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We use direct numerical simulation to study the vibroacoustic response of an elastic plate
in a turbulent channel at Reτ of 180 and 400 for three plate boundary conditions and two
materials – synthetic rubber and stainless steel. The fluid–structure–acoustic coupling is
assumed to be one-way coupled, i.e. the fluid affects the solid and not vice versa, and
the solid affects the acoustic medium and not vice versa. The wall pressure consists
of intermittent large-amplitude fluctuations associated with the near-wall, burst-sweep
cycle of events. For stainless steel plates, displacement has similar large-amplitude
peak events due to comparable time scales of plate vibration and near-wall eddies. For
synthetic rubber plates, large-amplitude displacement fluctuations are observed only near
clamped or simply supported boundaries. Away from boundaries, plate displacement
resembles an amplitude-modulated wave, and no large-amplitude events are observed. We
discuss displacement and acoustic pressure spectra over different frequency ranges. For
frequencies much smaller than the first natural frequency, the product of plate-averaged
displacement spectrum and bending stiffness squared collapses with Reynolds number
and plate material in outer units. At high frequencies, displacement and acoustic pressure
spectra scale better in inner units, and the scaling depends on the type of damping.
For synthetic rubber plates, the spectra display an overlap region that collapses in
both outer and inner units. Soft plate deformation displays a range of length scales.
However, stiff plate deformation does not exhibit a similar range of scales and resembles
plate mode shapes. The soft plate has two distinct deformation structures. Low-speed,
large deformation structures with slow formation/break-up time scales are found away
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from boundaries. High-speed, small deformation structures with fast formation/break-up
time scales formed due to boundary reflections exist near the boundaries.

Key words: hydrodynamic noise, flow-structure interactions, turbulence simulation

1. Introduction

When a turbulent fluid flows over a flexible plate, the plate vibrates and radiates
sound. Such fluid–structure–acoustic interaction arises in several marine and aerospace
engineering applications. We study this interaction in the context of a canonical problem –
one-way coupled structural vibration of, and sound radiated by, a rectangular elastic plate
embedded in the bottom wall of a turbulent channel. By one-way coupled, we mean that the
fluid affects the solid and not vice versa, and the solid affects the acoustic medium and not
vice versa. Most previous studies (Hwang & Maidanik 1990; Hambric, Hwang & Bonness
2004; Esmailzadeh et al. 2009; Blake 2017) of plate vibration and far-field sound used
wall-pressure models. Advances in high-performance computing now allow us to directly
compute the unsteady turbulent wall-pressure fluctuations at moderate Reynolds numbers
using direct numerical simulation (DNS) (Moin & Mahesh 1998; Lee & Moser 2015).
We use these time-domain DNS wall-pressure fluctuations to study the plate vibration and
far-field sound.

Recently, DNS has been used to investigate two-way coupled fluid–structure interaction
of compliant walls in turbulent channels. Rosti & Brandt (2017) performed a DNS-based
simulation of a hyper-elastic wall in turbulent channel flow. They examined the effect
of elasticity and viscosity of the wall on the fluid–structure interaction, and found that
skin friction increases with elasticity. Also, for low viscosity, the interface deformation
is determined by the fluid fluctuations, while for high viscosity, the deformation is
determined by the solid properties. Due to the wall compliance, they observe two
distinct features: a sharp decrease in the velocity near the wall and an increase in the
near-wall turbulence. Both these features are consistent with the experimental work of
Wang, Koley & Katz (2020), where they study the advected modes of deformation and
streamwise-aligned waves that travel in the spanwise direction. Esteghamatian, Katz &
Zaki (2022) studied the propagation of Rayleigh waves in a compliant wall. They found
that similar advection velocity of near-wall pressure fluctuations and phase speed of
Rayleigh waves lead to a local pressure minimum.

Previous studies of plate vibration (Hambric et al. 2004; De Rosa & Franco 2008;
Ciappi et al. 2009; Esmailzadeh et al. 2009; Ciappi et al. 2015; Hambric, Sung & Nefske
2016; Blake 2017) that use wall-pressure models rely on thin-plate theory (also called
Poisson–Kirchoff plate theory) to describe the plate dynamics and modal summation to
evaluate the plate response. Modal summation requires the plate’s natural frequencies
and natural mode shapes. For a plate described by thin-plate theory, analytical solutions
can be derived for these frequencies and modes only when simply supported boundary
conditions (BCs) are applied on any two opposite sides; see Reddy (2006) for a discussion
on this topic. Alternative BCs require numerical solutions using methods such as the
finite element method and spectral methods. We describe the plate dynamics using
three-dimensional elasticity theory, and use the finite element method along with direct
time integration to compute the plate response. This approach works for both thin and
thick plates, and is not limited by the number of modes used in the modal summation.
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DNS-based vibroacoustic response of plates

Some effects of the plate BCs on plate response have been identified by Hambric
et al. (2004) using the modified Corcos wall-pressure model. For frequencies where the
plate streamwise modal wavenumber is much smaller than the wall-pressure convective
wavenumber, they found that the streamwise wavenumbers that contribute the most to
the modal forcing depend considerably on the plate BC. For a plate with a free edge,
the wavenumbers around the wall-pressure convective wavenumber contribute the most,
while for a plate with only simply supported and clamped edges, the wavenumbers around
the plate streamwise modal wavenumber contribute the most. However, for frequencies
where the plate streamwise modal wavenumber is close to or larger than the wall-pressure
convective wavenumber, they found such dependence on BC to be absent. For these
frequencies, irrespective of the BC, the wavenumbers around the wall-pressure convective
wavenumber contribute the most to the forcing.

Scaling laws for the ratio of plate-averaged displacement power spectral density (PSD)
to wall-pressure PSD have been proposed by Ciappi et al. (2012). Based on experimental
measurements of different plate materials, plate thicknesses and turbulent flow velocities
in both water and air, they proposed two scaling laws. One included the structural damping
and the other did not.

Most previous theoretical studies that compute the far-field sound radiated due to
turbulent flow-induced plate vibration use the method of stationary phase (e.g. Junger
& Feit 1986; Skelton & James 1997; Fahy & Gardonio 2007; Blake 2017). Blake (2017)
discusses several features of the far-field sound. A quantity important for the sound is the
ratio of the acoustic wavenumber to the modal wavenumber along each direction. This
ratio determines the plate region that effectively radiates sound after cancellation, for e.g.
the plate surface, the plate edges and the plate corner. Further, the angular locations where
each mode radiates the most depend on this ratio in addition to the mode order.

In this paper, we use the time-domain turbulent wall-pressure fluctuations extracted from
a DNS of a turbulent channel to compute the plate vibration and radiated sound. The
fluid–structure–acoustic coupling is assumed to be one-way coupled. The objective of this
one-way coupled study is to perform a detailed analysis of each component involved in the
interaction and provide results that can be used as a baseline for future two-way coupled
studies to gauge the extent of interaction. We also discuss these one-way coupled results in
the context of a fully coupled problem. The questions addressed in this paper are: (i) How
does the effect of near-wall burst-sweep events on the plate vibration depend on the plate
vibration time scale and plate BC? (ii) How do the plate vibration and sound radiation
vary with the plate BCs, plate material and Reynolds numbers? (iii) What are the features
of the plate displacement and acoustic pressure spectra over different frequency ranges?
We consider a total of 12 different combinations of the problem parameters: three plate
BCs (all sides clamped, all sides simply supported and three sides clamped with one side
free), two plate materials (synthetic rubber and stainless steel) and two friction Reynolds
numbers (180 and 400). To the best of our knowledge, this is the first such study to compute
DNS-based vibroacoustic responses of elastic plates.

The rest of the paper is organized as follows. Section 2 describes the problem set-up. The
simulation methodology is discussed in § 3, and the results are discussed in § 4. Section 4.1
shows the visualization of the fluid–structure–acoustic interaction. In § 4.2 we discuss the
effect of plate vibration time scale on the plate behaviour away from the boundaries, and
in § 4.3 we discuss the plate behaviour near boundaries. Section 4.4 discusses the features
of the plate-averaged displacement spectrum. In § 4.5 we show the plate deformation
patterns, and in § 4.6 we discuss the features of the acoustic pressure spectrum for the
sound radiated by the plate vibration. The paper is summarized in § 5.
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Figure 1. Computational domain.

2. Problem definition

Throughout the paper, x, y and z denote the streamwise, wall-normal and spanwise
directions, respectively. The superscripts f , s and a denote fluid, solid and acoustic
quantities, respectively. The fluid, solid and acoustic equations are non-dimensionalized
using the density of the fluid, ρ f , the channel half-height, δ, and the friction velocity, u f

τ .

The friction velocity, u f
τ , is defined to be

√
τ

f
w/ρ f , where τ f

w is the mean wall shear of the
turbulent flow.

2.1. Computational domain and boundary conditions
Figure 1 shows the computational domain used to simulate the problem. The blue, yellow
and orange regions denote the fluid, solid and acoustic subdomains, respectively. The fluid
subdomain is a channel of size L f

x × L f
y × L f

z , where L f
x = 6πδ, L f

y = 2δ and L f
z = 2πδ.

The solid subdomain is a plate of size Ls
x × Ls

y × Ls
z, where Ls

x = (6π/5)δ, the plate
thickness Ls

y = 0.004δ and Ls
z = (2π/5)δ. The acoustic subdomain is the entire bottom

half-space below the plate.
We choose the plate dimensions such that the streamwise plate length, Ls

x, is sufficiently
larger than the dominant wall-pressure wavelength. At Reτ = 180 and 400, λx ≈ 2δ
dominates the wall pressure (Anantharamu & Mahesh 2020), which is considerably lower
than Ls

x = (6π/5)δ. In inner units, these wavelengths are λxu f
τ /ν

f ≈ 377 and 838 at
Reτ = 180 and 400, respectively, while the plate lengths are Ls

xu f
τ /ν

f = 679 and 1508
at Reτ = 180 and 400, respectively.

The large streamwise (L f
x ) and spanwise (L f

z ) extents of the channel are essential
to include the contribution of large-scale turbulent structures to the wall-pressure
fluctuations. The large extents also eliminate any spurious high levels that might otherwise
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Figure 2. Plate BCs. Arrow denotes the direction of mean flow.

be observed (Choi & Moin 1990) in the wall-pressure wavenumber–frequency spectrum
at low wavenumbers and frequencies. The arrow in figure 1 denotes the direction of the
mean turbulent flow inside the channel. For better accuracy of high-frequency fluctuations,
the fluid equations are solved in a moving frame of reference similar to Bernardini et al.
(2013).

The plate is centred and baffled. The three plate BCs considered are: all four sides
clamped (CCCC), three sides clamped and one side free (CCCF) and all four sides
simply supported (SSSS). Here, the clamped BC (C) implies zero displacements in the
x, y and z directions and the simply supported BC (S) implies zero displacements in the
y (wall-normal) direction, and free BC (F) implies no constraint on the displacements.
Figure 2 shows a schematic of the different BCs and also the orientation of the edges. At
the interface between the plate and acoustic medium, a Neumann BC is imposed on the
acoustic pressure using the plate acceleration.

2.2. Simulation parameters
The fluid inside the channel is chosen to be incompressible air. Assuming room
temperature, the fluid density ρ f is 1.225 kg m−3 and the fluid kinematic viscosity ν f

is 1.562 × 10−5 m2 s−1. The channel half-height, δ, is chosen to be 1.25 cm. The friction
Reynolds numbers considered are Reτ = 180 and Reτ = 400, where Reτ is defined to be
u f
τ δ/ν

f . To increase the Reynolds number, we increase the flow velocity while keeping the
remaining parameters constant. This yields a friction velocity, u f

τ , of around 0.225 m s−1

for Reτ = 180 and around 0.5 m s−1 for Reτ = 400.
We consider two plate materials: synthetic rubber – a soft material; and stainless steel –

a stiff material. The two materials are assumed to be elastic. For synthetic rubber, the
density, Young’s modulus and Poisson’s ratio are set to 1522 kg m−3, 50MPa and 0.4,
respectively. For stainless steel, the density, Young’s modulus and Poisson’s ratio are set
to 7500kg m−3, 180 GPa and 0.305, respectively. For structural damping, we use the
Rayleigh damping model. The stiffness-proportional damping coefficient is set to zero
and the mass-proportional damping coefficient is computed such that the loss factor is
0.05 at the first natural frequency of the plate. We set the maximum structural loss factor
(at the first natural frequency) equal to 0.05 because most structures have a loss factor less
than or equal to 0.05, and here the loss factor decreases with the natural frequency. It also
ensures that the displacement levels are low enough to allow one-way coupled analysis.
The acoustic medium is assumed to be air. Assuming room temperature, the speed of
sound is then 343 m s−1. Table 1 shows the resulting non-dimensional problem parameters
for each case. In total, we have 12 cases – two Reynolds numbers, two plate materials and
three plate BCs.

For the considered Reynolds numbers, a soft plate material such as synthetic rubber
allows a multimodal vibroacoustic response. For a multimodal response, the first natural
plate frequency (ω1) needs to be very small compared with the high-frequency turbulent

976 A2-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

87
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.870


S. Prajapati, S. Anantharamu and K. Mahesh

C
as

e
no

.
C

as
e

na
m

e
So

lid
de

ns
ity

So
lid

Y
ou

ng
’s

m
od

ul
us

So
lid

Po
is

so
n’

s
ra

tio

So
lid

da
m

pi
ng

co
ef

fic
ie

nt

A
co

us
tic

m
ed

iu
m

de
ns

ity

A
co

us
tic

m
ed

iu
m

so
un

d
sp

ee
d

Fi
rs

tn
at

ur
al

fr
eq

ue
nc

y

〈R
e τ

〉
-

〈B
C
〉

-
〈P

la
te

m
at

er
ia

l〉
ρ

s /
ρ

f
E

s /
(ρ

f u
f τ
2 )

ν
s

α
s δ
/
u

f τ
ρ

a /
ρ

f
ca /

u
f τ

ω
1ν

f /
u

f2

τ

1
18

0
-

SS
SS

-
Sy

nt
he

tic
R

ub
be

r
12

42
.4

5
8.

07
×

10
8

0.
4

0.
35

1
15

25
0.

03
9

2
18

0
-

C
C

C
C

-
Sy

nt
he

tic
R

ub
be

r
12

42
.4

5
8.

07
×

10
8

0.
4

0.
75

1
15

25
0.

08
3

3
18

0
-

C
C

C
F

-
Sy

nt
he

tic
R

ub
be

r
12

42
.4

5
8.

07
×

10
8

0.
4

0.
72

1
15

25
0.

08
0

4
40

0
-

SS
SS

-
Sy

nt
he

tic
R

ub
be

r
12

42
.4

5
1.

63
×

10
8

0.
4

0.
16

1
68

6
0.

00
8

5
40

0
-

C
C

C
C

-
Sy

nt
he

tic
R

ub
be

r
12

42
.4

5
1.

63
×

10
8

0.
4

0.
34

1
68

6
0.

01
7

6
40

0
-

C
C

C
F

-
Sy

nt
he

tic
R

ub
be

r
12

42
.4

5
1.

63
×

10
8

0.
4

0.
32

1
68

6
0.

01
6

7
18

0
-

SS
SS

-
St

ai
nl

es
sS

te
el

61
22

.4
5

2.
90

×
10

12
0.

30
5

9.
17

1
15

25
1.

01
9

8
18

0
-

C
C

C
C

-
St

ai
nl

es
sS

te
el

61
22

.4
5

2.
90

×
10

12
0.

30
5

19
.4

3
1

15
25

2.
15

9
9

18
0

-
C

C
C

F
-

St
ai

nl
es

sS
te

el
61

22
.4

5
2.

90
×

10
12

0.
30

5
18
.8

1
15

25
2.

08
9

10
40

0
-

SS
SS

-
St

ai
nl

es
sS

te
el

61
22

.4
5

5.
88

×
10

11
0.

30
5

4.
13

1
68

6
0.

20
6

11
40

0
-

C
C

C
C

-
St

ai
nl

es
sS

te
el

61
22

.4
5

5.
88

×
10

11
0.

30
5

8.
74

1
68

6
0.

43
7

12
40

0
-

C
C

C
F

-
St

ai
nl

es
sS

te
el

61
22

.4
5

5.
88

×
10

11
0.

30
5

8.
46

1
68

6
0.

42
3

Ta
bl

e
1.

N
on

-d
im

en
si

on
al

si
m

ul
at

io
n

pa
ra

m
et

er
s.

976 A2-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

87
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.870


DNS-based vibroacoustic response of plates

Reτ = 180 Reτ = 400

Synthetic rubber Stainless steel Synthetic rubber Stainless steel

SSSS CCCC CCCF SSSS CCCC CCCF SSSS CCCC CCCF SSSS CCCC CCCF

ka/k(1)p × 102 0.18 0.37 0.36 4.56 9.67 9.36 0.18 0.37 0.36 4.56 9.67 9.36
λa/δ 1365 641 665 52 25 26 1347 634 674 52 25 26
λau f

τ /ν
f × 10−5 2.46 1.15 1.20 0.09 0.04 0.05 5.39 2.54 2.69 0.21 0.10 0.10

Table 2. Relevant acoustic parameters. Here ka, k(1)p λ
a are the acoustic radiation wavenumber, plate

wavenumber and acoustic radiation wavelength corresponding to the first plate vibration mode.

motion set by ν f and u f
τ , i.e. ω1ν

f /u f
τ

2
should be much smaller than one. For the synthetic

rubber plates, ω1ν
f /u f

τ

2
is of order 0.1, while for the stainless steel plates, ω1ν

f /u f
τ

2
is of

order 1. Table 1 shows the first natural frequencies in inner units.
The wavelength of the acoustic radiation is much larger than the channel dimension

and viscous length scales. The acoustic radiation wavelength is given as λa = 2πca/ω,
where λa is the acoustic wavelength, ca is the speed of sound in the acoustic medium
and ω is the dominant angular frequency. For the problem under investigation, the
first mode of plate vibration dominates the acoustic response. Therefore, the acoustic
radiation wavelength relative to the viscous length scale, ν f /u f

τ , can be estimated as

λa/(ν f /u f
τ ) = 2π(ca/u f

τ /ω1ν
f /u f

τ

2
), where ω1 is the first natural frequency of the plate

vibration. Using the values of ca/u f
τ and ω1ν

f /u f
τ

2
provided in table 1, we can compute

the value of λa/(ν f /u f
τ ) = λa+. Further, we compute the acoustic wavelength relative to

the channel dimension, δ, as λa/δ = λa+/Reτ . These ratios are given in table 2. Amongst
all cases, the minimum and maximum values of λa/(ν f /u f

τ ) are 4 × 103 and 5.39 × 105,
respectively, and the minimum and maximum values of λa/δ are 25 and 1365, respectively.
As λa/δ � 1 and λa/(ν f /u f

τ ) � 1, the acoustic radiation might not alter the flow.
To analyse the acoustic radiation patterns, we can use past works where a simply

supported plate is mostly considered as its analytical mode shapes and modal
wavenumbers are known. For other BCs, these quantities are more involved. Therefore,
to analyse the acoustic radiation patterns using conclusions from past literature, we define
the plate wavenumber for the Nth mode as

k(N)p =
√(

mπ

Ls
x

)2

+
(

nπ

Ls
z

)2

, (2.1)

where m and n are the mode orders of the Nth mode in x and z directions, respectively.
This definition is consistent with the panel wavenumber of Wallace (1972), and for simply
supported plates, the plate wavenumber is the modal wavenumber. The acoustic-to-plate
wavenumber ratios corresponding to the first plate mode (N = 1,m = 1, n = 1) are given
in table 2. Amongst all cases, the minimum and maximum values of the ratio are 0.0018
and 0.0967, respectively.
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3. Simulation methodology

For both Reynolds numbers, we first simulate the turbulent flow until the flow becomes
statistically stationary. The wall-pressure fluctuations are then stored for a total time of
30δ/u f

τ for Reτ = 180 and 23δ/u f
τ for Reτ = 400. These fluctuations are converted to a

stationary frame, and then used to compute the plate response for each Reynolds number,
plate material and plate BC. The far-field sound is computed from the plate response.
We discard the initial 15δ/u f

τ units of the simulated response and sound for Reτ = 180
cases and 8δ/u f

τ units for Reτ = 400 cases because they predominantly contain the plate’s
transient response. The remaining data are used to compute the statistics of the plate
displacement and sound. Sections 3.1–3.3 describe the simulation methodologies for the
fluid, solid and acoustic subproblems, respectively.

3.1. Fluid subproblem
To simulate the turbulent flow inside the channel, we solve the incompressible
Navier–Stokes equations using DNS. The equations are

∂u f
i
∂t

+
∂u f

i u f
j

∂xj
= − 1

ρ f
∂p f

∂xi
+ νf

∂2u f
i

∂xj∂xj
and

∂u f
i

∂xi
= 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.1)

Here, u f
i is the fluid velocity, p f is the fluid pressure, ρ f is the fluid density and ν f is

the fluid kinematic viscosity. These equations are solved in a moving frame of reference
using the collocated finite volume method of Mahesh, Constantinescu & Moin (2004).
This method is second-order-accurate in both space and time, and conserves kinetic energy
discretely in the inviscid limit. The discrete kinetic energy conservation property reduces
aliasing errors (Blaisdell, Spyropoulos & Qin 1996). The velocity of the moving frame is
set to (Ub, 0, 0), where Ub is the bulk velocity of the turbulent flow. For friction Reynolds
numbers 180 and 400, the velocity Ub is set to 15.8u f

τ and 17.8u f
τ , respectively. The

moving frame of reference reduces the magnitude of the dispersive errors (Bernardini et al.
2013) leading to better transfer of energy to small scales, and, therefore, better prediction
of the high-frequency spectrum. The DNS is performed using our in-house flow solver,
MPCUGLES.

The mesh used for the DNS is Cartesian. The control volumes are uniform in streamwise
and spanwise directions, and are non-uniform with a hyperbolic tangent stretching in the
wall-normal direction. Table 3 shows the number of control volumes in each direction,
and the mesh resolution. The resolution is fine enough to resolve the small-scale, coherent
fluctuations near the wall. The non-dimensional time step, 	t f (u f

τ /δ), used for the DNS
is 5 × 10−4. The DNS has been validated. For figures comparing mean velocity, mean
pressure and the root mean square (r.m.s.) and spectra of velocity and pressure fluctuations
with the reference DNS of Moser, Kim & Mansour (1999), we refer the reader to
Appendix C of Anantharamu & Mahesh (2020). The DNS-based wall-pressure statistics

above ων f /u f 2

τ ≈ 2 are likely not resolved. Therefore, to avoid any undepredictions of the
statistics above this frequency, throughout the paper, we only consider the statistics below

ων f /u f 2

τ ≈ 2.
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Reτ N f
x × N f

y × N f
z 	x f +

	z f +
	y f +

w 	y f +
c

180 720 × 176 × 330 4.7 3.4 0.27 4.4
400 1388 × 288 × 660 5.4 3.8 0.37 5.9

Table 3. Fluid mesh details.

Reτ Ns
x × Ns

y × Ns
z 	xs+ 	zs+

180 144 × 1 × 66 4.7 3.4
400 278 × 1 × 132 5.4 3.8

Table 4. Solid mesh details.

3.2. Solid subproblem
To simulate the plate response, we solve the three-dimensional dynamic linear elasticity
equations:

ρs ∂
2ds

i

∂t2
=
∂σ s

ij

∂xj
, (3.2)

using the continuous Galerkin finite element method. Here, ρs is the solid density, ds
i is

the solid displacement and σ s
ij is the linear Cauchy stress tensor of the solid. For spatial

discretization, we use the 27-node hexahedral element, and for temporal discretization, we
use the trapezoidal rule. Our method is spatially third-order-accurate for the displacements,
spatially second-order-accurate for the stresses and temporally second-order-accurate.
These simulations are performed using our in-house solid solver, MPCUGLES-SOLID.
For further solver details, we refer the reader to Anantharamu & Mahesh (2021).

The plate mesh is Cartesian, and matches the fluid mesh at the fluid–solid interface.
Since the two meshes match at the interface, we do not require any special strategy to
transfer the wall-pressure fluctuations from the fluid mesh to the solid mesh. Note that the
fluid wall-pressure fluctuations are converted from moving to stationary frame via Fourier
interpolation before transferring them to the solid mesh. Table 4 shows the number of
elements and resolution of the solid mesh. All solid simulations use a non-dimensional
time step, 	ts(u f

τ /δ), of 5 × 10−4, which is same as that of the fluid DNS.
Table 5 shows the first 20 natural frequencies for each case in outer units. For validation

of our in-house solid solver for static, dynamic and eigenvalue plate problems, we refer the
reader to Appendix B of Anantharamu & Mahesh (2021).

3.3. Acoustic subproblem
To simulate the sound radiated by the plate vibration, we solve the acoustic wave equation:

∂2pa

∂t2
− ca2∇2pa = 0, (3.3)

using the Green’s function methodology. Here, pa is the acoustic pressure and ca is the
sound speed of the acoustic medium.

Since the plate is planar and baffled, we use the half-space Green’s function of a baffled
plate (Blake 2017). This Green’s function requires evaluating an integral over the plate
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Reτ = 180 Reτ = 400

Synthetic rubber Stainless steel Synthetic rubber Stainless steel

Mode SSSS CCCC CCCF SSSS CCCC CCCF SSSS CCCC CCCF SSSS CCCC CCCF

1 7.05 14.98 14.42 183.37 388.58 376.00 3.17 6.72 6.47 82.52 174.69 169.02
2 9.16 16.70 15.33 238.33 433.13 399.31 4.12 7.50 6.88 107.25 194.73 179.51
3 12.69 19.84 17.27 329.98 514.83 450.30 5.71 8.91 7.75 148.49 231.47 202.45
4 17.62 24.58 20.53 458.35 637.89 535.47 7.93 11.04 9.22 206.26 286.81 240.76
5 23.97 30.94 25.29 623.45 803.18 659.42 10.78 13.89 11.36 280.55 361.11 296.51
6 26.09 38.89 31.62 678.63 1009.89 823.98 11.74 17.47 14.20 305.38 453.99 370.50
7 28.20 40.46 39.52 733.56 1049.31 1029.22 12.69 18.15 17.75 330.10 471.57 462.75
8 31.72 42.31 39.65 825.13 1097.60 1033.30 14.27 18.99 17.79 371.31 493.30 464.35
9 31.73 45.49 40.87 825.31 1180.05 1062.87 14.27 20.42 18.34 371.39 530.40 477.67
10 36.65 48.40 43.11 953.37 1256.87 1121.77 16.49 21.73 19.35 429.02 564.92 504.17
11 40.91 50.05 46.58 1063.98 1298.74 1212.57 18.40 22.47 20.91 478.79 583.78 545.02
12 43.00 56.08 48.96 1118.32 1455.44 1274.51 19.34 25.18 22.00 503.25 654.25 572.96
13 50.75 59.43 51.35 1320.02 1543.19 1337.37 22.83 26.68 23.05 594.01 693.46 601.17
14 51.50 63.62 57.51 1339.48 1651.26 1498.03 23.15 28.56 25.82 602.77 742.28 673.43
15 57.84 71.94 59.92 1504.39 1868.21 1559.16 26.01 32.29 26.91 676.98 839.29 700.80
16 59.92 72.68 65.11 1558.51 1886.71 1695.94 26.95 32.63 29.24 701.33 848.08 762.41
17 59.95 78.77 72.38 1559.29 2043.19 1882.61 26.96 35.33 32.50 701.68 917.86 845.98
18 63.47 80.69 74.18 1650.79 2093.08 1931.98 28.54 36.20 33.31 742.86 940.32 868.50
19 63.52 83.27 77.68 1651.88 2161.87 2024.27 28.55 37.39 34.83 743.35 971.65 909.30
20 68.39 83.92 79.15 1778.93 2177.08 2056.94 30.76 37.65 35.50 800.52 978.12 924.02

Table 5. First 20 natural frequencies for all the cases, non-dimensionalized with outer flow variables
(ωjδ/uτ ).

and acoustic medium interface. To evaluate this integral, the interface is discretized into
a surface mesh composed of nine-node quadrilateral surface elements. This surface mesh
coincides with the plate’s three-dimensional mesh, and therefore transferring the nodal
acceleration from the plate mesh to this surface mesh is straightforward. This strategy
yields the following expression for the acoustic pressure, pa(x, t), at point x in the acoustic
domain and time t:

pa(x, t) = ρa

2π

∑
e∈

surface
elements

∫
Γe

1
‖x − y‖2

⎡
⎢⎢⎢⎢⎢⎢⎣

∑
j∈

eth surface
element’s

nodes

ãs
j

(
t − ‖x − y‖2

ca

)
ϕj( y)

⎤
⎥⎥⎥⎥⎥⎥⎦

· n( y) dy.

(3.4)

Here, ρa is the acoustic medium density,
∑

e∈
surface

elements

is the summation over all surface

elements, Γe is the eth surface element, ‖x − y‖2 denotes the 2 norm of vector x − y,∑
j∈

eth surface
element’s

nodes

denotes summation over nodes of the eth surface element, ãs
j is the piecewise

linear interpolant in time of the plate acceleration at the jth node, ϕj is the shape function
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Figure 3. Comparison of the analytical and numerical acoustic pressure at r = 100π below the plate centre.
Solid line (blue), analytical solution; ◦ (red), numerical solution obtained using the acoustic solver.

of the jth node of the surface element and n is the vector normal to the plate surface and
pointing into the acoustic domain. We use two Gauss quadrature points in each direction
to compute the element integral.

Note that the above wave equation is applicable only for a quiescent medium in the
absence of any ambient mean flow or shear effects. The effect of the ambient mean flow
on our acoustic results will depend on the ambient flow velocity scales relative to the
speed of sound. If the velocity scales are comparable to the speed of sound, the acoustic
waves might undergo refraction and reflection due to the velocity gradients. As a result,
the ambient flow might alter the directivity patterns observed in the quiescent medium
because refraction would bend the acoustic waves. However, if the velocity scales are
significantly smaller than the speed of sound, the ambient flow might not have much effect
on the acoustic radiation in the quiescent medium.

The sound pressure is computed at discrete points on a polar grid in the acoustic domain,
and at discrete time instants. These points are (ri cos(θj), ri sin(θj),π), where ri = ro +
i	r; θj = θo + j	θ; ro = 10π; θo = π;	r = 160π/Nr;	θ = π/Nθ ; i = 1, . . . ,Nr, and
j = 1, . . . ,Nθ . Here, Nr and Nθ are the number of points along radial and angular
directions, respectively. Parameter Nr is set to 15 and Nθ is set to 19. The time instants
are uniformly separated by a non-dimensional time step of 	tau f

τ /δ equal to 5 × 10−4,
which is the same as the fluid and solid simulation time step.

To validate the acoustic solver, we compute the sound radiated by a plate undergoing a
spatially uniform cosine acceleration. For this problem, the analytical solution is

pa(x, t) = ρa

2π

∫
Γ

1
‖x − y‖2

cos
(

2π

T

(
t − ‖x − y‖2

ca

))
dy. (3.5)

Here, T is the time period of the plate acceleration. We set the plate dimension to
6π/5 × 2π/5 × 0.004, ca to 343, T to 1, and compute the sound at the far-field point
x = (0, 0,−100π) for time instants separated by a dt of 1/32.

Figure 3 compares the acoustic pressure, pa, computed from our solver with the
analytical solution as a function of time. Good agreement is observed.
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Figure 4. Synchronized instantaneous visualization of the turbulent wall pressure exerted on the plate at Reτ =
400, synthetic rubber plate deformation (displacement in y direction) and the sound radiated due to the synthetic
rubber plate vibration, in outer units. The flow direction is from left to right. (a) Wall pressure; (b–d) plate
deformation for CCCC, CCCF, SSSS BCs; (e–g) sound radiated for CCCC, CCCF, SSSS BCs. In (b–d) the
grid deformations are scaled up by a factor of 20.

4. Results

4.1. Visualization of the one-way coupled fluid–structure–acoustic interaction
Figure 4 shows a synchronized visualization of the turbulent wall pressure exerted on
the plate, plate displacement in the y direction and the sound radiated due to the plate
vibration. We show three cases: Reτ = 400; CCCC, CCCF, SSSS; synthetic rubber.
Figure 4(a) shows the subdomain wall pressure at Reτ = 400. The synthetic rubber
plate deformations for CCCC, CCCF and SSSS BCs are shown in figures 4(b), 4(c) and
4(d), respectively, and the sound radiated for CCCC, CCCF and SSSS BCs is shown in
figures 4(e), 4( f ) and 4(g), respectively.

The plate deformations are inhomogeneous, and this inhomogeneity varies with plate
BCs. The deformation also has a range of length scales, of which a few are comparable
with the turbulent wall-pressure length scales. However, the largest deformation length
scales are considerably higher than the largest wall-pressure length scales. For all plate
BCs, the crests and troughs of the plate deformation are mainly aligned in the streamwise
direction and do not resemble plate mode shapes. The sound radiated due to these plate
vibrations is nearly the same for all angular positions at a given radial distance, i.e. the
plate acts like a monopole source of sound for all BCs. The directivity resembles that
of a monopole source because the first plate mode contributes the most to the acoustic
pressure, and the ratio of acoustic to plate wavenumber is very small for the first mode
(0.0018–0.0036, given in table 2).

4.2. Effect of plate vibration time scale on the plate behaviour away from the boundaries
The turbulent wall-pressure signal consists of intermittent large-amplitude fluctuations and
from previous works (Kim 1989; Snarski & Lueptow 1995) we know that these fluctuations
are the footprints of the burst-sweep cycle of events in the wall region. Specifically, the
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Figure 5. Wall-pressure (a) and plate displacement (b,c) time history at the plate centre for Reτ = 400.
(b) Synthetic rubber plate with CCCC BC. (c) Stainless steel plate with CCCC BC.

positive and negative peak events are produced by the near-wall local flow acceleration
and deceleration events, respectively (Snarski & Lueptow 1995). Figure 5(a) shows the
time history of turbulent wall pressure at the plate centre for Reτ = 400. The intermittent
large-amplitude events are evident in the wall-pressure signal, with the negative peak
events occurring more frequently than the positive peak events. This observation is
consistent with that of Snarski & Lueptow (1995).

The time scale of plate vibration and the eddies in the inner region of the channel are
similar for stainless steel plates and significantly different for synthetic rubber plates. The

first natural frequency of these plates in inner units, ω1ν
f /u f 2

τ (given in table 1), is the
ratio of the time scale of plate vibration and the eddies in the wall region. For stainless steel

plates (referred to as ‘stiff plates’), ω1ν
f /u f 2

τ is of order 1, while for synthetic rubber plates

(referred to as ‘soft plates’), ω1ν
f /u f 2

τ is of order 0.1, i.e. the soft plate vibration time scale
is very small compared with the time scale of the near-wall eddies. Figures 5(b) and 5(c)
show the displacement of synthetic rubber and stainless steel plate centres, respectively,
for CCCC BC, at Reτ = 400.

For soft plates (ω1ν
f /u f 2

τ 
 1), the displacement signal away from the boundaries
resembles an amplitude-modulated (AM) wave and does not consist of intermittent

large-amplitude events. However, for stiff plates (ω1ν
f /u f 2

τ ∼ 1), the displacement signal
does not resemble an AM wave and shows intermittent large-amplitude events, similar to
the wall pressure. This is because the soft plate undergoes strong multimodal excitation,
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Figure 6. Displacement time history of the (a) synthetic rubber and (b) stainless steel plate centre for CCCC
BC at Reτ = 400, in outer units. Black line, displacement; red line, envelope of the displacement (E(t) and
−E(t)).

and the stiff plate experiences weak modal excitation. The stronger the modal excitation,
the lesser the similarities between the wall-pressure and plate displacement signals. Here,
the modal excitation is considered to be strong when it has a significant contribution to the
plate vibration energy and weak when this contribution is less. The two distinct features
of an AM wave are (i) rapid oscillations characterized by a carrier frequency and (ii)
relatively slowly varying amplitude marked by an envelope.

The envelope of an AM signal may be obtained using the Hilbert transform:

H(t) = H{x(t)} = 1
π

P
∫ +∞

−∞
x(τ )
t − τ

dτ, (4.1)

where P is the Cauchy principal value of the integral and τ is the time shift. The envelope,
E(t), of signal x(t) is given by

E(t) = E{x(t)} =
√

x2(t)+ H2(t). (4.2)

Figure 6(a,b) shows plate deformation time history of the plate centre and the envelope
for CCCC at Reτ = 400. For the soft plate, the rapid oscillations have a single carrier
frequency, which is the first plate natural frequency, and the envelope is similar to that of
an over-modulated wave. In contrast to the soft plate, the rapid oscillations of the stiff plate
consist of a range of frequencies, and no distinct slowly varying envelope is observed.

The amplitude-modulation spectrum (Fourier coefficients of displacement signal, d̂(ω))
of the soft plate consists of a single carrier frequency, ωc, where d̂(ωc) = max{d̂(ω)},
and asymmetric sidebands with the upper sideband (ω > ωc) having more energy than
the lower sideband (ω < ωc). Figures 7(a) and 7(b) show the AM spectrum of synthetic
rubber and stainless steel plate displacement time history, respectively. For an AM wave,
the spectrum is expected to have a carrier component and sidebands. For the soft plate
(figure 7a), the spectrum peaks at the plate first natural frequency, i.e. ωc = ω1, and
asymmetric sidebands are observed. This asymmetry is due to a lack of modal excitation
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Figure 7. Amplitude modulation spectrum of the displacement time history of the plate centre for (a) synthetic
rubber and (b) stainless steel plates with CCCC BC at Reτ = 400. For a better comparison, the spectrum is
normalized by the peak value.

in the lower sideband region (because ωc = ω1) and significant modal excitation of the
first few plate modes in the upper sideband region. However, for the stiff plate (figure 7b),
these features are not present due to weak modal excitation.

In a fully coupled approach, the nature of the amplitude-modulation spectrum would
also depend on the coupling-induced modification of the flow. For a soft plate, if the energy
contribution of the eddies with time scales similar to or larger than that of the first plate
mode increases due to the coupling, the energy of the lower sideband would increase,
and still, a single carrier frequency would exist. This implies that the signal might still
be expected to have an AM wave behaviour. However, if the energy contribution of the
eddies with time scales considerably smaller than that of the first plate mode increases due
to the coupling, the energy of the upper sideband would increase due to more excitation of
higher plate modes, and multiple dominant time scales would exist. This implies that the
AM nature of the signal might reduce. For stiff plates, the plate displacement levels would
not be large enough to affect the fluid flow, i.e. the coupling would not have much effect
on the behaviour of the stiff plate.

To investigate the influence of the large-amplitude wall-pressure events on the plate
deformation, we use a pressure-peak detection scheme (Johansson, Her & Haritonidis
1987) and sample the deformation signal at the detection times. We identify the positive
and negative pressure peak events for which p > κpRMS and p < −κpRMS, respectively.
Here, κ is the threshold level and pRMS is the r.m.s. wall pressure. The detection time of
the event, ti, is considered the reference time, and it is used to compute the conditional
average of a quantity Q(t) as

〈Q(τ )〉 = 1
N

N∑
i=1

Q(ti + τ), (4.3)

where 〈Q(τ )〉 is the conditional average of Q(t), τ is the time relative to the detection time
and N is the number of detected events. Similar to Johansson et al. (1987) and Snarski &
Lueptow (1995), we use a threshold level of κ = 2.5.

The positive and negative displacement peaks of the stiff plates are associated
with the large-amplitude negative and positive wall-pressure peaks, respectively.
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Figure 8. Shape of the conditionally averaged wall pressure and plate displacement at the plate centre for
CCCC BC at Reτ = 400. (a) Negative wall-pressure peak events and (b) positive wall-pressure peak events
based on the pressure-peak detection scheme (with κ = 2.5). Solid black line, wall pressure; dashed red line,
synthetic rubber; solid red line, stainless steel.

However, the displacement peaks of the soft plate are not well associated with the
wall-pressure peaks. Overall, the time scales of the wall-pressure peaks are smaller than
that of the stiff plate’s displacement peaks. Figure 8 shows the shape of the conditionally
averaged large-amplitude wall-pressure peak events and conditionally sampled plate
deformation at the plate’s centre for CCCC at Reτ = 400. The shapes for the negative
and positive wall-pressure peak events are shown in figures 8(a) and 8(b), respectively.
All quantities are normalized by their maximum absolute value, i.e. for a signal Q(t), we
plot 〈(τ )〉/|〈(τ )〉|max. For both cases, the wall pressure has an asymmetric wavelet shape
with a peak at τ = 0. This feature is consistent with that of Karangelen, Wilczynski &
Casarella (1993). For a stiff plate, the negative (positive) wall-pressure peak coincides
with the positive (negative) deformation peak. However, for a soft plate, these peaks are
not coincident because the location of the displacement peak is dictated by the natural
frequencies of the plate. Note that the time scales of the negative and positive wall-pressure
peak events are similar, while for stiff plate, the time scale of the negative displacement
peak is substantially larger than that of the positive displacement peak.

We use a subset of the time history to illustrate the above association of the
large-amplitude wall-pressure events with the plate displacement. The observations from
these time histories are consistent with the insights obtained from the conditionally
sampled results. Figure 9 shows the large-amplitude wall-pressure peak events (p > κpRMS
and p < −κpRMS with κ = 2.5) for a subset of wall-pressure and plate displacement time
history at the plate centre for CCCC, at Reτ = 400. The peak events are marked by vertical
red dotted lines. Figures 9(a), 9(c) and 9(e) show the negative wall-pressure peak events
and figures 9(b), 9(d) and 9( f ) show the positive wall-pressure peak events. The wall
pressure is shown in figures 9(a) and 9(b), the synthetic rubber plate’s displacement is
shown in figures 9(c) and 9(d) and the stainless steel plate’s displacement is shown in
figures 9(e) and 9( f ). The large-amplitude positive (negative) wall-pressure peaks and
negative (positive) displacement peaks of the stiff plate mostly occur simultaneously.
However, this is not observed for the soft plate, whose peaks occur at regular intervals due
to strong modal excitation. These observations verify the conditionally sampled results.
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Figure 9. Wall-pressure and plate displacement samples at the plate centre for Reτ = 400 and CCCC BC.
(a,c,e) The negative wall-pressure peak events (p < −2.5pRMS) and (b,d, f ) the positive wall-pressure peak
events (p > 2.5pRMS). Dotted red line, wall-pressure peak event. (a,b) Wall pressure; (c,d) synthetic rubber
plate displacement; (e, f ) stainless steel plate displacement.

The plate vibration time scale relative to the turbulent eddies in the wall region reduces
with the Reynolds number, i.e. the first natural frequency of the plate in inner units reduces
with the Reynolds number. This is because the plate stiffness in outer units reduces with
the Reynolds number. However, the above discussion qualitatively also holds for Reτ =
180. Figure 10 shows the synthetic rubber plate displacement for CCCC at Reτ = 180.
Similar to Reτ = 400, the deformation rapidly oscillates with a relatively slowly varying
amplitude marked by an envelope. Note that the time scales of the oscillations and envelope
are smaller than those at Reτ = 400.

4.3. Plate behaviour near plate boundaries
Near the clamped or simply supported boundaries, the displacement of soft plates consists
of intermittent large-amplitude events and does not resemble an AM wave. Away from
these boundaries, the displacement signals resemble AM waves for all plate BCs. This
is because, near these boundaries, the plate acts like a stiff plate due to displacement
constraints. Figures 11 and 12 show the synthetic rubber plate displacement for all BCs
at the plate centre ((x, z) = (0.5Ls

x, 0.5Ls
z)) and near the downstream boundary ((x, z) =

(0.98Ls
x, 0.5Ls

z)), respectively. For all plate BCs, the displacement at the plate centre
resembles an AM wave. However, near the downstream boundary, it resembles an AM
wave for only CCCF and not other BCs. This is because the nearest boundary is a free
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Figure 10. Displacement time series of the synthetic rubber plate centre for CCCC BC at Reτ = 180 in outer
units. Black line, displacement; red line, envelope of the displacement (E(t) and −E(t)).
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Figure 11. Displacement time history of synthetic rubber plate at (x, z) = (0.5Ls
x, 0.5Ls

z) for (a) CCCC,
(b) CCCF and (c) SSSS BCs at Reτ = 400, in outer units. Black line, displacement; red line, low-pass-filtered
envelopes (ωδ/u f

τ < 5) of the displacement (E(t) and −E(t)).

edge for CCCF, i.e. no displacement constraint, and the modal excitation drives the edge
vibration.

The higher-order modes of the soft plate are more excited near the clamped or simply
supported boundaries compared with that away from these boundaries. As a result, in
contrast to the displacement signal at the plate centre that is dominated by a single
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Figure 12. Displacement time history of synthetic rubber plate at (x, z) = (0.98Ls
x, 0.5Ls

z) for (a) CCCC,
(b) CCCF and (c) SSSS BCs at Reτ = 400, in outer units. Black line, displacement; red line, low-pass-filtered
envelopes (ωδ/u f

τ < 5) of the displacement (E(t) and −E(t)).

frequency, the displacement signal near these boundaries consists of multiple time scales.
Figure 13 shows the AM spectrum of the synthetic rubber plate for all plate BCs at the plate
centre and near the downstream boundary. At the plate centre (figure 13a,c,e), the plate
vibration energy is mainly contained in the low-frequency region ωδ/u f

τ < 10, in which
the carrier component and sidebands reside. However, near the downstream boundary, this
is not the case for all BCs. For CCCC and SSSS, the high-frequency region (ωδ/u f

τ > 10)
also has a significant contribution to the plate vibration near the boundary, and for CCCF,
the spectrum near the boundary is similar to that at the centre.

For stiff plates, we do not expect any significant qualitative difference between the plate
response near and away from the boundaries. This is because the plate stiffness in outer
units is already high enough to not allow AM wave behaviour away from the boundaries.
Therefore, near the boundaries, similar to away from the boundary, we expect intermittent
large-amplitude events but no AM behaviour.

4.4. Displacement r.m.s. and features of the plate-averaged displacement spectrum
Table 6 compares the square root of the plate-averaged mean-square displacement for all
cases. The r.m.s. changes by a factor of 2–5 when the BC is changed. Dependence of r.m.s.
on Reynolds number varies with plate material. For a given BC, increasing the Reynolds
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Figure 13. Amplitude modulation spectrum of the displacement time history of the synthetic rubber plate at
(x, z) = (0.5Ls

x, 0.5Ls
z) (a,c,e) and (x, z) = (0.98Ls

x, 0.5Ls
z) (b,d, f ) for Reτ = 400: (a,b) CCCC; (c,d) CCCF;

(e, f ) SSSS. For a better comparison, the spectrum is normalized by the peak value.

Synthetic rubber (×10−3) Stainless steel (×10−7)

BC Reτ = 180 Reτ = 400 Reτ = 180 Reτ = 400

CCCC 1.36 3.31 1.11 4.86
CCCF 1.49 3.67 1.29 6.13
SSSS 6.56 6.54 4.07 18.86

Table 6. Plate-averaged r.m.s. displacement (ds
RMS/δ = (

∫ +∞
−∞ φa

dd(ω)u
f
τ /δ

3 dωδ/u f
τ )

1/2) in outer units.

number from 180 to 400 increases r.m.s. displacement of the synthetic rubber plate by a
factor of 1–2 while the stainless steel plate r.m.s. displacement increases by a factor of 4–5.

For synthetic rubber plates at Reτ = 400, the plate centre displacements are of
O(0.01–0.02) and the r.m.s. displacement is of O(0.003–0.006). Therefore, some portion
of the plate could affect the near-wall turbulence, and a two-way coupled approach would
be more appropriate for these cases. However, for other cases, a one-way coupled approach
is sufficient enough. If the two-way coupling of the soft plate and turbulent channel feeds
the lower plate vibration modes, the qualitative comparison of the soft and stiff plate
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Figure 14. The DNS-based plate-averaged displacement spectrum of synthetic rubber plate in (a) outer and
(b) inner units. Blue, green, red triangles: SSSS, CCCC, CCCF at Reτ = 180; blue, green, red lines: SSSS,
CCCC, CCCF at Reτ = 400.

response would not be much affected by the one-way coupling. However, if the two-way
coupling feeds the higher plate vibration modes, the qualitative differences between the
soft and stiff plate vibration observed in one-way coupled results might reduce.

The plate-averaged displacement spectra for the soft plates (synthetic rubber plates)

at high frequencies (ων f /u f 2

τ > 1) collapse better with Reynolds number in inner units
compared with outer units. This is shown in figure 14(a) (in outer units) and figure 14(b)
(in inner units) for all BCs, and just for the CCCF BC in figure 15(a) (in outer units)
and figure 15(b) (in inner units). This high-frequency collapse does not follow just
because the high-frequency wall pressure collapses with Reynolds number in inner units.
The plate thickness in inner units (hsu f

τ /ν
f ) changes with Reynolds number because u f

τ

changes, and the plate spatially filters the wall pressure based on the modal wavenumber.
It turns out that the effect of change in plate thickness in inner units gets nullified
for mass-proportional damping and the modal wavenumber scales in inner units, and
therefore the high-frequency displacement spectrum collapses in inner units. We show
this analytically using the infinite plate theory.
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Figure 15. The DNS-based plate-averaged displacement spectrum for CCCF BC. (a) Outer and (b) inner units
for synthetic rubber plates; (c) outer and (d) inner units for stainless steel plates. Black line, Reτ = 180; red
line, Reτ = 400; green dotted line, overlap region.

The plate-averaged displacement spectrum can be approximated using infinite plate
theory as

φs
dd(ω) = 1

(ρshs)2

∫∫ +∞

−∞
ψ

f
pp(k1, k3, ω)(

Ds

ρshs (k
2
1 + k2

3)
2 − ω2

)2

+ (αsω)2

dk1 dk3, (4.4)

where αs is the mass-proportional damping constant. For a given plate, non-
dimensionalizing the above equation with inner flow variables (ρ f , u f

τ , ν
f ) and

manipulating it, we get φs
dd(ω) = f (ων f /u f 2

τ ), i.e. the plate-averaged displacement
spectrum is independent of the Reynolds number and implies a collapse with the Reynolds
number. For a detailed derivation, we refer the reader to Appendix A.

Suppose one were to use a constant structural damping loss factor or stiffness-
proportional damping or a combination of mass- and stiffness-proportional damping, then
the high-frequency spectrum need not collapse with Reynolds number in inner units. The
change in plate thickness needs to be accounted for separately via a factor multiplying the
PSD.

The high-frequency region of even the stiff plates (stainless steel plates) collapses better
in inner units compared with outer units, but not as well as that of the soft plate, at
least up to the highest frequency plotted. This comparison is shown in figures 16(a) and
16(b) for all BCs, and in figures 15(c) and 15(d) just for the CCCF BC. Figure 17(a) (for
synthetic rubber plates) and figure 17(b) (for stainless steel plates) show the displacement
spectra for all BCs at Reτ = 400. The high-frequency decay for all BCs is similar (infinite
plate behaviour) for the synthetic rubber plate but not for the stainless steel plate. This
is because, at high frequencies, the synthetic rubber plate behaves like an infinite plate
since its natural frequencies are low while the stainless steel plate does not behave like an
infinite plate as its natural frequencies are relatively higher.

976 A2-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

87
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.870


DNS-based vibroacoustic response of plates

100 101 102

10–24

10–20

10–16

10–12
5×10–14

3×10–15

2×10–16

10–2 10–1 100

10–16

10–12

10–8

10–4

3×10–6

2×10–7

1×10–8

1×10–9

ωv f/uτ
f 2

ωδ/uτ
f

φ
s dd

(ω
)u

τf /δ
3

φ
s dd

(ω
)u

τf4
/v

3 f

(a)

(b)

Figure 16. The DNS-based plate-averaged displacement spectrum of stainless steel plate in (a) outer and (b)
inner units. Blue, green, red triangles: SSSS, CCCC, CCCF at Reτ = 180; blue, green, red lines: SSSS, CCCC,
CCCF at Reτ = 400.
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Figure 17. The DNS-based plate-averaged displacement spectrum for different BCs at Reτ = 400 in outer
units. (a) Synthetic rubber plate. (b) Stainless steel plate. Blue line, SSSS; green line, CCCC; red line, CCCF.

The plate-averaged displacement spectra of synthetic rubber plates display an overlap
region in the frequency range 20 < ωδ/u f

τ < 0.5. The spectra in this region collapse with
Reynolds number in both outer and inner units to a similar extent and approximately decay
as ω−3 (see figures 14a and 14b). The plate-averaged displacement spectra of the stainless
steel plates do not show such overlap (see figures 16a and 16b). For an overlap region
to exist, there should be sufficient separation between the time scale of the plate’s first
natural frequency (ω1) and that of the high-frequency turbulent motion set by ν f and u f

τ ,

i.e. ω1ν
f /u f 2

τ should be much smaller than one. For the synthetic rubber plates, ω1ν
f /u f 2

τ

is of order 0.1, while for the stainless steel plates, ω1ν
f /u f 2

τ is of order 1. Therefore,
the synthetic rubber plates have an overlap region, while the stainless steel plates do not.
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For a clear observation of the overlap region, figure 15(a) (in outer units) and figure 15(b)
(in inner units) show the overlap region for CCCF BC.

We show analytically that this outer–inner overlap implies φs
dd(ω) ≈ Cω−3. The

collapse of spectra in both outer and inner units implies

φs
dd(ω)u

f
τ

δ3 ≈ fδ

(
ωδ

u f
τ

)
and (4.5)

φs
dd(ω)u

f 4

τ

ν f 3 ≈ fν

(
ων f

u f 2
τ

)
, (4.6)

where fδ and fν are two functions that do not explicitly depend on the Reynolds number.
We equate the above two equations and choose ωδ/uτ and Reτ as the two independent
variables. This yields

fδ

(
ωδ

u f
τ

)
≈ fν

(
ωδ

u f
τ

1
Reτ

)
1

Re3
τ

. (4.7)

Partially differentiating with respect to Reτ affords

− 1
Re4
τ

[
3fν

(
ωδ

u f
τ

1
Reτ

)
+ ωδ

u f
τ

1
Reτ

f ′
ν

(
ωδ

u f
τ

1
Reτ

)]
≈ 0. (4.8)

Rearranging yields

d

d

(
ωδ

u f
τ

1
Reτ

)
⎡
⎣(ωδ

u f
τ

1
Reτ

)3

fν

(
ωδ

u f
τ

1
Reτ

)⎤⎦ ≈ 0. (4.9)

This implies

fν

(
ων f

u f 2
τ

)
≈ C

(
ων f

u f 2
τ

)−3

, (4.10)

where C is the proportionality constant and, therefore, φs
dd(ω) ≈ Cω−3. This approach

is similar to that of Panton & Linebarger (1974) and Perry, Henbest & Chong (1986),
where they derive an ω−1 decay for the overlap region in the turbulent pressure spectrum
and streamwise turbulent velocity spectrum, respectively. One can also estimate the power
laws in different frequency ranges using an approach similar to that of Jin, Ji & Chamorro
(2016), where they use turbulent flow velocity spectrum decay to estimate the decay of the
rotation and oscillation spectrum of the structures.

The ω−3 decay can be further verified as follows. An ω−1 decay for the overlap region
has been derived previously for the streamwise turbulent velocity spectrum (see Perry et al.
1986). Similar to the above derivation, their derivation of ω−1 decay depends solely on the
dimension of the velocity. Therefore, it should also hold for the plate velocity spectrum,
and hence the displacement spectrum should decay as ω−2 × ω−1 = ω−3, which is exactly
the observed trend.

The overlap region for the plate displacement spectrum (20 < ωδ/u f
τ < 0.5Reτ ) is much

broader than that of the turbulent wall pressure (100 < ωδ/u f
τ < 0.3Reτ ) (Farabee &
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Casarella 1991). As a result, at low Reynolds numbers, an overlap region for the plate
displacement spectrum might exist but not for turbulent wall pressure.

For frequencies much smaller than the first plate natural frequency, the displacement
spectra of both stainless steel and synthetic rubber collapse neither in inner nor in outer
units. We analytically show from Poisson–Kirchoff plate theory that in this region

(
φs

dd(ω)uτ
δ3

)(
Ds

ρ f u f 2
τ δ3

)2

versus
ωδ

u f
τ

(4.11)

collapses with Reynolds number and plate material, where the plate bending stiffness
Ds = Eshs3

/(12(1 − νs2
)). At these frequencies, we approximate the plate-averaged

displacement spectrum using just the first mode and prove that(
φs

dd(ω)u
f
τ

δ3

)(
Ds

ρ f u f 2
τ δ3

)2

≈ F

(
ωδ

u f
τ

)
, (4.12)

where F(·) does not depend explicitly on the Reynolds number. It implies that

(φs
dd(ω)u

f
τ /δ

3)(Ds/ρ f u f 2

τ δ
3)2 is only a function of ωδ/u f

τ . For a detailed derivation, we
refer the reader to Appendix B.

Figures 18(a) and 18(b) show the displacement spectrum of synthetic rubber and
stainless steel plates, respectively, in this non-dimensional form. For a reference first
natural frequency, we use that of the simply supported plate for Reτ = 400 which is shown
by the vertical black line. For frequencies much smaller than this reference first natural
frequency, the collapse of the spectra with Reynolds number is evident from the figures.
The y intercepts of the synthetic rubber and stainless steel plates are also very close, for a
given BC. Therefore, the spectra collapse with both plate material and Reynolds number.

The above scaling for frequencies much smaller than the first natural frequency has a
factor Ds2 that accounts for the change in stiffness with the plate material. A similar factor
has been previously used by Ciappi et al. (2012). However, they use the plate thickness
and wall-pressure convection velocity as the length and velocity scales to account for the
Reynolds number dependence. We use the channel half-height and friction velocity to
account for the change in Reynolds number.

In the above discussion, the behaviours of synthetic rubber and stainless steel plates
differ mainly due to the plate’s first natural frequency in inner units, i.e. the ratio of the
time scale of plate vibration and the eddies in the inner region of the channel. Therefore,
discussing the impact of problem parameters on the plate’s first natural frequency in inner
units is crucial. Using thin-plate theory (Reddy 2006), we can show that the first natural
frequency for a given plate BC is

ω1 = C1

√
Eshs2

ρs(1 − νs2)
, (4.13)

where C1 is the proportionality constant. The first natural frequency increases with
Young’s modulus and plate thickness and decreases with the plate density. However, the
ratio of the time scale of plate vibration and the eddies in the inner region of the channel
also depends on the Reynolds number. For a given plate material, this ratio decreases with
the Reynolds number. Therefore, at a certain high Reynolds number (Reτ ≈ 2000), the
stainless steel plate will behave like a synthetic rubber plate at a lower Reynolds number
(Reτ = 400).
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Figure 18. The DNS-based (φs
dd(ω)u

f
τ /δ

3)(Ds/ρ f u f 2

τ δ
3)2 versus ωδ/u f

τ for (a) synthetic rubber and (b)
stainless steel plates. Blue, green, red triangles: SSSS, CCCC, CCCF at Reτ = 180; blue, green, red lines:
SSSS, CCCC, CCCF at Reτ = 400. Dotted lines of the same colour show the y intercept of the spectrum for
each BC.

In a fully coupled regime, we expect the plate displacement spectrum decay in the
overlap region (ω−3) to be the same because its derivation solely depends on the dimension
of the displacement. However, the low-frequency scaling and high-frequency collapse
discussion would be applicable under certain conditions. The low-frequency scaling would
be relevant as long as the low-frequency wall pressure collapses with Reynolds number
in outer units, and the high-frequency collapse discussion is applicable as long as the
high-frequency wall pressure collapses with Reynolds number in inner units.

4.5. Plate deformation pattern
The instantaneous visualization of the plate deformation (displacement in the y direction)
at Reτ = 400 is shown in figure 19, in outer units. Figures 19(a)–19(c) show the
synthetic rubber plate deformations for CCCC, CCCF and SSSS BCs, respectively, while
figures 19(d)–19( f ) show the stainless steel plate deformations for CCCC, CCCF and
SSSS BCs, respectively.

The deformation patterns of soft and stiff plates are significantly different. The soft plate
undergoes multimodal excitation where multiple modes have considerable energy, while
the stiff plate’s dynamics is dominated by the first few modes. For soft plates, the crest is
mainly aligned in the streamwise direction, while for stiff plates, the crests do not have any
such alignment preference.
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Figure 19. Instantaneous visualization of the plate deformation (displacement in y direction) at Reτ = 400,
in outer units. The flow direction is from left to right. (a–c) Synthetic rubber: CCCC, CCCF, SSSS BCs.
(d–f ) Stainless steel: CCCC, CCCF, SSSS BCs.

For soft plates, the deformation pattern varies with plate BCs. For CCCC and CCCF
BCs, the crests are aligned in the streamwise direction with some inclination, while
for SSSS BC, no inclination is observed. This is probably due to stronger reflections
in the spanwise direction by the streamwise clamped boundaries that cannot move
in the spanwise direction. The soft plate has two distinct deformation structures (see
supplementary movies available at https://doi.org/10.1017/jfm.2023.870): (i) low-speed
large deformation structures mainly away from the four boundaries, with large formation
and break-up time scales, and (ii) high-speed small deformation structures close to the
boundaries formed due to the boundary reflections, with low formation and break-up time
scales.

To study the deformation patterns of the soft plates in different frequency ranges
discussed in the previous section, we show the unfiltered, low-pass-, bandpass- and
high-pass-filtered instantaneous plate deformations. The low-pass filter allows signals
with ωδ/u f

τ < 20, the bandpass filter allows signals with 20 < ωδ/u f
τ < 0.5Reτ and the

high-pass filter allows signals with ωδ/u f
τ > 0.5Reτ . Note that the bandpass frequencies

correspond to the overlap region and the high-pass frequencies correspond to the frequency
range for which the plate-averaged displacement spectrum collapses with the Reynolds
number in inner units.

Figure 20 shows the unfiltered and filtered deformation patterns for the soft plate at
Reτ = 400. Figures 20(a)–20(c) are for the unfiltered signals, figures 20(d)–20( f ) are for
the low-pass-filtered signals, figures 20(g)–20(i) are for the bandpass-filtered signals and
figures 20( j)–20(l) are for the high-pass-filtered signals. Figures 20(a,d,g, j), 20(b,e,h,k)
and 20(c, f,i,l) are for CCCC, CCCF and SSSS BCs, respectively.

From low-pass- to high-pass-filtered deformations, the deformation length scale
decreases. The unfiltered structural deformation patterns are similar to the low-pass-filtered
deformation patterns, i.e. the modes lying in the low-frequency region dictate the
deformation patterns. The low-pass-filtered deformation patterns resemble a combination
of plate modes. However, the bandpass-filtered deformations consist of a range of
length scales. The low-pass-filtered frequencies are associated with low-speed large
deformation structures, while the bandpass-filtered frequencies are associated with
high-speed small deformation structures. The bandpass-filtered deformation shows that
the reflections at the corners and streamwise edges are stronger than that from
the spanwise edges (see supplementary movies). For SSSS BC, the reflected waves
observed in the bandpass-filtered deformations travel along the streamwise boundary (see
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Figure 20. Instantaneous deformation of the synthetic rubber plate at Reτ = 400, in outer units. (a–c)
Unfiltered signal. (d–f ) Low-pass-filtered signal (ωδ/u f

τ < 20). (g–i) Bandpass-filtered signal (20 < ωδ/u f
τ <

0.5Reτ ). ( j–l) High-pass-filtered signal (ωδ/u f
τ > 0.5Reτ ). Deformation for (a,d,g, j) CCCC, (b,e,h,k) CCCF

and (c, f,i,l) SSSS BCs.

supplementary movies). For CCCF BC, the bandpass-filtered deformation structures in the
streamwise direction accelerate near the free edge.

The high-pass-filtered deformation patterns show a lattice-like structure for all BCs, i.e.
the plate behaves like an infinite plate as the plate BC has a negligible impact on the
deformation pattern. This observation is consistent with the fact that the plate-averaged
displacement spectrum of the soft plate collapses with BCs and Reynolds numbers at
these frequencies. The structures elongate in the spanwise direction while moving away
from the streamwise edge and dissociate as they approach the opposite streamwise edge.
These deformation structures mainly traverse to and fro in the spanwise direction and have
a negligible impact on the unfiltered deformation patterns.

4.6. Features of the acoustic pressure spectrum
Similar to the displacement spectrum, the acoustic pressure spectrum shows an overlap
region for the synthetic rubber plates. In this region, the spectra decay as ω−1. This is
shown in figures 21(a) (in outer units) and 21(b) (in inner units) for all BCs, and just
for the CCCF BC in figures 22(a) (in outer units) and 22(b) (in inner units). Panton &
Linebarger (1974) derive an ω−1 decay for the overlap region in the turbulent pressure
spectrum. The derivation of ω−1 decay depends solely on the dimension of the pressure.
Following a derivation similar to that of Panton & Linebarger (1974), we analytically show
that the outer–inner overlap implies φa

pp(ω) ≈ Cω−1. In this region, the acoustic pressure
spectra satisfy the relations

φa
pp(ω)

ρ f 2u f 3
τ δ

≈ gδ

(
ωδ

u f
τ

)
and (4.14)
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Figure 21. The DNS-based acoustic pressure PSD at r = 50δ below the synthetic rubber plate centre in (a)
outer and (b) inner units. Blue, green, red triangles: SSSS, CCCC, CCCF at Reτ = 180; blue, green, red lines:
SSSS, CCCC, CCCF at Reτ = 400.

φa
pp(ω)

ρ f 2u f 2
τ ν f

≈ gν

(
ων f

u f 2
τ

)
, (4.15)

where gδ and gν are two functions that do not explicitly depend on the Reynolds number.
Equating and choosing ωδ/uτ and Reτ as the two independent variables and partially
differentiating with respect to Reynolds number yields

d

d

(
ωδ

u f
τ

1
Reτ

)
[(

ωδ

u f
τ

1
Reτ

)
gν

(
ωδ

u f
τ

1
Reτ

)]
≈ 0. (4.16)

This implies

gν

(
ων f

u f 2
τ

)
≈ C

(
ων f

u f 2
τ

)−1

, (4.17)

where C is the proportionality constant and, therefore, φa
pp(ω) ≈ Cω−1. This is in contrast

to the ω−3 decay in the displacement spectrum’s overlap region.
Note that, for turbulent wall pressure, the overlap region is observed only for 100 <

ωδ/u f
τ < 0.3Reτ (Farabee & Casarella 1991), while for acoustic pressure, the overlap
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Figure 22. The DNS-based acoustic pressure PSD at r = 50δ below the plate centre for CCCF BC. (a) Outer
and (b) inner units for synthetic rubber plates; (c) outer and (d) inner units for stainless steel plates. Black line,
Reτ = 180; red line, Reτ = 400.

region is observed for 20 < ωδ/u f
τ < 0.5Reτ , i.e. the overlap region of acoustic pressure

is much broader than that of the turbulent wall pressure. This implies at low Reynolds
numbers that an overlap region for acoustic pressure might exist but not for turbulent wall
pressure.

For the stainless steel plates, the acoustic pressure spectra do not show such overlap.
This is shown in figures 23(a) (in outer units) and 23(b) (in inner units) for all BCs, and
for the CCCF BC in figures 22(c) (in outer units) and 22(d) (in inner units). For high
frequencies, the acoustic pressure spectra for all BCs are similar for the synthetic rubber
plate but not for the stainless steel plate. Figures 24(a) (for synthetic rubber plate) and
24(b) (for stainless steel plate) show this comparison at Reτ = 400.

For fully coupled interaction, similar to the displacement spectrum, the decay of the
acoustic pressure PSD in the overlap region (ω−1) is expected to be the same.

4.7. Effect of acoustic-to-plate wavenumber ratio on the sound radiation pattern
As the sound radiation pattern significantly depends on the acoustic-to-plate wavenumber
ratio (Hambric & Fahnline 2007), we vary this ratio for synthetic rubber plates at Reτ =
180 to study the effects of plate BCs on the sound radiation pattern for different ratios. For
the current simulation parameters, the first plate mode contributes the most to the acoustic
pressure; therefore, we use the acoustic-to-plate wavenumber ratio for the first plate mode
(γ (1)) in this whole discussion. We consider four different ratios: γ (1)o , 10γ (1)o , 100γ (1)o and
300γ (1)o , where γ (1)o is the acoustic-to-plate wavenumber ratio for the current simulation
parameters (given in table 2). The values of γ (1)o are 0.0018, 0.0037 and 0.0036 for SSSS,
CCCC and CCCF BCs, respectively.

For low wavenumber ratios (γ (1)o , 10γ (1)o ), the nature of the acoustic radiation pattern
does not depend on plate BCs, while for higher wavenumber ratios (100γ (1)o , 300γ (1)o ), it
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Figure 23. The DNS-based acoustic pressure PSD at r = 50δ below the stainless steel plate centre in (a) outer
and (b) inner units. Blue, green, red triangles: SSSS, CCCC, CCCF at Reτ = 180; blue, green, red lines: SSSS,
CCCC, CCCF at Reτ = 400.
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Figure 24. The DNS-based acoustic pressure PSD at r = 50δ below the plate centre for different BCs at Reτ =
400, in outer units. (a) Synthetic rubber plate. (b) Stainless steel plate. Blue line, SSSS; green line, CCCC; red
line, CCCF.

does depend on plate BCs. Amongst all plate BCs, the acoustic pressure is the highest
for SSSS, while for CCCC and CCCF, the acoustic pressure levels are similar, with
CCCF radiating slightly more sound than CCCC. Figure 25 shows the acoustic radiation
patterns at r = 30δ from the synthetic rubber plate centre. Figures 25(a)–25(d) are for the
wavenumber ratios γ (1)o , 10γ (1)o , 100γ (1)o and 300γ (1)o , respectively. For low wavenumber
ratios (γ (1)o and 10γ (1)o ), the acoustic radiation patterns are omnidirectional for all plate

976 A2-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

87
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.870


S. Prajapati, S. Anantharamu and K. Mahesh

0

90

180

270

0

10

20

30

0

90

180

270

0

10

20

30

0

90

180

270

0

10

20

30

0

90

180

270

0

10

20

30

(b)(a)

(c) (d )

Figure 25. Acoustic radiation pattern (Ppattern = 20 log10(P
a
RMS/20 × 10−6), where Pa

RMS is the r.m.s. acoustic
pressure) at r = 30δ for synthetic rubber plates at Reτ = 180: (a–d) γ (1)o , 10γ (1)o , 100γ (1)o and 300γ (1)o . Blue,
green, red circles: SSSS, CCCC, CCCF.

BCs, while for higher wavenumber ratios (100γ (1)o and 300γ (1)o ), the radiation patterns
have two lobes and vary with plate BCs.

Overall, with an increase in the acoustic-to-plate wavenumber ratio, the omnidirectional
nature of the acoustic radiation pattern decreases, and the dipole nature increases. Also,
with an increase in the wavenumber ratio, the two lobes move towards the normal at the
plate centre. The variation of lobe position with acoustic-to-plate wavenumber is consistent
with Hambric & Fahnline (2007).

5. Conclusions

In this paper, we compute the vibroacoustic response of a plate excited by the turbulent
wall-pressure fluctuations obtained from a DNS. The fluid–structure–acoustic coupling
is assumed to be one-way coupled, i.e. the fluid affects the solid and not vice versa,
and the solid affects the acoustic medium and not vice versa. The wall pressure consists
of intermittent large-amplitude fluctuations. A total of 12 different combinations of the
problem parameters are considered: three plate BCs (all sides simply supported, all sides
clamped, and three sides clamped with one side free), two plate materials (synthetic rubber
which is a soft material and stainless steel which is a stiff material) and two friction
Reynolds numbers (180 and 400). To the best of our knowledge, this is the first such study
of DNS-based vibroacoustic response of elastic plates.

Away from the clamped or simply supported boundaries, the displacement of the soft
plates resembles an AM wave but not of the stiff plates. The turbulent wall-pressure
signal consists of intermittent large-amplitude fluctuations and from previous works (Kim
1989; Snarski & Lueptow 1995) we know that these fluctuations are the footprints of
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the burst-sweep cycle of events in the wall region. The displacements of the stiff plates
also have such intermittent large-amplitude events, but not of the soft plates. This is
because the soft plate experiences a high contribution from its lower-order multimodal
excitation, and for the stiff plates, this contribution is small. The positive and negative
displacement peaks of the stiff plates are associated with the large-amplitude negative and
positive wall-pressure peaks, respectively. However, the displacement peaks of the soft
plate and wall pressure are not well associated. The AM spectrum (Fourier coefficients
of displacement signal, d̂(ω)) of the soft plate consists of a single carrier frequency, ωc,
where d̂(ωc) = max{d̂(ω)}, and asymmetric sidebands with the upper sideband (ω > ωc)
having more energy than the lower sideband (ω < ωc), while for stiff plates, these features
are not present.

Near the clamped or simply supported boundaries, the displacement of soft plates
consists of intermittent large-amplitude events and does not resemble an AM wave. This
is in contrast to the soft plate behaviour away from these boundaries. This is because, near
these boundaries, the plate acts like a stiff plate due to displacement constraints. Also, the
higher-order modes of the soft plate are more excited near these boundaries compared with
that away from these boundaries. As a result, in contrast to the displacement signal at a
point far away from the boundary that is dominated by a single frequency, the displacement
signal near these boundaries consists of multiple time scales.

For high frequencies (ων f /u f 2

τ > 1), the displacement and acoustic pressure spectra
collapse better with Reynolds number in inner units. This result does not follow just from
the collapse of high-frequency turbulence. This is because the plate thickness changes
in inner units with Reynolds number and the plate filters the wall pressure based on the
modal wavenumber. Taking these two factors into account, the high-frequency collapse is
reasoned using infinite plate theory.

An overlap region that collapses in both outer and inner units is observed in the
displacement and acoustic spectra of the soft (synthetic rubber) plates. In this overlap
region, the displacement spectrum decays as ω−3 and the acoustic pressure spectrum
decays as ω−1. The stainless steel plates do not show such an overlap region because
the time scales of the plate first mode and that of high-frequency turbulence are not
well separated at the Reynolds numbers considered. However, these two time scales are
well separated for the synthetic rubber plates, and therefore show an overlap region. The
overlap region of acoustic pressure (20 < ωδ/u f

τ < 0.5Reτ ) is much broader than that
of the turbulent wall pressure (100 < ωδ/u f

τ < 0.3Reτ Farabee & Casarella 1991). This
implies, at low Reynolds numbers, that an overlap region for acoustic pressure might exist
but not for turbulent wall pressure.

For low frequencies much smaller than the plate first natural frequency, the DNS
plate-averaged displacement spectrum collapses neither in inner nor in outer units.
Using the Poisson–Kirchoff plate theory, we show that the product of the plate-averaged
displacement spectrum and bending stiffness squared collapses with Reynolds number and
plate material, in outer units. The DNS results support this scaling.

The deformation of the soft plate shows a range of length scales and does not
resemble plate modes. However, the deformation of the stiff plate does not have such
a range of length scales and resembles the plate mode shapes. The soft plate has two
distinct deformation structures: (i) low-speed large deformation structures located mainly
away from the four boundaries, with high growth and dissociation time scales, and
(ii) high-speed small deformation structures close to the boundaries formed due to the
boundary reflections, with low growth and dissociation time scales. From low-pass-filtered
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(ωδ/u f
τ < 20) to high-pass-filtered (ωδ/u f

τ > 0.5Reτ ) deformations, the deformation
length scale decreases. The unfiltered structural deformation patterns are similar to the
low-pass-filtered deformation patterns, i.e. the modes lying in the low-frequency region
dictate the deformation patterns. The low-pass-filtered deformation patterns resemble
a combination of plate modes. However, the bandpass-filtered (20 < ωδ/u f

τ < 0.5Reτ )
deformations consist of a range of length scales. The high-pass-filtered deformation
patterns show a lattice-like structure for all BCs, i.e. the plate behaves like an infinite
plate as the plate BC has a negligible impact on the deformation pattern.

For a low acoustic-to-plate wavenumber ratio, the acoustic radiation pattern is
omnidirectional and does not depend on plate BCs, while for a higher wavenumber
ratio, it does. The omnidirectionality decreases, and the dipole nature increases with the
wavenumber ratio. With an increase in the ratio, the dipole lobes move towards the normal
at the plate centre, and this observation is consistent with that of Hambric & Fahnline
(2007).

In a fully coupled regime, we expect the decay of the displacement and acoustic pressure
spectra in the overlap region to be the same as that in the one-way coupled results (ω−3 and
ω−1, respectively) because its derivation solely depends on the dimension of the quantity.
However, the low-frequency scaling and high-frequency collapse discussion of the
displacement spectrum would be applicable under certain conditions. The low-frequency
scaling would be relevant as long as the low-frequency wall pressure collapses with
Reynolds number in outer units, and the high-frequency collapse discussion is applicable
as long as the high-frequency wall pressure collapses with Reynolds number in inner units.

Using the detected acoustic response, we can distinguish certain plate vibration
characteristics. However, a more detailed analysis might be required to distinguish the
difference in channel flow characteristics. The scaling laws for the acoustic pressure PSD
help us understand the underlying physics that drives the plate vibration. In the context of
our problem, if the given acoustic pressure PSD consists of an overlap region with an ω−1

decay, the plate vibration time scales are significantly larger than the near-wall eddy time
scales, which implies the structural response is mainly driven by the convective component
of the turbulent wall pressure, independent of the plate boundary condition (Hambric et al.
2004). However, if an overlap region is not present, the plate vibration and near-wall eddy
time scales are comparable, which implies that the structural response might be driven
by the subconvective or convective wall-pressure component, depending on the plate BC
(Hambric et al. 2004).

Based on the extent and nature of interaction required, the results from this study can be
used to choose problem parameters and BCs for future fluid–structure–acoustic interaction
problems. We can also use these one-way coupled results to evaluate and improve the
performance of the turbulent wall-pressure models, and to assess the qualitative impact
of coupling on the structural response by comparing them with a fully coupled response.
Furthermore, the theoretical approach used to analyse the scaling laws and power laws for
structural and acoustic response can be further extended to other planar structures, such as
compliant walls in turbulent flows.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.870.
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Appendix A

The plate-averaged displacement spectrum can be approximated using infinite plate theory
as

φs
dd(ω) = 1

(ρshs)2

∫∫ +∞

−∞
ψ

f
pp(k1, k3, ω)(

Ds

ρshs (k
2
1 + k2

3)
2 − ω2

)2

+ (αsω)2

dk1 dk3, (A1)

where αs is the mass-proportional damping constant. Non-dimensionalizing the above
equation with inner flow variables ρ f , u f

τ and ν f and because the high-frequency wall
pressure scales in inner flow variables, we obtain

φs
dd(ω)(

ν f

u f
τ

)2 (
ν f

u f 2
τ

) = 1

(
ρs

ρ f

)2

⎛
⎜⎜⎜⎝ hs

ν f

u f
τ

⎞
⎟⎟⎟⎠

2

×
∫∫ +∞

−∞

f

(
k1ν

f

u f
τ

,
k3ν

f

u f
τ

,
ων f

u f 2
τ

)
⎛
⎜⎝ Ds

ρshsν f 2

⎛
⎝(k1ν

f

u f
τ

)2

+
(

k3ν
f

u f
τ

)2
⎞
⎠

2

−
(
ων f

u f 2
τ

)2
⎞
⎟⎠

2

+
(
αsν f

u f 2
τ

ων f

u f 2
τ

)2

× dk1ν
f

u f
τ

dk3ν
f

u f
τ

, (A2)

where

f

(
k1ν

f

u f
τ

,
k3ν

f

u f
τ

,
ων f

u f 2
τ

)
= ψ

f
pp(k1, k3, ω)

ρ f 2
u f 4

τ

(
ν f

u f
τ

)2 (
ν f

u f 2
τ

) . (A3)
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We convert the wavenumber integral to cylindrical coordinates. This yields

φs
dd(ω)(

ν f

u f
τ

)2 (
ν f

u f 2
τ

) = 1

(
ρs

ρ f

)2

⎛
⎜⎜⎜⎝ hs

ν f

u f
τ

⎞
⎟⎟⎟⎠

2

×
∫ 2π

0

∫ ∞

0

f̄

(
kν f

u f
τ

, θ,
ων f

u f 2
τ

)
⎛
⎝ Ds

ρshsν f 2

(
kν f

u f
τ

)4

−
(
ων f

u f 2
τ

)2
⎞
⎠

2

+
(
αsν f

u f 2
τ

ων f

u f 2
τ

)2

× kν f

u f
τ

dkν f

u f
τ

dθ. (A4)

The integral over kνf /u
f
τ can be approximated to be

φs
dd(ω)(

ν f

u f
τ

)2 (
ν f

u f 2
τ

) ≈ 1

(
ρs

ρ f

)2

⎛
⎜⎜⎜⎝ hs

ν f

u f
τ

⎞
⎟⎟⎟⎠

2
π

2

(
kmν

f

u f
τ

)−3

× 1(
Ds

ρshsν f 2

αsν f

u f 2
τ

ων f

u f 2
τ

) ∫ 2π

0
f̄

(
kmν

f

u f
τ

, θ,
ων f

u f 2
τ

)
dθ, (A5)

where

kmν
f

u f
τ

=
(
ρshsν f 2

Ds

)1/4 (
ων f

u f 2
τ

)1/2

. (A6)

Note that the integral from 0 to 2π is independent of the Reynolds number. The factor
before the integral simplifies to⎛

⎜⎜⎜⎝ 1(
ρs

ρ f

)2 ( hs

ν f

)2 (
αsν f

)
⎞
⎟⎟⎟⎠ π

2

(
kmν

f

u f
τ

)−3
1(

Ds

ρshsν f 2

ων f

u f 2
τ

) , (A7)

which is also independent of the Reynolds number. Both the integral and the factor before

it depend only on (ων f /u f 2

τ ) for a fixed plate material. Therefore, the high-frequency
region of the synthetic rubber plate collapses better in inner units.
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Using the above calculations, we can comment on the spectrum behaviour for a
frequency-dependent mass-proportional damping required for a constant structural loss

factor. For αs = f (ωδ/u f
τ ) = f (ων f /u f 2

τ ,Reτ ), (A7) is no longer independent of the
Reynolds number. Therefore, for such damping, we do not expect the high-frequency
region of the displacement spectrum to collapse in inner units.

Appendix B

At low frequencies, one can approximate the plate-averaged displacement spectrum using
just the first mode as

φs
dd(ω) ≈ 1

(ρshsAp)2
1
ω4

1

∫∫ +∞

−∞
ψ f

pp(k1, k3, ω)|S1(k1, k3)|2 dk1 dk3, (B1)

where Ap = Ls
xLs

z. Further, thin-plate theory (Reddy 2006) predicts that for a given BC

ω1 = C1

(
1
Ls

x

)2
√

Ds

ρshs , (B2)

where C1 is the proportionality constant. Substituting for ω1 yields

φs
dd(ω)(Ap)

2(Ls
x)

−8(Ds)2 ≈ 1
C4

1

∫∫ +∞

−∞
ψ f

pp(k1, k3, ω)|S1(k1, k3)|2 dk1 dk3. (B3)

Note that the above equation is independent of the plate material, and can be made
independent of even the Reynolds number by non-dimensionalizing with outer flow
variables (ρ f , u f

τ , δ). This yields(
φs

dd(ω)u
f
τ

δ3

)(
Ap

δ2

)2 (Ls
x

δ

)−8
(

Ds

ρ f u f 2
τ δ3

)2

≈ 1
C4

1

∫∫ +∞

−∞
ψ

f
pp(k1, k3, ω)

ρ f 2 u f 3
τ δ3

|S1(k1, k3)|2
δ4 dk1δ dk3δ.

(B4)

Since Ls
x/δ and Ap/δ

2 remain the same for all our cases, one can absorb them into the
proportionality constant, and obtain(

φs
dd(ω)u

f
τ

δ3

)(
Ds

ρ f u f 2
τ δ3

)2

≈ 1
C4

1

∫∫ +∞

−∞
ψ

f
pp(k1, k3, ω)

ρ f 2u f 3
τ δ3

|S1(k1, k3)|2
δ4 dk1δ dk3δ. (B5)

Note that the right-hand side scales with outer flow variables. Therefore,(
φs

dd(ω)u
f
τ

δ3

)(
Ds

ρ f u f 2
τ δ3

)2

≈ F

(
ωδ

u f
τ

)
, (B6)

where F(·) does not depend explicitly on the Reynolds number.
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