC Mr(2, 3).
Our strategy is the same as that of the previous proposition, that is, to evaluate the max-

imum number of equations jk
(
ϕ∗
i (ω)/2t2i

)
= bi,kt

k that admit solution for any bi,k ∈ C with
ω = p dX + q dY ∈ ΩÃ1

, that is, p ∈ 〈X,Y 〉2 and q ∈ 〈X2, Y 〉. To achieve this goal, for every
h � 2 we consider

ω2h =

(
[h/3]∑
l=0

αh−3l,2lX
h−3lY 2l

)
dX +

(
[(h−2)/3]∑
l=0

βh−2−3l,2l+1X
h−2−3lY 2l+1

)
dY,

ω2h+1 =

(
[(h−1)/3]∑
l=0

αh−1−3l,2l+1X
h−1−3lY 2l+1

)
dX +

(
[h/3]∑
l=0

βh−3l,2lX
h−3lY 2l

)
dY.

Any ω ∈ ΩÃ1
can be uniquely expressed as ω =

∑
l�4 ωl. As

νi

(
ϕ∗
i (X

h−3lY 2l dX)
2t2i

)
= νi

(
ϕ∗
i (X

h−2−3lY 2l+1 dY )
2t2i

)
= 2h

and

νi

(
ϕ∗
i (X

h−1−3lY 2l+1 dX)
2t2i

)
= νi

(
ϕ∗
i (X

h−3lY 2l dY )
2t2i

)
= 2h+ 1

for any i ∈ I, in order to evaluate e(k) it is sufficient to consider ω =
∑k

l=4 ωl.

Proposition 6.9. If ϕ = [ϕ1, . . . , ϕr] is a generic multigerm admitting value semiring Γ with
generators as in (17), n = 2, m = 3, and r � 2, then e(4) = 2, e(5) = 1, and for k � 6:

e(k) = min
{

2
[
k

6

]
+ 1, r

}
if k �≡ 4 mod 6, e(k) = min

{
2
[
k

6

]
+ 3, r

}
if k ≡ 4 mod 6,

and e(6[(r − 2)/2] + 5) = e(3r − 1) = r if r is even.

Proof. We remark that, by the last proposition, e(4) = 2 and e(5) = 1.
First, we consider the system jc+1

(
ϕ∗
i (ωc + ωc+1)/2t2i

)
= 0 for every i ∈ I and c � 5.
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Using ϕi = (t2i ,
∑

j�3 aijt
j
i ) we obtain

j2h+1

(
ϕ∗
i (ω2h)
2t2i

)
=

(
[h/3]∑
l=0

a2l
i3αh−3l,2l +

[(h−2)/3]∑
l=0

3
2
a2l+2
i3 βh−2−3l,2l+1

)
t2hi

+

(
[h/3]∑
l=1

2la2l−1
i3 ai4αh−3l,2l +

[(h−2)/3]∑
l=0

6l + 7
2

a2l+1
i3 ai4βh−2−3l,2l+1

)
t2h+1
i ;

j2h+2

(
ϕ∗
i (ω2h+1)

2t2i

)
=

(
[(h−1)/3]∑
l=0

a2l+1
i3 αh−1−3l,2l+1 +

[h/3]∑
l=0

3
2
a2l+1
i3 βh−3l,2l

)
t2h+1
i

+

(
[(h−1)/3]∑
l=0

(2l + 1)a2l
i3ai4αh−1−3l,2l+1 +

[h/3]∑
l=0

(3l + 2)a2l
i3ai4βh−3l,2l

)
t2h+2
i .

If c = 2h, then to vanish the coefficient of tci in jc+1
(
ϕ∗
i (ωc + ωc+1)/2t2i

)
for every i ∈ I we

obtain the system N ·W t
p = 0 with

N =

⎛⎜⎝ 1 a2
13 a4

13 · · · a
2[h/3]+p
13

...
...

...
...

1 a2
r3 a4

r3 · · · a
2[h/3]+p
r3

⎞⎟⎠ with

{
p = 0 if c ≡ 0, 2 mod 6,
p = 2 if c ≡ 4 mod 6,

W0 =
(
αh,0, αh−3,2 +

3
2
βh−2,1, . . . , αh−3[h/3],2[h/3] +

3
2
βh−3[h/3]+1,2[h/3]−1

)
,

and W2 =
(
W0,

3
2βh−2−3[h/3],2[h/3]+1

)
, where W t

p denotes the transpose of Wp.
Considering the solution of N ·W t

p = 0, the associated system to vanish the coefficient of
tc+1
i in jc+1

(
ϕ∗
i (ωc + ωc+1)/2t2i

)
for every i ∈ I is M · Zt = 0 where

M =

⎛⎜⎝ a14a13 a14a
3
13 · · · a14a

2[h/3]−1
13 a13 a3

13 · · · a
2[h/3]+1
13

...
...

...
...

...
...

ar4ar3 ar4a
3
r3 · · · ar4a

2[h/3]−1
r3 ar3 a3

r3 · · · a
2[h/3]+1
r3

⎞⎟⎠ , (19)

Z =
(

1
2
βh−3l+1,2l−1; 1 � l �

[
h

3

]
, αh−1−3l,2l+1 +

3
2
βh−3l,2l; 0 � l �

[
h

3

]
− 1,

3
2
βh−3[h/3],2[h/3]

)
if c ≡ 0 mod 6 or

Z =
(

1
2
βh−3l+1,2l−1; 1 � l �

[
h

3

]
, αh−1−3l,2l+1 +

3
2
βh−3l,2l; 0 � l �

[
h

3

])
if c ≡ 2, 4 mod 6.

Note that the rank of M is min{2[h/3] + 1, r} = min{2[c/6] + 1, r}. If 2[c/6] + 1 � r, then
the solution of the above system implies that ωc = 0.

For c = 2h+ 1 we vanish the coefficient of tci in jc+1
(
ϕ∗
i (ωc + ωc+1)/2t2i

)
for every i ∈ I

solving the system N ·W t = 0 where

N =

⎛⎜⎝ a13 a3
13 · · · a

2[h/3]+1
13

...
...

...
ar3 a3

r3 · · · a
2[h/3]+1
r3

⎞⎟⎠ ,
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W =
(
αh−1−3l,2l+1 +

3
2
βh−3l,2l; 0 � l �

[
h

3

])
if c ≡ 3, 5 mod 6

or

W =
(
αh−1−3l,2l+1 +

3
2
βh−3l,2l; 0 � l �

[
h

3

]
− 1,

3
2
βh−3[h/3],2[h/3]

)
if c ≡ 1 mod 6.

Taking the solution of the system N ·W t = 0 in order to vanish the coefficient of tc+1
i in

jc+1
(
ϕ∗
i (ωc + ωc+1)/2t2i

)
for every i ∈ I we obtain the system M · Zt = 0 where

M =

⎛⎜⎝ a14 a14a
2
13 · · · a14a

2[h/3]−2
13 1 a2

13 · · · a
2[h/3]
13

...
...

...
...

...
...

ar4 ar4a
2
r3 · · · ar4a

2[h/3]−2
r3 1 a2

r3 · · · a
2[h/3]
r3

⎞⎟⎠ if c ≡ 1 mod 6,

M =

⎛⎜⎝ a14 a14a
2
13 · · · a14a

2[h/3]
13 1 a2

13 · · · a
2[h/3]+2
13

...
...

...
...

...
...

ar4 ar4a
2
r3 · · · ar4a

2[h/3]
r3 1 a2

r3 · · · a
2[h/3]+2
r3

⎞⎟⎠ if c ≡ 3, 5 mod 6,

Z =
(

1
2
βh−3l,2l; 0 � l �

[
h

3

]
− 1, αh+1,0, αh+1−3l,2l +

3
2
βh+2−3l,2l−1;

1 � l �
[
h

3

])
if c ≡ 1 mod 6,

Z =
(

1
2
βh−3l,2l; 0 � l �

[
h

3

]
, αh+1,0, αh+1−3l,2l +

3
2
βh+2−3l,2l−1;

1 � l �
[
h

3

]
,
3
2
βh−1−3[h/3],2[h/3]+1

)
if c ≡ 3 mod 6

and

Z=
(

1
2
βh−3l,2l; 0 � l�

[
h

3

]
, αh+1,0, αh−2−3l,2l+2+

3
2
βh−1−3l,2l+1; 0 � l �

[
h

3

])
if c ≡ 5 mod 6.

Remark that the rank of M is min{2[h/3] + 1, r} = min{2[c/6] + 1, r} if c ≡ 1 mod 6 or
min{2[h/3] + 3, r} = min{2[c/6] + 3, r} if c ≡ 3, 5 mod 6. In particular, ωc = 0 if 2[c/6] + 1 � r
for c ≡ 1 mod 6 or 2[c/6] + 3 � r for c ≡ 3, 5 mod 6.

In this way, to study the system jk
(
ϕ∗
i (ω)/2t2i

)
= bi,kt

k
i with bi,k ∈ C, i ∈ I for r � 2[(k −

1)/6] + 1 or 2[(k − 1)/6] + 3 � r it is sufficient to consider ω = ωk−1 + ωk ∈ ΩÃ1
. For this sit-

uation the cases are the same as those considered above, where we obtained the system
M · Zt = (b1,k, . . . , br,k)t with M and Z described previously taking k = c+ 1. Hence, e(k) =
rank(M) for all k � 6.

As [k/6] = [c/6] for c �≡ 5 mod 6 and [k/6] = [c/6] + 1 for c ≡ 5 mod 6, we get

e(k) = min
{

2
[
k

6

]
+ 1, r

}
if k �≡ 4 mod 6 and e(k) = min

{
2
[
k

6

]
+ 3, r

}
if k ≡ 4 mod 6.

We obtain the same conclusion if r = 2[(k − 1)/6] + 2 and k �≡ 5 mod 6.
For r = 2[(k − 1)/6] + 2 and k ≡ 5 mod 6, that is, k = 3r − 1 = 6[(r − 2)/2] + 5, the

condition jk−1
(
ϕ∗
i (ωk−2 + ωk−1)/2t2i

)
= 0 for every i ∈ I produces a system M · Zt = 0

with rank(M) = min{2[(k − 2)/6] + 3, r} = min{r + 1, r} = r. In this way, we have an extra
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variable for the system jk
(
ϕ∗
i (ωk−2 + ωk−1 + ωk)/2t2i

)
= bi,kt

k
i that can be expressed as

M1 · Zt1 = (b1,k, . . . , br,k)t where M1 is the matrix M as in (19) with an extra column depending
on ai3, ai4 and ai5. This allows us to conclude that

e

(
6
[
r − 2

2

]
+ 5
)

= e(3r − 1) = rank(M1) = min
{

2
[
k − 1

6

]
+ 1 + 1, r

}
= r. �

As a consequence of Propositions 6.8 and 6.9 we obtain an explicit formula for the dimension
of the generic component of Mr(2, 3).

Corollary 6.10. For plane curves that admit value semiring generated by (17) with n = 2,
m = 3, and r branches, the dimension of the generic component Mr(2, 3) of the moduli space is

dimC Mr(2, 3) =

⎧⎪⎪⎨⎪⎪⎩
(r − 1)(3r − 5)

2
if r is odd,

(r − 1)(3r − 5) + 1
2

if r is even.

Proof. The case r = 1 is immediate.
By Proposition 6.8 and the above result we have that

dimC Mr(2, 3) = r − 2 +
∑
k�4

(r − e(k)) = 3r − 5 +
∑
k�6

(r − e(k))

= 3r − 5 + 5
∑
k�6

k �≡4 mod 6

(r − e(k)) +
∑
k�6

k≡4 mod 6

(r − e(k)). (20)

We remark that for r = 2 we have e(k) = 2 for every k � 6, then dimC M2(2, 3) = 1.
If k ≡ 4 mod 6, we have e(k) = min{2[k/6] + 3, r} and

∑
k�6

k≡4 mod 6

(r − e(k)) =
[(r−3)/2]∑
i=1

(r − (2i+ 3)) =
[
r − 3

2

](
r − 4 −

[
r − 3

2

])
. (21)

If k �≡ 4 mod 6, then e(k) = min{2[k/6] + 1, r} and e
(
6[(r − 2)/2] + 5

)
= e(3r − 1) = r if r

is even. Thus,∑
k�6

k �≡4 mod 6

(r − e(k))

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[(r−4)/2]∑
i=1

(r − (2i+ 1)) =
[
r − 1

2

](
r − 2 −

[
r − 1

2

])
− 1 if k ≡ 5 mod 6 and r even,

[(r−1)/2]∑
i=1

(r − (2i+ 1)) =
[
r − 1

2

](
r − 2 −

[
r − 1

2

])
otherwise.

(22)

For r � 3, considering (21) and (22) in (20) the result follows. �
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