
AN INVESTIGATION ON THE LOGICAL
STRUCTURE OF MATHEMATICS (VII)1}

SET-THEORETICAL CONTRADICTIONS

SIGEKATU KURODA

1. Preliminaries
For an investigation on the foundations of mathematics to get an adequate

mutual understanding, it is necessary to describe the generalities of the investi-

gation with the parallel description of its particularities. Although one should

obtain an exact and precise knowledge only through the latter, it is almost

impossible, without the former, to get the underlying ideas and the fundamental

principles, upon which the investigation is based.

A logical system was defined in Part (I) and, after studying the funda-

mental properties of the logical system, it was denoted by2) UL (Universal

Logic). Although some generalities were described in the introductions in Parts

(I) and (II) it seems necessary to describe some information about the position

of the investigation, specifically about the conception of the nature of set-

theoretical parodoxes and about the way of formulating special branches of mathe-

matics in UL. For, the position of the investigation has mainly developed by

the consideration of these two subjects. In the following lines, therefore, I shall

describe the generalities of UL in limiting the description to these two subjects.

Before doing this, it is to be remarked that the way of expression may

be common to all such descriptions of generalities. Namely, we should use

in them some words rather vaguely, relying on the traditional usage, association,

and imagination, which the words are carrying and other words in the precise

sense of which the definitions are, however, given in detail in the description of

the particularities of the investigation. Therefore, some inexactness or imper-

fection, however regrettable it may be, seems to be unavoidable, where the quick

Received July 9, 1958.
*> This is the Part (VII) of my papers with the same major title. The knowledge of

Part ( I ) and (II) (Hamburger Abhandlungen and of Part (IV) (Nagoya Math. J. vol. 13
(1958)) are assumed.

2> Cf. the beginning of the introduction in Part (II).
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110 SΪGEKATΐί KURODA

mutual understanding on the leading ideas of the investigation is mainly aimed

at. Therefore, the ultimate exact information must, after all, be obtained by

the description of particularities in detail. Even though, a description of gener-

alities is useful and, in some cases, indispensable, so far as the transmission of

our thought should be accomplished by an unspecified language common to us all.

2. Set-theoretical "paradoxes"

Semantical paradoxes, like Richard's, are not considered here, but exclusively

syntactical contradictions, like RusselΓs, Cantor's, Burali-forti's and so on, so

that the contradictions are to be considered to occur with respect to some

specified logical system or to some specified language, here to UL.

As an example, we shall consider the typical syntactical contradiction, i.e.,

Russell's. Let, namely, a set R be defined by the defining formula

(1) Vw.

Assuming that the quantifying range of Vw in (1) contains R itself, we get

straightforwardly from (1) the contradiction

(2) Re=R = RφR

by substituting R for u in (1). There have been many discussions about

Russell's "paradox"; but where is an illegitimate reasoning in such simple

logical inferences, each step of which is quite usual in logic ? Our assumptions

are two: the assumption of the existence of R by the defining formula (1) and

the assumption concerning the quantifying range of the element variable u of

R. It is evident that we get legitimately the contradiction (2) under these two

assumptions.

Indeed, impredicative reasoning such as found in an inference of the

deduction of Russell's contradiction is a particular reasoning, well distinguished

from the predicative one. However, instead of rejecting impredicative inferences

occurring in the above deduction, together with all those occurring in mathe-

matics, we shall find later that the cause of the contradictions lies in some other

respects.

3. Contradictions in logic

Logic develops where there is a contradiction. Before the set-theoretical

contradictions entered into the field of logic, the syntactical contradictions in
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logic had been all sentential ones, as are found in predicate logic. Any one of

these contradictions is deduced legitimately from a finite number of assumptions.

We have to accept the simple fact that a certain contradiction is deduced legiti-

mately under certain assumptions. This is quite of the same nature as in the

case of set-theoretical contradictions. However, in the case of a sentential

contradiction we can always deny any one of the assumptions which lead to

the contradiction. This is a very simple way to avoid the contradiction so as

to keep the law of contradiction valid. As for the set-theoretical contradictions,

there is no such simple way to control these contradictions. This is a completely

different nature compared with the case of sentential contradictions. However,

it is a usual matter in logic that a contradiction is legitimately deduced from

some assumptions.

4. Assumptions of set-theoretical contradictions

Now, we examine the assumptions of set-theoretical contradictions in order

to examine whether or not there is something to be denied. As is already

revealed in Russell's typical example, the essential part of the assumptions of

set-theoretical contradictions consists generally in the range of set-variables and

in the defining formulas of some finite number of sets, eventually including the

principle of extensionality.

We consider the former first. The variable in logic is one of the primitive,

undefinable notions. For instance, the variable for individuals in predicate logic

is the variable for individuals the variable for formulas is the variable for

formulas: nothing else. No particular properties are to be attributed to vari-

ables in logic other than the rules of use of the variables in the logical system

to be defined. Indeed, there may be a finite or infinite number of types of vari-

ables in a logical system, for instance, as variables for individuals or for formulas

in predicate logic.

When we treat set variables, there are ways to classify the types of vari-

ables, for instance, into two kinds: variables for sets and those for classes.

There may be infinitely many ways to define logical systems with set variables

by introducing finite or infinite number of types of variables. It is also true

that, if the set variables are not classified into, at least, two types, then the

logical system may turn out to contain infinitely many number of contradictions.

However, the cause of set-theoretical contradictions might not necessarily lie
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in the confusion of types of variables but in a finer nature of logical inferences,

as will be shown later by taking the natural-number theory as an example.

Moreover, sets, classes, concepts, functions, mappings, etc. are considered

to be the formal logical notions which belong ultimately to the same category,

and the notion of types of variables is a notion corresponding to categories.

Therefore, there might be no sufficient reason to classify the types of variables

at the very starting point of the research, and so, the logical system UL with

universal set-variables as unique type of variables was formulated, naturally

under the sacrifice of an infinitely many number of contradictions entering into

UL. However, it would be better to embrace contradictions within the logical

system in order to control them.

As a consequence, the universal constant V with the characteristic property

(3) V*. *eV

has any "set" (dependent variable) definable in UL as its element,3' and the

null 0 with the characteristic property

(4) Vx. *ΦO

has the dual property that no dependent variable definable in UL can be an

element of 0. Thus, the quantifier in UL and that in the intuitive logic acquire

some analogy. For the latter which ranges, for instance, over real numbers

any real number constructed intuitively can be an instance for the bound vari-

able, while for the former any object defined formally in UL can be an instance

for it.

Next, we consider the defining formulas of dependent variables (sets and

concepts). Since the trend of the investigation aims at the general character

as far as possible, no restriction should be laid also in defining sets and concepts.

Therefore, a dependent variable p=pXι""Xn is introduced recursively into UL by

a defining formula

(5) Vw

where F is any arbitrary well formed formula with e as unique dyadic relation

and with uf Xit . . . , xn as complete system of free variables in F. In F may

occur any dependent variables previously defined.4'

3> Cf. § 10 for t h e u n i v e r s a l c o n s t a n t V.
4) Cf. t h e i n t r o d u c t i o n i n P a r t ( I ) a n d a l s o § 5 , P a r t ( I ) .
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In this way, owing to such general character of the attitude of the investi-

gation, it turns out that there is no way to deny any one of the assumptions

from which set-theoretical contradictions are deduced. This is a remarkable

nature which distinguishes the set-theoretical contradictions from the sentential.

5. Proof in UL

To observe such a general logical system as UL, there must be some re-

striction. I shall next explain this. Any variable in UL is either an independent

variable such as x, y, . . . , u, . . . , or a dependent variable, including constant,

such as 0, V, R, ρx" 'Xn

y . . . , defined by some defining formulas.

Now, in a proof, we use usually following inferences when we substitute a

dependent variable p for a bound variable x:

( i ) \fxFx has been proved. Therefore, we have Fp.

(ii) In order to prove ZVΛΓF* we shall prove 7FP.

(iii) 73xFx has been proved. Therefore, we have 7FP.

(iv) In order to prove 3xFx we shall prove Fp.

In this way, a finite number of dependent variables, like p above, are used

in a proof P for a formula, say //. The formula of the principle of extension-

ality:

(I)

may be also used as premise in P (cf. §11, Part ( I ) ) . All the dependent vari-

ables, used in P, together with those which are needed to define them, should

be collected. Let a be the sequence of the defining formulas of the collected

variables, eventually including the formula ( I ) . We call a the premises of the

conclusion H or of the proof P, and P the proof for the assertion a VH. Thus,

a proof with H as conclusion, or more generally the provability of H, is defined

only when the premises a are explicitly given. This is a strong restriction for

the concept of UL-proof, although it restricts in no way the system UL itself.

In this way, what we can call proof in mathematics can be a proof in UL.

However, if the premise a contains, for instance, Russell's R, then σYH has

a proof for any //, since a contradiction implies every formula. However, if we

restrict the proof in UL to irreducible ρroof,δJ then it holds that a contradiction

5) Cf. Chapter V, Part (II) and also Introduction in Part (I),
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does not imply every formula irreducibly, and everything can be put in order.

This is a weak but important way to control the set-theoretical contradictions:

in the irreducible theory the law of contradiction does not hold in the sense

that both a YH and a V 7H may be irreducibly proved for some H and j . δ ) I do

not enter here into details of irreducible theory, but would like only to mention

that the proof for Russell's contradiction in § 2 is legitimate since it is irreducible.

Our main concern here is the bearing of set-theoretical contradictions to

consistent theories in UL.

6. Consistent theory and set-theoretical contradiction

Let T be a theory in UL and Σ the species of all sets of T. A set in a

proof is, roughly speaking, a dependent vairable which is substituted for a bound

variable, at least once at a position in the proof in the inferences given above

in § 5, in such a manner that the dependent variable can not be eliminable from

the proof. The species Σ of sets of the theory T is the species of those and

only those variables which are allowed to use as sets in any proof in T.6)

Now, if we metalogically know that no contradiction can be proved for any

closed7' sequence a of formulas, consisting of a finite number of defining formulas

of variables belonging to Σ and of the formula (I), then the theory T is con-

sistent (cf. Introduction in Part (I)) .

Any dependent variable can be used as "concept" in any proof of T without

destroying the consistency of T. Also any dependent variable p can be used

even as set without destroying the consistency of T, provided that the defining

formula of p is only used to "understand" the meaning, or more precisely, that no

proof constituent is associated in any proof in T to the defining formula of p.

For instance, the formulas Re=V, RΦO etc., are theorems of any consistent theory,

where R is Russell's R. In this way, the universal constant V contains any con-

sistent and inconsistent "set" as its element in any consistent theory.

The use of inconsistent sets in a consistent theory, explained above, is rather

a trivial example for the legitimate use of (inconsistent) dependent variables.

In order to show an untrivial example of the legitimate and illegitimate use of

a dependent variable and also to show a way to formulate a theory of mathe-

matics in UL, the formulation of a natural-number theory in UL is treated in

6> Cf. Part (X), fortheoming.
'ϊ Cf. § 11, Part (I),
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the next article.

7. Formulation of a natural-number theory in UL

As is stated Λn the introduction in Part ( I ) the set N of all natural num-

bers is defined by the defining formula

(N) Vw". wesNsW. Q&xκ\fy. y^x+y'^x. *u&x,

where 0 is the null constant and the successor y' of y is {y}, the definitions of

which are as usual. The natural number theory Ti(N) is defined and its con-

sistency is proved in Part (VIII).8)

We shall prove in T ^ N ) the following formulas:S ) (premises are omitted)

*N*1 O^N.

N*2

N-t3

N*4

N*5

N*6

N*7

N*8

N*9

N*10

N * l l

The dependent variables used as sets in the following proofs of the formulas

N * l - N * l l are only as follows:10*

8> Appearing in this same volume.
9) All formulas except *N*1 are irreducible, namely the proofs given below are all

irreducible except that for *N*1. But the irreducibility is not our concern at present.
10> Particular attention is required when a formula C(=Fp) obtained from a formula

Fil, previously proved, by replacing a by a dependent variable p is used as cut formula of
an ordinary cut in a proof P. For, if the variable a is used in the proof oί Fa as a substi-
tute for some bound variable, then p is a set in the proof of C(=F"), accordingly also in
the proof P. If this is not the case, then p is not necessarily a set in P, since the cut
formula C{~Fp) is proved without using p as set. For instance, the cut formula of the
cut N*10 in the proof of N*ll is the formula obtained from N*10 by replacing a by a'
and a is used in the proof of N*10 as set at the right above of the proof, since a is substi-
tuted for the element variable u of the set P for induction. Therefore a' is a set in the
proof of N t l l .

The variable P in N*5 is an independent variable.
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( i ) The variable isological to {a} in the proofs of N*2, N*7, N*8, N*9,

N*10, and N*ll

(ii) 0 in the proofs of *N*1, N*7, N*8, N*9, N*10, and N*ll;

(iii) N in the proof of N*6;

(iv) Russell's set R as set for induction in the proof of N*7, accordingly

in those of N*8 and N*9;

(v) P in N*10, defined as set for induction, accordingly in N*ll.
a a

In the following proofs, the premises are omitted. \fxFx and ΞxFx mean

the restriction of the quantifying range of x to a, namely V#. x&a+Fx and

3x. x<=aκFx, respectively.

-+Spf. \ίy.

N*2

- 7 :
Vv.

(2) " (3)

5
( 3 ) -

-~7m

(5) (4)

N*3 a'—b'+a — b N*4 Λ'ΦO

N*3 - N*4

1

- 7V*.

a-a

a-b

a'^a&b

c

x^b1

(1)

( = )

The converse a=b+a'~b' of N*3 is a speeial case of the metatheorem for

equality.
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* O Φ P

2 /Vv. yeP+y'eP

ε=P Vy. y
(1) (2)

, κ\fx'

N-6

3

- Z : QgNλVv.

(1) (2)

5

6

; 7 : O
Vjy.

(5) ( 6 )

The formulas N*l-N*5 are Peano's system of axioms for the natural num-

ber theory. Therefore by N*6 we see that the set N characterizes the set of

all natural numbers a§ in Peano's system of axioms.
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N*7

Define R by

N*7

0*1 - s'j=R
2 se.5

s'jzS

( = )

In this proof, RusselΓs set R is used as set for induction. This is legiti-

mate, because our reasoning remains within the consistent theory Tj(N).

N*8 αεN4α'$β

N*8

Cut N*7
~~7

From N*8 follows

N*9

Define the set P for induction by

- N*10

N I I Φ N 2

3_ Ex. a=x'
7V

0 = 0
Spf. - yer (2)
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N

Spf. s' = 0
N

3x. s' — x'

5

N

(5, = )

*N*1 e
sΦ*' Cut N*2

7 . feN-»ί'eN

(6) ( 5 , 7 , = )

N * l l
1

3

-

-

(1)

Cut

a

N

N*3 5

' = r' α

Cut
Cut

r

N*4
N*10

β'=Jtf'

N

(5) (2, 4, = )

8. Legitimate and illegitimate use of dependent variables

As is seen in the proof of N*7, from which the formula N*9

follows, the legitimate use of Russell's set R in the consistent theory Ti(N) is

allowed. From this fact we see that the cause of the set-theoretical contra-

dictions consists neither in the assumption of the existence of a certain set nor

in the fact that the quantifiers range over the domain which contains incon-

sistent sets but in the way of use of the inconsistent sets in a proof. Therefore,

in order to find the cause of the set-theoretical contradictions more detailed

analysis of logical inferences is required. The author can not find at present

any general criteria for it: it seems there is none of such.

Recapitulating the nature of set-theoretical "paradoxes", we can say as

follows. An illegimate use of a dependent variable is the use pf the variable

at a position in a proof of a consistent theory in such a way that the use of

the variable at the position in the proof is not allowed by the definition of the
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theory. Any use of any dependent variable in an irreducible proof is legitimate.

In this case any set-theoretical paradox gives rise to at least one irreducible

proof of contradiction in UL.

9. Formulation of axiomatic theories in UL

We have deduced the system of Peano's axioms from the defining formula

of N. As is stated in § 21, Part (II), about the definition of 0, V, and the ordered

n-tuple <mi, . . . , mk>, there is arbitrariness also in the definition of N. Namely,

we may use some other dependent variables than those we applied as the number

0 and the successor yf of v. In any case, once the system of Peano's axioms is

proved, we can use Peano's axioms as premises in the natural number theory

Ti(N) instead of the defining formula of N. This is the way to formulate an

axiomatic theory in UL. The important thing is that all the axioms of an axio-

matic theory in UL must, at first, be deduced from the defining formulas of a

finite number of dependent variables.11*

As another example for an axiomatic theory in UL we shall treat one from

among the branches of abstract mathematics to make contrast against natural

number theory as concrete mathematics. Namely, we shall define the concept

of topological space123 in UL, i.e. a dependent variable TpSp0, where D is an

independent variable and i£e=TρSp° is read "E is a space on which a topological

structure is defined by O" or'E is a topological space with O as the set of all

open sets of E".

First, we define %(a), ©(«) and anb, as usual, respectively by13)

Π ) Let T be an axiomatic theory in UL, which is assumed to be consistent and to con-
tain the natural number theory to some sufficient extent. Then by GδdeΓs theorem there
is a formula A in T which is unprovable in T and intuitively holds. Then, as was stated
by Gόdel, we get a consistent axiomatic theory Tf by adjoining the negation of A to the
system of axioms of T, and in T' some theorems, like 7A, contradict our intuitive
knowledge. However, T' is not an axiomatic theory in UL, unless ~7Ά. has been proved
in some consistent extension of T in UL. It is, therefore, an open problem, whefher there
is a consistent axiomatic theory in UL, which includes the natural number theory to suf-
ficient extent, and in which a provable formula contradicts our intuitive knowledge.

12> Cf. for instance, N. Bourbaki: Elements de mathematique, Premiere partie, Livre
III, Chapitre I, Structures topologiques, Paris, 1951, pp. 9, 10.

13) The quantifier \u for the element variable u is omitted.
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Then, we define two constants Oi and O2 and a dependent variable PE depending

on an independent variable E, respectively, by

Now, TpSp0 is defined by

It is evident that if £e=TpSpD, then E satisfies the axioms of topological space

with D as the set of all open sets.

We do not enter here into the- deduction of the theory of topological spaces.

(To do this, we must, first of all, define the species of sets of the theory of

topological spaces.) However, by these two examples, it has been shown how

the axiomatic theories in mathematics can be formulated in UL. It is also seen

that there is no difference in principle between the formulation in UL of abstract

and concrete theories in mathematics. Specifically, the natural number theory

is formulated in UL in the generality of set theory. In this generality even the

sets which give rise to "paradoxes" are legitimately used in the natural number

theory.

10* Universal constant V

Now, we observe the universal constant V which is defined by

(7) Vw. W<=VΞ=. U-U.

Instead of the definiens u-u we may use, to define V, any formula Fu in UL,

which has only u as free variable and is provable in UL without any premise

thereby bound variables but no dependent variables may occur in Fu.

The formula (3) is proved only by using the formula (7) as premise, and

so, by (3),

(8) p<=V

is a theorem in UL for any variable p.U) Hence the universal constant V may

be compared with Dedekind's "meine Gedankenwelt",15* although Dedekind did

14> In the proof of (8) the set p is used only for "understanding".
15> Cf. Gesammelte mathematische Werke, Braunschweig, 1932, vol. Il l, p. 357. Cf. also

Bolzano: Paradoxien des Unendlichen, Leibzig, 1851 § 13, which is mentioned by Dedekind,
ibid, in the foot note.
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not have a precisely defined logical system in the sense of our age. Dedekind's

expression "die Gesamtheit aller Dinge, welche Gegenstand meines Denkens sein

kδnnen" restores a precise meaning in interpreting with respect to UL as "the

constant V in UL that has as its element any dependent variable which can be

defined in UL". The formula (8) is, therefore, not only a theorem in UL, but

also a theorem of any consistent subsystem of UL. For instance, VeV, ReV,

NeV etc. are theorems of the consistent natural number theory Ti(N).

Generally, a theorem a YH in UL is a theorem in any consistent subsystem

of UL, provided that all the dependent variables used as sets in the proof of

a YH are sets of the subsystem. However, there are theorems of some consistent

subsystems of UL, which are not theorems of other consistent subsystems of

UL. Therefore, some properties of a dependent variable are naturally not

invariant for all consistent subsystems of UL therein a property of a dependent

variable means a property of the variable which is expressed by a theorem or

by a finite or infinite number of theorems of some particular consistent sub-

systems of UL. To this category belongs the problem whether V is finite or

infinite.

We see in Part (VI) that

(9) V*. x = Y

is a theorem in the consistent V-system, so that V consists only of V itself, when

V is considered in V-system.

Let us denote by T{mi, . . . , m&}, mi, . . . , mu being any dependent vari-

ables, the theory of which the species of sets consists of mi, . . . , ink and all

elementary sets generated by mu . - . , ra^.16'

The following formulas V*0-V*4 and 0*1-0*4 are not only theorems of UL

but also of the consistent subsystem T{0, V} of UL: the sets used in the proofs

are: 0, V in V*0 and V*2; 0, V, {V} in V*3; 0, V, V, . . . , V(Λ"υ in V*4.

V*l

0*1

V*0

(0ΦV is expressed by 7V#. ΛΓΦV or 7V#. χe=0.)

16> Cf. §3, Part (VIII), appearing in this same volume.
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v*o - v*o

VeV OΦO

V * l 0*1

V*2 Vφ(α} 0*2

V*2 - 0*2

1 Vφfl
2 OΦΛ Cut ( = )

~~0=β a = V O Φ V
(2) cut'U) V * 0

V*3 V Φ U b)

. * , * > _
- 7 , V = ί

(1) „ .
as iα v^cz ' ί TT \ r r \

using (2) ^ \VfΦ{fl, Of
-7.

Cut( = ) < {V}φό C u t ( =

V Φ { V } 0 = ̂  ^>={V} θφ{V}
Cut ( = ) V * ^ " Cut' ( » )

Now, denoting {m} by m', we see that

(10) 0, 0', 0", . . .

are all different each other: 0 Φ 0 ( W ) for n^X by 0*2, and assuming 0', . . . , 0(w>

are different each other we have O ( n Φθ ( w + 1 ) for r = l , . . . , n by the formula

El*3 I 7 j of elementary sets and by our assumption. Therefore,

(11) O ( m )Φθ ( Λ )

are theorems for any metalogical number ?n, n in any consistent subsystem of

17> Cf. P a r t (III), Nagoya Math. J. vol. 13 (1958).
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UL of which the species of sets contains any member of (10). Therefore, the

infinite number of formulas (11) expresses the fact that V is infinite when V

is considered in such a consistent subsystem of UL.

On the contrary, in the consistent subsystem T{V) of UL, it is unprovable

even that there exist two different sets: T{V} is a subsystem of the consistent

V-system and in V-system all dependent variables are equal to V hence, the

existence of two different sets in T{V} contradicts the consistency of the

V-system. On the other hand, it is not difficult to prove that the formula

(9) is unprovable in T{V}. Therefore we have

THEOREM. In the consistent subsystem T{V} of UL, it is undecidable ivhether

there exist two different sets.

However, if the species of sets of a consistent subsystem T of UL contains

(12) 0, V, V, V",

then the universal constant V considered in T contains infinite sets. For, the

proof of V*2 is a proof in T, and accordingly, V Φ ( V } is a theorem of T; hence,

we can prove, recursively as before, that the sequence (12) consists of different

sets each other (V*0 and 0*2 are used in the proof).

In such a theory T we have as 7Λ-theorem

V*4 V Φ U , ...,an)

for any metalogical number n. Namely, V*2 is proved by using two different

sets 0 and V V*3 by three different sets 0, V, and {V} and similarly V*4 is

proved by using n+1 different sets 0, V, V, . . . , V(rt~"υ. The dual formula

*0*4 OΦUJ, . . . , an)

is also a theorem (not irreducible) of T (cf. the proof of 0*2).

In this way, we have seen that there are consistent subsystems of UL, in

which either V is proved to be finite, or infinite, or else it is undecidable whether

V is finite or infinite.

What we have seen from the above description is that the universal constant

V, which corresponds to the logical universe of Bolzano-Dedekind can be used

in UL with the same extent of rigorousness a£ we use the null constant 0 in

UL. So we shall deduce the formulas V*5-V*9 concerning V, which are theorems
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of T{V}. The only dependent variable used as set in the following proofs is V

in the proof of V*8. Notice that V in other places as well as 3fKα), $(V) and

<S(a) are used as concepts.

V*5 3x. xΦa. 4βφV *V*6

V*5 - V*β

2
(D—

V*l

*V*7

V*7

*V*6

V*8 Φ(Λ)=V-»Λ = V V*9

V*8 - V*9

1

(W)~

2
1)

-

- 7
ΰx. x&V+xea
\ ιv&V*w^a 3

4

v * i (2)^ (2 )- > . "

( 4 ) ( 3 )

11. Relation between N and V

Now, we observe the relation between V and N. We shall first prove

N*N

Define the set P for induction by
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- 7 '- OePλV^. yeP+y'eP.
OeP - 5ΦP

- OΦN - s'eP
-7V*. # Φ N

 2 s = N

O e N - s'ΦN
* N * 1 [Nj-

 ^VΛ;- Λ:S

Nes'^
- NΦ{S}

N Φ S
(2)

C u t ( = )

-»NeP
- N Φ P

N=N
( = )

N e N

N E N
(1)

The constant N is used as set in this proof. The formula N*N is a theorem of

the consistent theory Ti(N). Since Ti(N) is a consistent extension of T{0, V},

all the formulas deduced in §10 and §11 are theorems of Ti(N). We have from

N*N and V*5

N*12 NΦV.

The formula N^V is a consequence from V*l. On the contrary we have

N*13 V Φ N

i V Φ N Cut N*10

- 7m VgNλVφQ-»3A;. Y=x
VeN~VΪ0

V*OΠ) t r . , n ftί>)"^ 3 Λ . V = #

*Spf.

V*2

We define φ(M)(«), w=O, 1, 2, . . . , successively, by ${Oi(a) = ay

Then, we have from N*12 and V*8

for any metalogical number n. N*̂ β is also a theorem of the consistent natural

number theory Ti(N), a fortiori in any consistent extension of Ti(N). Therefore,

if Ti(N) can be extended to a certain consistent theory T of finite types of

variables with natural numbers as basic type, then N*$ is also a theorem in T.

12. Defining formula of V

We can define V by
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as is said in § 10. But no dependent variable may occur in the definiens of V.

In order to show an example in which V is defined by other dependent variables,

we shall use in this article the following definition of V:

(13) \u.

The closed sequence V, R, S, contains now Russell's set R. Russell's set R by

this definition leads to contradiction. So is also V. While βeV is proved irre-

ducibly as follows

(14)

(1)

so that ReV is an irreducible truth, we have also RΦV irreducibly as follows:

: RΦV

- 7\ Re=SvRe=R

ReR

(1)

Moreover, we have the irreducibly proved formulas : R^S, R Φ S Re=R,

In each proof of these formulas as well as RΦV, the constant R is used as set,

while in the above proof (14) of «eV, the constants S and R are used as con-

cepts. Therefore «eV with the definition (13) of V is a theorem of UL.
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