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There are different techniques to obtain 3D structures of macromolecular assemblies from electron 

micrographs: electron tomography with either single-axis, dual-axes or conical tilting [1,2], random 

conical reconstruction [3,4], angular reconstitution [5], and orthogonal tilting reconstruction [6]. The 

techniques including tilting are the most suitable for investigating structures of heterogeneous 

samples. However, most tilting techniques leave out areas of missing data in the 3D reconstructions 

because the tilt angle range is limited in the electron microscope. If the volumes are combined 

correctly, a volume with no missing data or much less missing data can be achieved. This requires 

correct identification of the volumes representing the same structure. However, missing data present 

an obstacle to analyzing variations between 3D volumes since they cause artifacts in the 3D 

reconstructions. Especially when the data is missing in different orientations, artifacts can be easily 

misinterpreted as structural differences.  

 

Here we present an algorithm, Probabilistic Principal Component Analysis using Expectation 

maximization algorithm (PPCA-EM), which was adopted from Tipping and Bishop’s framework 

[7,8], and which can perform principal component analysis (PCA) on a set of 3D volumes with 

arbitrary missing data. Like traditional PCA, PPCA-EM not only reduces the dimensionality of the 

data which reduces the complexity of any subsequent classification, but also reduces the noise, thus 

increasing the robustness of the classification. Unlike the traditional PCA, PPCA-EM estimates the 

missing observations as well. This becomes highly valuable when no clearly defined classes exist 

but the data shows continuous variations that prevent commonly used averaging techniques from 

being applied. 

 

The relation between the principal components and the original volumes is modeled as: 
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where ti
(p)

 and ti
(m)

 are the present part and the missing part of the ith volume, xi represents the ith 

volume in a lower dimensional subspace, µµµµ is mean of the data set containing n 3D volumes, and εεεεi 

is the residual. W is a transform matrix, whose rows separate into Wi
(p)

 and Wi
(m)

 respectively, and 

whose columns wj correspond to features or eigenvectors. The underlying probabilistic models for 

traditional PCA are applied, which are xi ),0(~ IN  and εεεεi ),0(~ 2IσN . Incorporated in the 

algorithm is an additional index vector ρρρρi used to separate the missing part from the present part. ρρρρi  

is either provided as part of the reconstruction algorithm, or can be determined from the 

reconstruction geometry. 
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An expectation maximization algorithm is applied to solve the model, Eq. 1. In the E-step, hidden 

variables, xi and ti
(m)

, are estimated based on the present part ti
(p)

, which eliminates the artifacts 

caused by the missing data. In the M-step, the transform matrix W is updated. The E-step and 

M-step are iterated until a predefined convergence criterion is met or a maximum number of 

iterations is reached. 

 

The algorithm has been tested extensively on simulated 3D data. 2700 tests were carried out on 

volume sets containing four slightly different conformations of a macromolecule, with variations of 

a size similar to variations observed in experimental data. Different sets were created by varying the 

signal-to-noise ratio (SNR), the percentage of missing data and the number of volumes in a set.  

The test results clearly show the strength and limitation of the algorithm. One of the test sets is 

shown in (Fig. 1), containing 100 3D polar Fourier volumes at SNR 0.5 with 30% data missing. The 

separation of the points in Fig.1c shows that the algorithm can correctly group the volumes 

regardless of the missing data. First tests on real experimental images have been successful and 

show that the assumption of a Gaussian noise model is a reasonable approximation for real data.  
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Figure 1. 

(a)                         (b)                        (c)  

 
Scatter plots of the real part of the first three principal components. Symbols correspond to the true 

classes of each volume. (a) Data set with no missing data, standard PCA. The four classes are clearly 

separated. (b) 30% missing data, standard PCA. The results are dominated by the missing data. (c) 

30% missing data, determined with PPCA-EM, showing the correct clustering of the volumes. 
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