
Genetic characteristics of Shiga toxin-producing E. coli O157,
O26, O103, O111 and O145 isolates from humans, food,
and cattle in Belgium

K. VERSTRAETE1*, K. DE REU1, S. VAN WEYENBERG2, D. PIÉRARD3,
L. DE ZUTTER4, L. HERMAN1, J. ROBYN1

AND M. HEYNDRICKX1,5

1 Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Melle, Belgium
2 Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Merelbeke,
Belgium
3UZ Brussel, Department of Microbiology, Belgian VTEC Reference Lab, Brussels, Belgium
4Ghent University, Faculty of Veterinary Medicine, Merelbeke, Belgium
5Ghent University, Department of Pathology, Bacteriology and Poultry Diseases, Merelbeke, Belgium

Received 10 February 2012; Final revision 23 November 2012; Accepted 27 January 2013;
first published online 28 February 2013

SUMMARY

In this study, we characterized 272 Shiga toxin-producing Escherichia coli (STEC) isolates from
humans, food, and cattle in Belgium [O157 (n=205), O26 (n=31), O103 (n=15), O111 (n=10),
O145 (n=11)] for their virulence profile, whole genome variations and relationships on different
genetic levels. Isolates of O157 displayed a wide variation of stx genotypes, heterogeneously
distributed among pulsogroups (80% similarity), but with a concordance at the pulsosubgroup
level (90% similarity). Of all serogroups evaluated, the presence of eae was conserved, whereas
genes encoded on the large plasmid (ehx, espP, katP) occurred in variable combinations in O26,
O103, and O145. The odds of having haemolytic uraemic syndrome was less for all genotypes
stx2a, stx2c, stx1/stx2c, and stx1 compared to genotype stx2a/stx2c; and for patients aged
>5 years compared to patients aged 45 years. Based on the genetic typing and by using
epidemiological data, we could confirm outbreak isolates and suggest epidemiological
relationships between some sporadic cases. Undistinguishable pulsotypes or clones with
minor genotypic variations were found in humans, food, and cattle in different years, which
demonstrated the important role of cattle as a reservoir of STEC O157, and the circulation
and persistence of pathogenic clones.

Key words: Epidemiology, genetics, pulsed-field gel electrophoresis (PFGE), Shiga-like toxin-
producing E. coli, typing.

INTRODUCTION

Shiga toxin-producing Escherichia coli (STEC) are an
important group of foodborne pathogens associated
with a broad spectrum of human diseases ranging

from mild diarrhoea to haemorrhagic colitis (HC)
and haemolytic uraemic syndrome (HUS) [1–3].
STEC are zoonotic pathogens which are asymptoma-
tically carried by ruminants, mainly cattle, which are
considered their principal reservoir [4]. Worldwide,
the most important STEC serotype reported is
O157:H7, owing to its association with severe disease
and many outbreaks. However, some non-O157
strains also pose a substantial concern to public
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health, as they can cause the same clinical compli-
cations as O157 and are increasingly more common
[5, 6].

Production of one or more Shiga toxins (Stx1 and/
or Stx2) is believed to be the most important contribu-
tor to HUS development [7]. Several subtypes of Stx2
have been identified; in particular, Stx2a and Stx2c
have been associated with severe human diseases [8].
Moreover, several subtypes of Stx1 have been de-
scribed, but they all appeared less important for
human disease [9]. Stx genes are present in the gen-
omes of temperate, lambdoid bacteriophages, which
appear to regulate Shiga toxin expression as part of
their lytic switch [10]. Several other virulence factors
are also involved in the pathogenicity of STEC. The
locus of enterocyte effacement encodes factors re-
sponsible for adherence of the bacterium to the enteric
cells, like intimin (Eae) [11]. The large plasmid of
STEC encodes for additional virulence factors,
such as enterohaemolysin (Ehx), which acts as a
pore-forming cytolysin; the bifunctional catalase-
peroxidase (KatP) [12]; and the serine protease
(EspP), which cleaves the human coagulation factor
V [13].

The most commonly used molecular biology-based
method used in epidemiological research of outbreaks
and monitoring of the spread of potential pathogens is
pulsed-field gel electrophoresis (PFGE), owing to its
high discriminatory power and reproducibility [14].
Moreover, this method has been standardized for
several pathogens such as E. coli O157 to facilitate
the subtyping of the pathogens in various lab-
oratories [15].

During 2000–2007, about 48 cases of STEC infec-
tions per year were reported in Belgium. Nationally,
all suspected STEC isolates from humans and food
samples are collected and further verified by the
Belgian national VTEC (Verocytotoxin-producing
E. coli) reference laboratory (Professor D. Piérard).
Despite the long-running investigation of STEC
occurrence and characteristics in Belgium since 1990,
a comprehensive long-term study on the genetic diver-
sity of STEC isolates, including non-O157 serogroups
and isolates from different sources, had not yet been
done. In the present study, we used genomic virulence
typing and whole genome genetic variation analysis
(PCR and PFGE) to examine the virulence potential
and genetic relatedness between STEC isolates of sero-
groups O157, O26, O103, O111, and O145. Second,
the influence of the stx genotype, the serotype, and
age on the development of HUS were studied.

Third, genetic relatedness was verified with epidemio-
logical data in order to delineate the Belgian situation
and to evaluate it on the international scene.

MATERIALS AND METHODS

Bacterial isolates

This study included 272 E. coli isolates belonging
to serogroups O157 (n=205), O26 (n=31), O103
(n=15), O111 (n=10), and O145 (n=11) (Table 1).
Isolates were collected by the Belgian national
VTEC reference laboratory between 2000 and 2007.
The majority (n=181) of the isolates originated from
humans suffering from diarrhoea, bloody diarrhoea,
HUS, or asymptomatic infection. Those isolates rep-
resented the five serogroups O157, O26, O103,
O111, and O145. Clinical manifestation was reported
for 131 of the isolates. In addition to the human iso-
lates, 91 isolates belonged to serogroup O157 exclu-
sively, isolates originated from animal sources (two
faecal samples from cattle, one faecal sample from a
dog, and one dust sample from a cattle barn) or
foods (including cattle carcasses (n=68), beef, minced
beef, carpaccio, and raw-milk cheese). Eighty-one of
these isolates possessed stx genes. Serogroups were
investigated by bacterial agglutination using O anti-
sera for O157, O26, O103, O111, and O145 (Statens
Serum Institute, Copenhagen, Denmark).

Detection of stx1, stx2, eae, ehx, espP and katP
gene sequences using PCR

The PCR assays for identifying gene sequences were
based on literature: for the stx1, stx2, eae, ehx gene
sequences, we used the primers and conditions re-
ported by Botteldoorn et al. [16]. For detection of
the katP and espP genes, we used the primers de-
scribed by Nielsen & Andersen [17] and the conditions
described by Botteldoorn et al. [16].

Stx2 genotyping

Isolates that gave a positive result for stx2 were tested
for the presence of stx2a and stx2c [18]. Subtypes of
stx were denominated according to the subtyping
nomenclature established at the 7th International
Symposium on Shiga Toxin (Verocytotoxin)-
Producing Escherichia coli Infections (Buenos Aires,
10–13 May 2009). Stx2 genes that differed from
stx2a and stx2c were considered to be undefined
subtypes.

2504 K. Verstraete and others

https://doi.org/10.1017/S0950268813000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268813000307


PFGE

PFGE was performed in accordance with the
PulseNet-Europe protocol (http://www.pulsenet-
europe.org/docs.htm). Genomic DNA was digested
by XbaI (Roche Diagnostics, Germany) and analysed
in 1% Seakem Gold agarose gels (Lonza, USA) in
0·5×TBE buffer [45 mM Tris, 45 mM boric acid,
1 mM EDTA (pH 8)] at 14 °C using the CHEF
Mapper system (Bio-Rad, UK). The runtime was 19
h at 6 V/cm, with initial and final switch times of
2·16 s and 54·17 s, respectively. Gels were stained
with ethidium bromide, destained in water, and digi-
tally captured under UV light. Gel images were visu-
ally analysed with BioNumerics version 6.5 (Applied
Maths, Belgium) using the XbaI-digested DNA from
Salmonella enterica Braenderup H9812 as a normali-
zation reference. The similarity between PFGE pat-
terns of the same serogroup was calculated using the
Dice coefficient (with an optimization of 1·0% and a
position tolerance of 1·0%), and they were grouped
together according to their similarities using the
unweighted pair-group method with arithmetic mean
(UPGMA). Pulsotypes were assigned based on the
difference in the presence or absence of at least one
band. Pulsogroups were delineated on the basis of
80% similarity according to Dice similarity. Isolates
that were not found within a group at 80% similarity,
were denominated single isolates. Pulsosubgroups
were delineated on the basis of 90% similarity accord-
ing to Dice similarity.

Statistical analysis

First, univariable logistic regression was performed to
determine the association between the presence of a
certain stx genotype, a certain genogroup and the
age of the patient (45 years vs. >5 years) (risk factors)
and the presence of HUS (dependent variable). Next,
significant risk factors were tested in a multivariable
logistic regression using a backwards stepwise proce-
dure. Statistical analyses were performed using SPSS
Statistics v. 20 (SPSS Inc., IBM Corporation, USA).
Statistical significance was considered at P<0·05.

The diversity in isolates of the same serogroup was
determined by calculating Simpson’s diversity index
with 95% confidence intervals as described by
Carriço et al. [19]. Simpson’s diversity index accounts
for the number and the size of pulsogroups and single
isolates for a certain serogroup. A low index indicates
that a high number of strains are located within the
same group. Agreement between the partition ofT
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pulsogroups and pulsosubgroups by PFGE analysis
and the virulence profile determined by PCR typing
was calculated using the adjusted Wallace index,
respectively, with 95% confidence intervals as de-
scribed previously [19]. A high adjusted Wallace
index is obtained if a virulence property is associated
well with a certain pulso(sub)group.

RESULTS

Virulence markers

The stx genotype and the presence of additional viru-
lence genes are listed in Table 2. Nine stx genotypes
were observed among isolates of O157 (Table 2). Of
these, stx2a (60/205 isolates, 29·3%), stx2c (65/205,
31·7%), and stx2a/stx2c (29/205, 14·1%) were the
most prominent. Stx genotype stx1 was not observed
in the O157 isolates, but the combinations stx1/stx2a,
stx1/stx2c, stx1/stx2a/stx2c, and stx1 combined with
an undefined subtype of stx2 were present in 12, 15,
three, and one isolates, respectively. Nine isolates of

O157 harboured a single undefined subtype of stx2
and 12 were stx negative (from cattle carcasses).
Isolates of O145 belonged to three stx genotypes, of
which stx2a was the most prominent (6/11) (Table 2,
shaded area). In the O26, O111 and O103 isolates,
the stx genotype stx1 predominated. Eae was found
in all isolates except one isolate of O103 (related to
a case of diarrhoea). Many combinations of large
plasmid-encoded genes (ehx, espP, katP) were
observed in isolates of O26, O103 and O145
(Table 2), whereas in all O111 isolates and almost
all of O157 these three genes were present.

PFGE patterns and clonal analysis

Isolates of serogroup O111 had the highest degree of
similarity (74·6%), followed by isolates of serogroups
O26 (72·1%), O157 (64·0%), O145 (63·8%), and
O103 (52·4%) (Table 3). The diversity of isolates of
the same serogroup was determined by Simpson’s
diversity index. No significant difference between the

Table 2. Virulence properties of STECO157, O26, O103, O111, and O145 isolates from humans, foods and animals
in Belgium between 2000 and 2007

Serogroup No. of isolates Stx genotype*

Additional virulence genes†

eae ehx espP katP

O157 205 stx2c (65) 205 205 200 201
stx2a (60)
stx2a/stx2c (29)
stx1/stx2c (15)
stx- (12)
stx1/stx2a (11)
stx2‡ (9)
stx1/stx2a/stx2c (3)
stx1/stx2‡ (1)

O26 31 stx1 (28) 31 25 24 25
stx2a (2)
stx/stx2a (1)

O103 15 stx1 (14) 14 15 12 11
stx1/stx2a (1)

O111 10 stx1 (6) 10 10 10 10
stx1/stx2a (4)

O145 11 stx2a (6) 11 11 9 6
stx1 (4)
stx2‡ (1)

Subtotals 272 271 266 256 254
99% 98% 94% 93%

* Subtypes of stx were denominated according to the subtyping nomenclature established at the 7th International Symposium
on Shiga Toxin (Verocytotoxin)-Producing Escherichia coli Infections (Buenos Aires, 10–13 May 2009).
†Number of positive isolates.
‡Undefined subtype of stx2 different from stx2a and stx2c. Heterogeneous results are indicated by grey shading.
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indices was observed, although O103 and O145
showed the highest diversity index.

Of the 205 isolates of O157, 160 clustered in two
pulsogroups (A, D; Fig. 1). Other pulsogroups con-
tained 2–12 isolates only, and nine single isolates
were found. Isolates from food or animal origin did
not cluster together, but were distributed in the differ-
ent pulsosubgroups. Undistinguishable pulsotypes
were isolated from human and non-human sources
and occasionally they were isolated many years
apart. The stx genotypes, and therefore also the viru-
lence profile, were heterogeneously distributed within
pulsogroups but clustered together to some extent in
pulsosubgroups with some exceptions. This obser-
vation is displayed in the Wallace index, which indi-
cated that two strains of the same pulsogroup have
only a 5% chance of presenting the same virulence
profile, and two strains of the same pulsosubgroup
have a 58% chance of presenting the same virulence
profile (Table 3). Isolates of the same pulsotype had
identical virulence profiles, except for two isolates
with an additional stx2c gene compared to the iso-
late(s) with the same pulsotype: one isolate in a cluster
of four pulsotypes from cattle carcasses (pulsogroup
A), one isolate in a cluster of five pulsotypes from
minced beef and human origin (pulsogroup D), but
with no reported clinical manifestations.

Of the 31 O26 isolates, 25 clustered in three pulso-
groups (Fig. 2a, A, B, C), and the other six isolates
were single isolates. Virulence profiles were highly
heterogeneous within pulsosubgroups (Fig. 2a). Two
isolates from humans hospitalized within 13 days of
each another were associated to the same pulsotype
(pulsogroup A) and had identical virulence profiles
(MB4074, MB4077).

Within two of the three pulsosubgroups of STEC
O103, virulence profiles differed in the presence/ab-
sence of katP (Fig. 2b). PFGE patterns with only two
bands of difference (pulsogroup B) were isolated from
sporadic cases that occurred 2 years apart; the virulence
profiles differed in the presence/absence of katP.

Of the isolates of serogroup O111, virulence profiles
were conserved within the pulsosubgroups (Fig. 2c).
This was displayed by a Wallace index of 1
(Table 3). Two sporadic cases that occurred 3 days
apart were associated with the same pulsotype (pul-
sogroup A) with identical virulence profiles.

Within two pulsosubgroups of O145 (in pul-
sogroups B and E), virulence profiles differed in stx
genotype or the absence/presence of espP (Fig. 2d).
Two epidemiologically related HUS cases wereT
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associated with the same pulsotype (pulsogroup E);
the virulence profiles differed in the presence or
absence of espP. Two sporadic HUS cases that

occurred 6 months apart were associated with PFGE
patterns (pulsogroup B) with only one band difference
but with a different stx genotype (stx1 or stx2a).
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Association between stx genotype, serogroup and
age with HUS

Multivariable logistic regression analysis deter-
mined that the odds of having HUS is less in
patients with the genotypes stx2a, stx2c, stx1/
stx2c, and stx1, compared to patients with the

genotype stx2a/stx2c (Table 4). In addition,
patients in the >5 years age group have lower
odds of developing HUS than patients aged
45 years (Table 4). The development of HUS was
not affected by the serogroup, as the effect of the
other risk factors, stx genotype and age, predominated
(Table 4).
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O157 cases and outbreaks

Isolates that could be associated with two outbreaks
and sporadic cases were found within the same pulso-
subgroup (Fig. 3a). Two of these O157 STEC isolates
were associated with an outbreak in a psychiatric insti-
tute in Ghent in February 2004. The outbreak
involved four HUS cases from which no STEC
could be isolated, but two STEC O157 isolates
(MB4054, MB4056) could be isolated from contact
cases. During the same month as the outbreak, six
sporadic cases were reported of which the isolates
showed 596% similarity to each other and to the out-
break isolate MB4054. One year later (February
2005), two siblings developed HUS. These isolates
(MB3997, MB3998) showed band patterns with
100% PFGE similarity. Isolates of a cattle carcass
and sporadic cases that occurred in different years
were also found within this pulsosubgroup. Viru-
lence profiles differed only in the presence/absence of
stx2c.

Five O157 STEC isolates (MB3916–MB3920)
included in this study were associated with a family
outbreak in June 2006. The family had spent a week-
end at a farm, after which two children contracted
bloody diarrhoea and one subsequently developed
HUS. STEC O157 could be isolated from the patients’
stools as well as from cattle faeces and dust samples
from the stables. The five isolates were of the same
pulsotype and were found within a pulsosubgroup
with 100% similarity (Fig. 3b), including isolates
from cattle carcasses and sporadic cases in different
years. Four days after the family outbreak, one spora-
dic case was reported. Virulence profiles were identical
for all isolates in the pulsosubgroup.

DISCUSSION

In Belgium, an average of about 48 cases of STEC
infections occur per year. Human STEC isolates col-
lected between 2000 and 2007 were intensively
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Fig. 2. Dendrogram, PFGE patterns, epidemiological data, and virulence profile of human (a) STEC O26, (b) O103,
(c) O111, and (d) O145 isolates, determined by PFGE analysis of XbaI-digested genomic DNA and UPGMA similarity
analysis using the Dice coefficient and PCR for virulence gene detection. Delineation of pulsogroups on the basis of 80%
similarity is indicated with a dotted-line triangle. Outbreak isolates are indicated by a solid-line rectangle. Sporadic cases
associated with identical pulsotypes or pulsotypes that differ by no more than two bands are indicated by a dotted-line
rectangle.
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analysed in this study. During the same period, 91
E. coli O157 isolates were recovered from food and
animal sources for monitoring and epidemiological
studies and included in this study. All isolates were
verified by the Belgian national VTEC reference lab-
oratory. In this study, isolates belonging to serogroups
O157, O26, O103, O111, and O145 from the current
collection were characterized with the objective of
determining their virulence potential and genetic relat-
edness, the association of the stx genotype, age and
serotype with HUS, and epidemiological features in
Belgium. Most studies include only one or a few
serogroups. We have defined several levels of genetic
relatedness on the basis of PFGE fingerprinting
ranging from pulsogroups (580% similarity) to pulso-
subgroups (590% similarity) and pulsotypes (iden-
tical fingerprints).

Serogroup O26 was the most common non-O157
serogroup causing human STEC infections in
Belgium. This concurs with the incidence of STEC
cases in the European Union from 2002 to 2006,
which ranks the serogroups in decreasing order as
follows: O157, O26, O103, O91, O145, O111 and
others [20]. For diagnostic reasons, only STEC iso-
lates of serogroup O157 were recovered from food
and animal sources. However, non-O157 serogroups
represent a large subset of STEC in cattle [21] and

are also found in food [22]. They were not targeted
in this study, therefore the isolates’ genetic relatedness
between human and non-human isolates could only be
investigated for O157. In addition, the small set of
non-human O157 study isolates does not represent
well the existing population of O157 isolates in ani-
mals and foods. The animal and food isolates did
not originate from a substantiated monitoring pro-
gramme whereas the human isolates did. Due to the
difference in completeness between the human and
non-human sample set, the diversity within these
two sample sets could not be compared.

Isolates of O157 displayed a wide variation of
stx genotypes. At the pulsogroup level, isolates of
different virulence profiles were heterogeneously dis-
tributed. However, at the pulsosubgroup level, con-
cordance was demonstrated using statistical tests,
which demonstrated that isolates of the same pulso-
subgroup were more likely to have identical virulence
profiles. In isolates of O26, O111 and O103, stx geno-
type stx1 predominated, whereas isolates of O145 dis-
played a heterogeneous distribution of stx genotypes,
with about half of the isolates harbouring genotype
stx2a. Similar associations between serogroups and
these specific stx genotypes have been described before
[23–26]. Undefined stx2 subtypes (divergent from
stx2a and stx2c) were observed for a number of

Table 4. Univariable and multivariable logistic regression model for HUS as outcome variable and age, stx genotype
and serogroup as risk factors

Univariable model Multivariable model

N P value OR (95% CI) N P value OR (95% CI)

Age 0·058 0·001
45 years 72 Ref. — — 70 — — —

>5 years 57 0·058 0·488 (0·232–1·024) 54 0·001 0·204 0·077–0·537
Genotype 0·001 <0·001

stx1 34 <0·001 0·022 (0·004–0·129) 33 <0·001 0·010 0·001–0·067
stx1/stx2a 8 0·241 0·357 (0·064–1·997) 7 0·273 0·344 0·047–2·369
stx1/stx2c 9 0·009 0·045 (0·004–0·453) 9 0·007 0·035 0·003–0·399
stx2a 42 0·063 0·325 (0·099–1·064) 42 0·027 0·233 0·064–0·847
stx2c 14 0·034 0·198 (0·04–0·886) 14 0·012 0·122 0·23–0·631
stx2a/stx2c 19 Ref. — — 19 Ref. — —

Serogroup 0·011 0·190
O103 12 0·999 0·001 (0·001–10)
O111 9 0·089 0·159 (0·019–1·327)
O145 9 0·032 10·162 (1·216–84·918)
O26 17 0·024 0·169 (0·03–0·788)
O157 84 Ref. — —

HUS, Haemolytic uraemic syndrome; OR, odds ratio; CI, confidence interval.
Standard error of the regression coefficient.
Bold indicates the P value of the risk factor.
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O103, O145 and O157 isolates. These stx2 genes could
either belong to subtypes stx2b, stx2d, stx2e, stx2f or
stx2g according to the subtyping nomenclature estab-
lished at the 7th International Symposium on Shiga
Toxin (Verocytotoxin)-Producing Escherichia coli
Infections (Buenos Aires, 10–13 May 2009). To
specify these stx2 subtypes, specific PCRs [27] or a
restriction fragment length polymorphism (RFLP)–
PCR assay [28, 29] can be used.

Isolates of O26, O103 and O145 displayed many
different combinations of large plasmid-encoded
genes (ehx, espP, katP), whereas these genes were con-
served in isolates of O111 and O157. This was in agree-
ment with earlier studies, which reported a great
heterogeneity in gene composition of large plasmids
observed in non-O157 STEC strains [13, 30]. The
intimin gene (eae) was found in all isolates of this

study, with only one exception for one O103 isolate.
In human clinical cases, intimin is involved in patho-
genesis. In food and animal isolates, however, the
presence of eae creates the potential for pathogenicity
in humans [31]. Based on the virulence profile, this
demonstrated that the O157 isolates originating
from food and animal sources are potential human
pathogens.

We observed a correlation between the virulence
profiles and the clinical manifestations of the human
isolates. Isolates with genotypes stx2a, stx2c, stx1/
stx2c, and stx1 had lower odds of HUS compared to
genotype stx2a/stx2c. This is in agreement with
reports of correlation of either stx2a, stx2c, or both
with severe human diseases [8, 32, 33]. Isolates har-
bouring stx genotype stx1 were the least likely to
cause HUS. This was most prominent in non-O157
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Fig. 3. Outbreak of STEC O157 in (a) a psychiatric institute in February 2004 and (b) a family outbreak of STEC O157
on a farm in June 2006, found within pulsosubgroups, determined by PFGE analysis of XbaI-digested genomic DNA and
UPGMA similarity analysis using the Dice coefficient. Virulence profiles were determined by PCR. Epidemiological data
are indicated. Outbreak isolates are indicated by a solid-line rectangle. Sporadic cases associated with identical pulsotypes
or pulsotypes that differ by no more than two bands are indicated by a dotted-line rectangle.
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isolates which mainly represent stx genotype stx1
(75%), but for which HUS cases were largely associ-
ated with stx2 (in 9/11 cases) and stx2a in particular
(8/9 cases). The difference in pathogenicity between
stx1 and stx2 has been explained by a structural differ-
ence and by a difference in biological activity demon-
strated in animal models [34]. Isolates harbouring stx1
were homogeneously distributed in human and non-
human isolates. Another approach for differentiating
the more virulent STEC isolates is single nucleotide
polymorphism (SNP) typing [35]. In that study,
Manning et al. identified a clade 8 group of STEC
O157 strains which was seven times more likely to eli-
cit HUS than the other strains. In our study, however,
we were not able to determine the presence of clade 8
isolates in our collection because PFGE cannot pre-
dict these hypervirulent variants of STEC O157 and
we did not perform SNP typing [36].

Despite the correlation between the stx genotype
and clinical manifestations, isolates that produced
the same clinical manifestation were not seen to be
highly genetically related. Furthermore, isolates of
the same pulsotype or pulsosubgroup were associated
with different clinical manifestations. A possible
explanation is that clinical manifestations depend
on patient-related factors such as age, gastric acidity,
the use of antibiotics, and genetic factors [37].

The serogroups evaluated in this study significantly
differed in their association with HUS, but when age
and stx genotype were included to the multivariable
regression model, the effect of serogroup was ruled
out. Patients aged >5 years had lower odds of devel-
oping HUS compared to patients aged 45 years.
This finding has also been observed in many other
studies in the literature [3].

Epidemiologically related isolates harboured the
same pulsotype and virulence profile, except for two
isolates of O145 which differed in the presence of
espP. Sonntag et al. [25] stated that isolates with
different virulence profiles cannot be part of a diffuse
outbreak. However, our data support the view that
genetic mobility may occur during the course of an out-
break, in agreement with Proctor et al. [38], which
may lead to differences in the virulence profile. Epi-
demiological relationships have been suggested
for some sporadic cases based on undistinguishable
pulsotypes, identical virulence profiles, a short period
between cases, and the restricted area (Belgium).
However, indistinguishable PFGE patterns do not
equivocally demonstrate an epidemiological connec-
tion between cases [39], and although these cases

occurred within a short period, infection by means
of different routes cannot be excluded [39]. Therefore,
epidemiological relationship can only be suggested but
not confirmed for sporadic cases. Nevertheless, the
same pulsotypes were observed in humans, foods,
and animals, which confirms the animal reservoir of
STEC and food as a possible vehicle. The epidemiolo-
gical persistence of isolates was also demonstrated by
observing indistinguishable or very similar PFGE pat-
terns during different years. Some virulence profiles
were identical, but some showed minor variations
due to genetic evolution.

In summary, we have genetically characterized a
collection of isolates of STEC O157, O26, O103,
O111, and O145 originating from humans, foods
and animals in Belgium between 2000 and 2007.
This characterization revealed virulence genetic
profiles, whole genome genetic variations and relation-
ships between isolates on different levels. Pulsotypes
representing pathogenic clones were found in humans,
foods and animals over a 7-year period.
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