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Abstract. We consider metrizable ergodic topological dynamical systems over locally
compact, σ -compact abelian groups. We study pure point spectrum via suitable notions
of almost periodicity for the points of the dynamical system. More specifically, we
characterize pure point spectrum via mean almost periodicity of generic points. We then
go on and show how Besicovitch almost periodic points determine both eigenfunctions
and the measure in this case. After this, we characterize those systems arising from Weyl
almost periodic points and use this to characterize weak and Bohr almost periodic systems.
Finally, we consider applications to aperiodic order.
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1. Introduction
This article is concerned with dynamical systems with pure point spectrum. The dynamical
systems in question consist of a continuous action of a locally compact abelian group
on a compact metric space together with an invariant probability measure on the space.
Pure point spectrum means that there exists an orthonormal basis of eigenfunctions. In a
sense, such systems are the simplest possible dynamical systems. Their study is a most
basic ingredient in the conceptual theory of dynamical systems as witnessed by such
fundamental results as the Halmos–von Neumann theorem or the Furstenberg structure
theorem. Accordingly, a variety of characterizations for pure point spectrum has been
established over the decades.

Recent years have brought two new lines of interest in such systems. One line is given
by a series of works which analyze such systems via (weak) notions of equicontinuity
[11, 16–19, 22]. The main thrust of these works is to characterize pure point spectrum
as well as various strengthened versions thereof (see also [15, 23, 40, 41] for related
work). The other line comes from the investigation of aperiodic order. Aperiodic order,
also known as mathematical theory of quasicrystals, has emerged as fruitful field of (not
only) mathematics over the last three decades; see, e.g., [2] for a recent monograph and
[5, 24] for recent collections of surveys. A key feature of aperiodic order is the occurrence
of (pure) point diffraction. A central result in the mathematical treatment of aperiodic
order gives that pure point diffraction can be understood as pure point spectrum of suitable
associated dynamical systems. In fact, this result is the outcome of a cumulative effort of
various people over the last decades [4, 12, 21, 26, 30, 32, 37].

A common feature of all these works is that their considerations share a flavor of almost
periodicity. On an intuitive level this is not surprising. After all, pure point spectrum means
that all spectral measures are pure point measures. This, in turn, is equivalent to the Fourier
transforms of these measures being almost periodic [20, 35]. In this way, almost periodicity
properties of functions and their averages come into play in a very natural way.

However, what is lacking is a description of pure point spectrum via almost periodicity
properties of the points of the dynamical system. The goal of this article it to provide such
a characterization and to study some of its consequences.

In order to do so, we introduce for points in dynamical systems the concepts of mean
almost periodicity, Besicovitch almost periodicity, Weyl almost periodicity, weak almost
periodicity and Bohr almost periodicity, respectively.
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After the discussion of the necessary background in §2, our first achievement is
Theorem 3.8 in §3. This theorem says that a system has pure point spectrum if and only if
every (or even just one) generic point is mean almost periodic. If the dynamical system is
ergodic this is then equivalent to almost all points being mean almost periodic.

As for mean almost periodicity of points, in turn various characterizations are discussed
in §3. One of them proceeds via averages of distance between the orbit of the point
and a shifted orbit. Another characterizes mean almost periodicity of a point via almost
periodicity properties of the sampling of continuous functions along the orbit of this point.
In this way, we have a rather complete and clear picture of the meaning of mean almost
periodic points for general dynamical systems.

This picture ties in with various earlier results. In the case where the group is just the
integers, a related characterization via sampling of bounded measurable function is given
in [7] for measurable dynamical systems. In the more specific situation of subshifts over
a finite alphabet, there is also a characterization of pure point spectrum via the so-called
Besicovitch–Hamming almost periodicity of almost all configurations [40, Lemma 5]. For
constant length substitutions, the equivalence between mean almost periodicity and pure
point spectrum was proved in [36, Lemma VI.25]. In the particular case of point processes
in R

d , these results have been established in [21, Theorem 4.4]. Moreover, we point out
a companion article [31] dealing with fundamental issues in aperiodic order via almost
periodicity of measures. As an application, it treats the situation of a special dynamical
system, namely translation bounded measures dynamical systems. These systems are
particularly relevant to aperiodic order. In these systems, the points are measures and this
allows one to work with almost periodicity properties of measures. Of course, this approach
it not available for general dynamical systems.

In terms of methods it should be emphasized that our proof of Theorem 3.8 is
completely different from those given in [7, 31, 40]. It relies on the characterization of
pure point spectrum by Bohr almost periodicity of an averaged metric obtained recently
in [29].

In §4, we then introduce Besicovitch almost periodic points. Although the condition
of Besicovitch almost periodicity is strictly stronger than mean almost periodicity, we can
still show that an ergodic dynamical system has pure point spectrum if and only if almost
all points are Besicovitch almost periodic and this holds if and only if there exists one
generic Besicovitch almost periodic point (Theorem 4.7). In this respect the difference
between mean and Besicovitch almost periodicity is not too large. The advantage of
Besicovitch almost periodic points is that they allow for averaging with characters. In
particular, it is possible to compute the eigenfunctions via the Besicovitch almost periodic
points (Theorem 4.7). In fact, the complete spectral theory of the dynamical system
can be directly computed from any single typical Besicovitch almost periodic point
(Theorem 4.4).

In §5, we introduce Weyl almost periodic points. Weyl almost periodicity of a point is
substantially stronger than Besicovitch almost periodicity. In fact, a point is Weyl almost
periodic if and only if its orbit closure is uniquely ergodic and has pure point spectrum
with continuous eigenfunctions (Theorem 5.5). In this case, all points in the orbit closure
are Weyl almost periodic (Lemma 5.3). To put these results in perspective, we note that
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[11, 16] showed that a dynamical system is mean equicontinuous if and only if it is
uniquely ergodic with pure point spectrum and continuous eigenvalues. Hence, a point
is Weyl almost periodic if and only if its orbit closure is mean equicontinuous. Thus, our
results can be understood to provide a natural pointwise counterpart to the results of [16].

In §6, we investigate two special classes of Weyl almost periodic points, namely Bohr
and weakly almost periodic points, respectively. This allows us to characterize Bohr and
weakly almost periodic dynamical systems. In particular, we reprove a main result of [33].
An application of our results to aperiodic order is given in §7. This includes an alternative
proof for the main results on measure dynamical systems contained in [31].

Our article gives a comprehensive treatment of most relevant concepts of almost
periodicity in the context of pure point spectrum. Some parts of our considerations allow
for simple abstractions. As this may be of value for further investigations, we include a
brief discussion of some basic results in §8.

It seems that Besicovitch almost periodicity is not well known (for groups other than R)
and there is also some ambiguity in the way it is defined. For this reason, we include
some appendices discussing the almost periodicity properties needed in this article as
well as basic properties of the class of continuous functions with these almost periodicity
properties.

2. Background on dynamical systems, pure point spectrum and the upper mean
In this section, we review the necessary concepts from dynamical systems and introduce
the upper mean M , which is crucial for our subsequent considerations.

Throughout the paper, we denote the set of continuous complex-valued functions on the
topological space Y by C(Y ).

We consider a compact metric space X equipped with a continuous action

α : G×X −→ X, (t , x) �→ αt (x),

of a locally compact, σ -compact, abelian group G. We then call (X, G) a dynamical
system (over the space X). Often, we will also be given a probability measure m on X,
which is invariant under the action of G. We then call (X, G, m) a dynamical system as
well. We write tx instead of αt (x) for t ∈ G and x ∈ X. The composition on G itself is
written additively and the neutral element of G is denoted as e. We fix a Haar measure
on G, which is unique up to multiplication by a positive constant. The Haar measure of a
measurable subset A ⊂ G is denoted by |A| and the integral of an integrable function f on
G by

∫
f (t) dt .

Whenever a dynamical system (X, G) is given, we furthermore make use of:
• a metric d on X which generates the topology;
• a Følner sequence (Bn) in G, that is, each Bn is an open relatively compact subset of

G and

|(Bn \ (t + Bn)) ∪ ((t + Bn) \ Bn)|
|Bn| → 0, n → ∞,

for all t ∈ G.
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Note that a Følner sequence exists in a locally compact abelian group G if an only if G is
σ -compact [39, Proposition B6]. For this reason, we always assume that G is σ -compact.

The orbit of x is given byGx := {tx : t ∈ G} and the orbit closureGx is the closure of
the orbit. If the orbit closure of x ∈ X agrees with X, the element x is called transitive. If
every x ∈ X is transitive the dynamical system is called minimal. The dynamical system
(X, G) is called uniquely ergodic if there exists only one invariant probability measure on
X. We then denote this measure by m and call (X, G, m) uniquely ergodic as well.

The dynamical system (X, G, m) is ergodic if any invariant measurable subset A of
G satisfies m(A) = 1 or m(A) = 0. If (X, G, m) is ergodic, any Følner sequence has a
subsequence (Bn) for which Birkhoff’s ergodic theorem holds, that is,

lim
n→∞

1
|Bn|

∫
Bn

f (tx) dt =
∫
X

f dm

is valid for almost every x ∈ X whenever f : X −→ C integrable [34].
Whenever a dynamical system (X, G, m) and a Følner sequence (Bn) is given, a point

y ∈ X is called m-generic with respect to the Følner sequence if

lim
n→∞

1
|Bn|

∫
Bn

f (ty) dt =
∫
X

f (x) dm(x)

holds for any continuous f : X −→ C. If the measure m and the sequence (Bn) are clear
from the context, we just speak about generic points. Generic points play a key role in our
subsequent considerations as they determine the measure and, in this sense, the whole
dynamical system. As is well known (and not hard to see), the set of generic points
is measurable and invariant under the group action. Moreover, the set of generic points
has full measure if (X, G, m) is ergodic and Birkhoff’s ergodic theorem holds along the
underlying Følner sequence. Although we do not need it here, it is instructive for our
subsequent considerations to note that a converse of sorts holds as well: if m is an invariant
probability measure such that the set of m-generic points with respect to some Følner
sequence has full measure, then (X, G, m) is ergodic. Thus, ergodicity is a necessary and
sufficient condition for having an ample supply of generic points at ones disposal. This
is ultimately the reason that most (but not all) of our theorems in the following deal with
ergodic systems.

A dynamical system (X, G, m) is said to have pure point spectrum if there exists an
orthonormal basis of L2(X, m) consisting of eigenfunctions. Here, an f ∈ L2(X, m) with
f �= 0 is called an eigenfunction if for any t ∈ G there exist a ξ(t) ∈ C with

f (t ·) = ξ(t)f

in the sense of L2(X, m) functions. In this case, each ξ(t) belongs to the group

T := {z ∈ C : |z| = 1}
and the map

ξ : G −→ T, t �→ ξ(t),

can easily be seen to be a continuous group homomorphism. It is called eigenvalue. Clearly,
eigenfunctions to different eigenvalues are orthogonal. As X is compact and metrizable,
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L2(X, m) is separable. Hence, the set of eigenvalues is (at most) countable. We denote by
Pξ the projection onto the eigenspace of ξ if ξ is an eigenvalue and set Pξ = 0 if ξ is not
an eigenvalue. The set of eigenvalues of (X, G, m) will be denoted by Eig(X, G, m). As
is well known the set of eigenvalues is a group if (X, G, m) is ergodic.

For our further discussion, we also rely on some concepts defined purely with respect to
G (that is, they do not need the dynamical system). Let (Bn) be a Følner sequence, and let
B(G) denote the set of bounded measurable real-valued functions on G. Then, we define
the associated upper mean via

M(Bn) : B(G) −→ [0, ∞), M(Bn)(h) := lim sup
n→∞

1
|Bn|

∫
Bn

h(s) ds.

If the Følner sequence is clear from the context we drop the subscript (Bn). Clearly, M
gives rise to seminorm on the space of bounded measurable functions on G via f �→
M(|f |).

A subset A of G is called relatively dense if there exists a compact set K ⊂ G with

G =
⋃
a∈A

(a +K).

A continuous bounded f : G −→ C is called Bohr almost periodic if for any ε > 0 the
set of t ∈ G with

‖f − f (· − t)‖∞ < ε

is relatively dense. Here, the supremum norm ‖ · ‖∞ for bounded complex-valued
functions on G is defined via ‖f ‖∞ = sups∈G |f (s)|.

3. Mean almost periodic points and pure point spectrum
In this section, we introduce and study mean almost periodic points. The main result of this
section then provides a characterization of pure point spectrum via mean almost periodicity
of points.

Whenever (X, G) is a dynamical system with metric d and (Bn) is a Følner sequence,
we define

D = D
(Bn)
d : X ×X −→ [0, ∞), D(x, y) := M(s �→ d(sx, sy)).

Clearly, D is a pseudometric. Moreover, the Følner condition on (Bn) easily gives that D is
invariant, that is, satisfies D(tx, ty) = D(x, y) for all x, y ∈ X and t ∈ G. Furthermore,
for each x ∈ X the functionG → [0, ∞), t �→ D(x, tx), is uniformly continuous. Indeed,
continuity at t = 0 is easily seen from the definition. Moreover, due to the invariance and
the pseudometric properties we infer

|D(x, tx)−D(x, sx)| ≤ D(tx, sx) = D(x, (s − t)x). (♣)

When combined with continuity at t = 0, this gives uniform continuity. We refer to D as
the averaged metric on X associated to d and (Bn).

Definition 3.1. (Mean almost periodic points) Let (X, G) be a dynamical system, let d
be a metric on X generating the topology, let (Bn) be a Følner sequence and let D be
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the associated averaged metric. Then, a point x ∈ X is called mean almost periodic with
respect to d and (Bn) if for every ε > 0 the set

{t ∈ G : D(x, tx) < ε}
is relatively dense.

Remark. Almost periodicity properties with respect to M are often connected with the
name of Besicovitch. We use this for a strengthened version to be introduced in the
following. Here we stick to the term ‘mean’ as this seems to be the common term within
the study of equicontinuity properties in recent years (see, e.g., [11, 16, 19] as well as the
discussion in Appendix C).

By definition, mean almost periodicity depends on the chosen Følner sequence. In our
subsequent discussion of mean almost periodic points, however, we often refrain from
explicitly referring to the Følner sequence (Bn) if it is clear from the context which
sequence is involved.

LEMMA 3.2. Let (X, G) be a dynamical system and let d be a metric on X generating
the topology. An x ∈ X is mean almost periodic if and only if the function G � t �→
D(x, tx) ∈ R is Bohr almost periodic.

Proof. Define f on G via f (t) := D(x, tx). We have already noted that the function f is
uniformly continuous. Clearly, Bohr almost periodicity of f implies that x is mean almost
periodic (as f (0) = 0). Conversely, (♣) gives |f (t + s)− f (s)| ≤ f (t) for all s, t ∈ G
and mean almost periodicity of x implies Bohr almost periodicity of f.

Our next aim is to discuss independence of this definition from the metric and to provide
an alternative way of defining mean almost periodicity via density of superlevel sets. The
proofs of the corresponding statements are not difficult and rather close to each other.
They rely on some simple facts stated in the next proposition. We denote the characteristic
function of a set A ⊂ G by 1A (that is, 1A(x) = 1 for x ∈ A and 1A(x) = 0 for x /∈ A).

PROPOSITION 3.3. Let f : G −→ [0, 1] be given. Then, for any δ > 0 the following
estimates hold for the set A(f , δ) := {s ∈ G : f (s) ≥ δ}:
(a) M(1A(f ,δ)) ≤ 1/δ M(f );
(b) M(f ) ≤ M(1A(f ,δ))+ δ.

Proof
(a) We clearly have 1{s∈G:f (s)≥δ} ≤ 1/δf . This easily gives (a).
(b) We compute

M(f ) ≤ M(f · 1{s∈G:f (s)≥δ})+M(f · 1{s∈G:f (s)<δ}) ≤ M(1{s∈G:f (s)≥δ})+ δ.

This finishes the proof.

LEMMA 3.4. (Independence of the metric) Let (X, G) be a dynamical system with
metrizable X and let (Bn) be a Følner sequence on G. Then, mean almost periodicity of an
x ∈ X does not depend on the chosen metric (provided it generates the topology).
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Proof. Let e, d be two metrics on X, which generate the topology. For x ∈ X and t ∈ Gwe
define the functions dt ,x and et ,x on G via dt ,x(s) = d(sx, tsx) and et ,x(s) = e(sx, tsx),
respectively. We show that for any ε > 0 there exists a δ > 0 such that for any t ∈ G and
x ∈ X we have

M(dt ,x) < ε

whenever M(et ,x) < δ holds. The statement with the roles of e and d reversed can be
shown analogously and taken together these two statements prove the lemma.

Without loss of generality we assume d , e ≤ 1.
Let ε > 0 be given. Choose δ′ > 0 with d(z, y) < ε/2 whenever e(z, y) < δ′. Set

δ := δ′ · ε
2

.

If M(et ,x) < δ, then Proposition 3.3(a) gives

M(1{s:et ,x(s)≥δ′}) ≤ 1
δ′
M(et ,x) <

δ

δ′
= ε

2
.

Furthermore, we note that, by the definition of δ′, we have

M(dt ,x1{s:et ,x(s)<δ′}) ≤ ε

2
.

Given this we can now estimate

M(dt ,x) ≤ M(dt ,x1{s:et ,x(s)≥δ′}))+M(dt ,x(s)1{s:et ,x<δ′}) <
ε

2
+ ε

2
= ε.

This is the desired statement.

By the previous lemma mean almost periodicity of a point is independent of the
underlying metric. Hence, we can (and will) from now on refrain from specifying a metric
when talking about mean almost periodicity.

We define the upper density of a subset A ⊂ G via

Dens(A) := M(1A).

LEMMA 3.5. (Mean almost periodicity via density of superlevel sets) Let (X, G) be a
dynamical system with metrizable X and let (Bn) be a Følner sequence on G. Then, the
following assertions for x ∈ X are equivalent:
(i) the point x is mean almost periodic;

(ii) for any δ > 0 the set of t ∈ G with

Dens({s ∈ G : d(sx, tsx) ≥ δ}) < ε

is relatively dense for any ε > 0.

Proof. We use the notation of the proof of the preceding lemma.
(i)�⇒(ii): Let δ > 0 and ε > 0 be arbitrary. By assertion (i), the set of t ∈ G with

M(dt ,x) < δε is relatively dense. Now, for any such t ∈ G we obtain from Proposition
3.3(a)

M(1{s:dt ,x(s)≥δ}) < ε.

https://doi.org/10.1017/etds.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.14


532 D. Lenz et al

(ii)�⇒(i): Let ε > 0 be given. Assume without loss of generality that d ≤ 1. Set
δ = ε/2. By assertion (ii), the set of t ∈ G with Dens({s ∈ G : d(sx, tsx) ≥ δ}) < ε/2
is relatively dense. Choose such a t ∈ G. Then, Proposition 3.3(b) gives

M(dt ,x) ≤ M(1{s:dt ,x(s)≥δ})+ δ = Dens({s ∈ G : d(sx, tsx) ≥ δ})+ δ <
ε

2
+ ε

2
= ε.

This finishes the proof.

We finish this section with the discussion of a further characterization of mean
almost periodicity via suitable functions. To state this characterization (and similar
characterizations in subsequent sections) it is useful to define for x ∈ X and f ∈ C(X)
the function

fx : G −→ C, fx(t) = f (tx).

Moreover, we set

Ax := {fx : f ∈ C(X)}.
Clearly, Ax is an algebra.

PROPOSITION 3.6. (Completeness of Ax) The algebra Ax is complete with respect to
‖ · ‖∞.

Proof. Consider a sequence (f (n)) in C(X) such that (f (n)x ) is a Cauchy sequence with
respect to ‖ · ‖∞. Then, a direct ε/3 argument shows that the restrictions of f (n) to the
orbit closure of x converge uniformly to a continuous function on the orbit closure. Now,
the desired statement follows from Tietze’s extension theorem.

A bounded measurable function f : G −→ C is mean almost periodic with respect to
(Bn) if, for every ε > 0, the set

{t ∈ G : M(|f (·)− f (· − t)|) < ε}
is relatively dense. The set of uniformly continuous mean almost periodic functions is an
algebra and closed under complex conjugation and uniform convergence (see Appendix B).

As a consequence of the previous considerations, we can now characterize mean almost
periodicity via functions.

LEMMA 3.7. (Mean almost periodicity via functions) Let (X, G) be a dynamical system
and let (Bn) be a Følner sequence on G. For x ∈ X the following assertions are equivalent.

(i) The point x is mean almost periodic.
(ii) Every element from Ax is mean almost periodic.
(iii) The set {f ∈ C(X) : fx is mean almost periodic} separates the points of Gx.
(iv) For any s ∈ G the function d(s)x is mean almost periodic, where d(s) ∈ C(X) is

defined via d(s)(y) := d(sx, y).

Remark. As the proof shows, condition (iii) could equivalently be formulated with Gx
replaced by the whole space X.
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Proof. (iv)�⇒(iii): This follows as the d(s), s ∈ G, clearly separate the points of Gx.
(iii)�⇒(ii): Invoking the corresponding properties of mean almost periodic functions,

we can easily see that {f ∈ C(X) : fx is mean almost periodic} is an algebra, which is
closed under complex conjugation and uniform convergence. This algebra clearly contains
the constant functions. Moreover, by assumption (iii), it separates the points of Gx.
Furthermore this algebra contains every function f ∈ C(X), which vanishes on Gx (as
fx = 0 for any such functions). Thus, this algebra even separates the points of X. Now,
assumption (ii) follows from Stone–Weierstraß’ theorem.

(ii)�⇒(i): Choose a countable set C ⊂ C(X) such that any f ∈ C satisfies ‖f ‖∞ ≤ 1
and such that the elements of C separate the points of X. Let cf > 0, f ∈ C, with∑
f∈C cf < ∞ be given. Then,

e(z, y) :=
∑
f∈C

cf |f (x)− f (y)|

is a metric on X, which generates the topology. Moreover, by assumption (ii), the function
fx is mean almost periodic for any f ∈ C(X) and, hence, any f ∈ C. This easily gives
that the set of t ∈ G with M(s �→ e(sx, (t + s)x)) < ε is relatively dense (compare with
Proposition B.4). Thus, x is mean almost periodic with respect to the metric e. As mean
almost periodicity does not depend on the metric, we conclude the proof of assumption (i).

(i)�⇒(iv): Let z ∈ X be arbitrary and define d(z) ∈ C(X) by d(z)(y) := d(z, y). The
triangle inequality for d gives

M(|d(zx)(· − t)− d(z)x |) = M(s �→ |d(z, (s − t)x)− d(z, sx)|)
≤ M(s �→ d(sx, (s − t)x)) = D(x, −tx)

for any t ∈ G and z ∈ X. Now, mean almost periodicity of dzx(·) follows (for any z ∈ X)
from assumption (i).

We now come to the main result of this section, which provides a characterization of
pure point spectrum via mean almost periodic points.

THEOREM 3.8. Let (X, G, m) be a dynamical system and let (Bn) be a Følner sequence
on G. Assume that there exists a generic point for (X, G, m). Then, the following assertions
are equivalent.

(i) The dynamical system (X, G, m) has pure point spectrum.
(ii) Every generic point of X is mean almost periodic.

(iii) One generic point of X is mean almost periodic.
If (X, G, m) is ergodic and the Birkhoff theorem holds along (Bn), these statements are
also equivalent to the following statement.
(iv) Almost every x ∈ X is mean almost periodic.

Remark
(a) In the particular case of point processes in R

d , this result has been proven in [21,
Theorem 4.4].

(b) A related result for subshifts over a finite alphabet can be found in [40, Lemma 5].
There, pure point spectrum (i) is characterized via a variant of statement (iv) given
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by a mean almost periodicity condition on points defined via a metric (close in spirit
to what is discussed in Lemma 3.5).

It is worth noting here that in [40] the author works over a finite alphabet and
uses a version of the mean defined with lim inf. Under the settings of [40], assuming
ergodicity, one can show that the limit exists almost surely, and hence the choice of
lim inf or lim sup does not matter. In particular, for ergodic systems, one can deduce
[40, Lemma 5] from our result. We prefer to work with lim sup because it defines a
pseudo-metric, whereas lim inf only gives rise to a partial semi-metric.

(c) The equivalence between mean almost periodicity of an individual element and pure
point diffraction has been proven for constant length substitutions in [36, Lemma
VI.25], for Meyer sets in [6, 21] and in general in [31].

Proof. In the ergodic case almost every point is generic. Hence, (ii)�⇒(iv) and
(iv)�⇒(iii) follow. Thus, we now turn to showing equivalence between assertions (i),
(ii) and (iii) in the general case. We clearly have (ii)�⇒(iii). To show (i)�⇒(ii) and
(iii)�⇒(i) we define

d : G −→ [0, ∞), d(t) =
∫
X

d(x, tx) dm(x).

The main result of [29] says that assertion (i) is equivalent to d being Bohr almost periodic.
Thus, it remains to show that:
• Bohr almost periodicity of d implies (ii);
• (iii) implies Bohr almost periodicity of d .
Now, for t ∈ G we can consider ft : X −→ [0, ∞), ft (x) = d(x, tx). Then, ft is clearly
continuous. Thus, whenever y ∈ X is generic, we find

d(t) =
∫
X

d(x, tx) dm(x) =
∫
X

ft (x) dm(x) = M(s �→ ft (sy)) = D(y, ty)

for every t ∈ G. Moreover, the triangle inequality gives that d is Bohr almost periodic if
and only if the set

{t ∈ G : d(t) < ε}
is relatively dense in G for all ε > 0. Putting this together we easily obtain that d is Bohr
almost periodic if and only if one (every) generic y ∈ X is mean almost periodic.

We emphasize that the first part of the preceding theorem does not need an ergodicity
assumption and illustrate this using the following example.

Example: pure point spectrum in non ergodic case. Consider {0, 1} with discrete topology
and X = {0, 1}Z with product topology. Equip X with the shift action of Z given by
αn(x) = x(· − n) for n ∈ Z. Let 1 and 0 be the elements of X which are constant equal
to 1 and 0, respectively. Then, clearly each of these elements is invariant under the shift
action and so are then the sets {0} and {1}. Thus,

m := 1
2 (δ0 + δ1)
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is an invariant probability measure (where δp denotes the unit point mass at p). Obviously,
m is not ergodic. The space L2(X, m) is two-dimensional and

√
2 · 1{0},

√
2 · 1{1} is an

orthogonal basis consisting of eigenfunctions (to the eigenvalue 1). In particular, (X, Z, m)
has pure point spectrum. Now, consider the point x ∈ X with x(−k) arbitrary for k ≥ 0
and x(k) = 1 if k ∈ {2n, . . . , 2n + 2n−1 − 1} for some n ∈ N and x(k) = 0 otherwise.
Then, it is not hard to see that x is generic for m with respect to the Følner sequence
Bn = {1, . . . , 2n}. Thus, the theorem gives that x is mean almost periodic. In this example
neither 0 nor 1 are generic. Hence, m does not give mass to generic points and the set of
generic points has measure zero. Note that the construction of x could easily be modified
to yield a transitive generic point (by including suitable finite words of slowly increasing
length between the blocks of ones and zeros in x).

Combining the previous result, Theorem 3.8, with the characterization of mean almost
periodicity via functions in Lemma 3.7, we obtain the following.

COROLLARY 3.9. Let (X, G, m) be an ergodic dynamical system with metrizable X and
assume that Birkhoff’s ergodic theorem holds along (Bn). Then, the following assertions
are equivalent.
(i) The dynamical system (X, G, m) has pure point spectrum.

(ii) For almost every x ∈ X the set {f ∈ C(X) : fx is mean almost periodic} separates
the points of X.

Remark. A variant of this statement (with assertion (ii) replaced by the stronger condition
that Ax consists only of mean almost periodic functions) is shown in [28] based on an
earlier version of [31]. Our proof is different. Note also that for ergodic systems over
G = Z, it is known that pure point spectrum is equivalent to Z � n �→ f (nx) belonging to
the Besicovitch class for almost every x ∈ X whenever f is a bounded measurable function
on X, see Theorem 3.22 in [7]. The condition of Besicovitch class is stronger than mean
almost periodicity (see also the next section).

If the system (X, G, m) is uniquely ergodic, then every x ∈ X is generic irrespective of
the underlying Følner sequence (Oxtoby’s theorem). Thus, from the previous theorem we
obtain immediately the following corollary.

COROLLARY 3.10. Let (X, G, m) be a dynamical system and let (Bn) be a Følner
sequence on G. Assume that (X, G, m) is uniquely ergodic. Then, the following assertions
are equivalent.

(i) The dynamical system (X, G, m) has pure point spectrum.
(ii) Every x ∈ X is mean almost periodic.

(iii) One x ∈ X is mean almost periodic.

Remark. The concept of mean almost periodicity depends on the chosen Følner sequence.
To see this, consider X := {0, 1}Z with product topology and the shift action of Z and
the Bernoulli measure m (product measure of the measures giving equal weights 1/2 to
{0} and {1}). This system is ergodic and m almost every x ∈ X contains arbitrary long
stretches of zeros. For each of those x we can then choose a Følner sequence (Bn) with
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M(s �→ d(sx, (t + s)x) = 0 for all t ∈ Z (by each Bn being chosen ‘within’ a long stretch
of zeros with distance to the boundary of these stretches increasing in n). Hence, each of
these x is mean almost periodic. On the other hand, as the system does not have pure point
spectrum, we obtain from Theorem 3.8 that not every of these x will be almost periodic
with respect to the standard Følner sequence Bn = {0, . . . , n} along which Birkhoff’s
ergodic theorem holds.

4. Besicovitch almost periodic points and eigenfunctions
In this section, we discuss a strengthened version of mean almost periodicity, namely
Besicovitch almost periodicity. We show that pure point spectrum can also be characterized
via this strengthened version. In fact, our results can be understood as saying that in a
dynamical system with pure point spectrum both eigenfunctions and eigenvalues can be
read of from any of its (generic) Besicovitch almost periodic points.

We consider a σ -compact, locally compact abelian group together with a Følner
sequence (Bn). As usual, the set of all continuous group homomorphisms ξ : G −→ T is
denoted as Ĝ and called the dual group of G. We say that a bounded function f : G −→ C

is Besicovitch almost periodic if for any ε > 0 there exist k ∈ N, ξ1, . . . , ξk ∈ Ĝ and
c1, . . . , ck ∈ C with

M

(∣∣∣∣f −
k∑
j=1

cj ξj

∣∣∣∣
)
< ε.

A discussion of basic properties of uniformly continuous Besicovitch almost periodic
functions is given in Appendix C. This shows, in particular, that any uniformly continuous
Besicovitch almost periodic function is also mean almost periodic and admits an average
(see also the following). The discussion also shows that the set of these functions forms an
algebra and is closed under uniform convergence.

Definition 4.1. (Besicovitch almost periodic points) Let (X, G) be a metrizable dynamical
system and let (Bn) be a Følner sequence. Then, a point x ∈ X is called Besicovitch almost
periodic with respect to (Bn) if Ax consists only of Besicovitch almost periodic functions.

As in the definition of mean almost periodicity, Besicovitch almost periodicity also
depends on the chosen Følner sequence. In our subsequent discussion, however, we often
refrain from explicitly referring to the Følner sequence (Bn) if it is clear from the context
which sequence is involved.

Remark
(a) To set this definition in perspective, we refer to Lemma 3.7. This lemma shows that

a point is mean almost periodic if and only if Ax consists of mean almost periodic
functions only.

(b) Note also that the statements of Lemma 3.7 remain true (with essentially the same
proof) after ‘mean almost periodic’ is replaced with ‘Besicovitch almost periodic’.

(c) As Besicovitch almost periodic functions are mean almost periodic, any Besicovitch
almost periodic point is mean almost periodic. The converse is not true. To see
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this consider X := {0, 1}Z with product topology and the shift action of Z. Set
Bn := {0, . . . , n} for n even and Bn = {−n, . . . , −1} for n odd. Consider now
y ∈ X with y(k) = 1 for k ≥ 0 and y(k) = 0 otherwise. Then, it is not hard to see
thatD(y, ny) = 0 for all n ∈ Z. Hence, y is mean almost periodic. On the other hand,
consider f : X −→ {0, 1} with f (x) = x(0). Clearly f is continuous. Moreover,

an := 1
|Bn|

∑
k∈Bn

f (ky)

does not converge (as a2n = 1 and a2n+1 = 0 for all n ∈ N). By the discussion in
Appendix C (see also Proposition 4.2), this shows that fy is not Besicovitch almost
periodic. Hence, y is not Besicovitch almost periodic.

We now give a characterization of Besicovitch almost periodic points via existence of
means. To state it, we first introduce some notation. For a bounded measurable function
h : G −→ C, we define the mean or average of h with respect to (Bn) by

A(h) := lim
n→∞

1
|Bn|

∫
Bn

h(t) dt

whenever the limit exists.

PROPOSITION 4.2. (Averaging along orbits) Let (X, G) be a dynamical system and let
(Bn) be a Følner sequence. Then, the following assertions are equivalent for x ∈ X.
(i) The point x is Besicovitch almost periodic.

(ii) For any f ∈ C(X) there exists a countable set Ff ⊂ Ĝ such that the limits

A(|fx |2) = lim
n→∞

1
|Bn|

∫
Bn

|f (tx)|2 dt and A(fxξ) = lim
n→∞

1
|Bn|

∫
Bn

f (tx) ξ(t) dt

exist for all ξ ∈ Ff and

A(|fx |2) =
∑
ξ∈Ff

|A(fxξ)|2

holds.
Moreover, in case that assertions (i) and (ii) hold, A(f ξ) exists and equals zero for f ∈
C(X) and ξ ∈ Ĝ \ Ff .

Proof. This is a direct consequence of the definition of Besicovitch almost periodicity of
a point and Proposition C.4 in Appendix C.

Definition 4.3. (Frequency) Let (X, G) be a dynamical system and let x ∈ X be a
Besicovitch almost periodic point. Then, every ξ ∈ Ĝ with A(fxξ) �= 0 for some
f ∈ C(X) is called a frequency of x. The set of all frequencies of x is denoted by Freq(x).

Here is the first main result of this section. It shows that any Besicovitch almost periodic
point completely determines a dynamical system with pure point spectrum.

THEOREM 4.4. Let (X, G) be a dynamical system, let (Bn) be a Følner sequence and
let p ∈ X be a Besicovitch almost periodic point. Then, there exists a (unique) ergodic
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probability measure m on X such that p is generic with respect to m. The dynamical
system (X, G, m) has pure point spectrum and Eig(X, G, m) = Freq(p) holds. To each
eigenvalue ξ ∈ Eig(X, G, m) there exists a (unique) eigenfunction eξ ∈ L2(X, m) with∫

X

f eξ dm = A(fpξ)

for all f ∈ C(X).
Proof. Obviously, the map

� : C(X) −→ C, f �→ A(fp),

is linear and positive (that is, A(fp) ≥ 0 for f ≥ 0). Hence, there exists a unique measure
m on X with �(f ) = ∫

X
f dm. Clearly, m(X) = ∫

X
1 dm = A(1) = 1. By the Følner

property of (Bn), the mean A is invariant and, thus, so is �. This easily gives that m is
invariant. Thus, m is an invariant probability measure.

We now turn to the construction of the eigenfunctions. For ξ ∈ Ĝ consider the map

�ξ : C(X) −→ C, f �→ A(fpξ).

This map is obviously linear and defined on a dense subspace of L2(X, m). By the
Cauchy–Schwarz inequality, A(1) = 1 and the construction of m we find

|�ξ(f )|2 = |A(fpξ)|2 ≤ A(|fp|2)A(1) =
∫
X

|f |2 dm.

Hence,�ξ can be extended to a linear continuous map, again denoted by�ξ , on the whole
L2(X, m). By Riesz’s lemma, there exists an eξ ∈ L2(X, m) with ‖eξ‖ ≤ 1 and

�ξ(f ) =
∫
X

f eξ dm

for all f ∈ C(X). Define

E := {ξ ∈ Ĝ : eξ �= 0}.
By construction, ξ ∈ Ĝ belongs to E if and only if there exists an f ∈ C(X) with
A(fpξ) �= 0. Hence, E = Freq(p) holds. In particular, we have A(fp�) = 0 for all f ∈
C(X) and � ∈ Ĝ \ E. A short computation shows for t ∈ G,

ξ(−t)
∫
X

f eξ dm = ξ(−t)A(fpξ)
= A(fpξ(t + ·))

(A invariant) = A(fp(−t ·)ξ)
(construction of m) =

∫
X

f (−t ·) eξ dm

(m invariant) =
∫
X

f eξ (t ·) dm

for all f ∈ C(X). As these f are dense in L2(X, m) this gives

eξ (t ·) = ξ(t)eξ
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for all t ∈ G. This shows that eξ is an eigenfunction (to ξ ) for each ξ ∈ E. Clearly,
eigenfunctions to different eigenvalues are orthogonal.

Next, we show that the eξ , ξ ∈ E, are normalized and form a basis. This gives that
E = Eig(X, G, m) and together with the already shown E = Freq(p), this will then also
imply Eig(X, G, m) = Freq(p).

By Parseval’s inequality, the definition of m and Proposition 4.2, we have the following:

∑
ξ∈E

∣∣∣∣
∫
X

f eξ dm

∣∣∣∣2

≤
∫
X

|f |2 dm

= A(|fp|2)
(Proposition 4.2) =

∑
ξ∈Ĝ

|A(fpξ)|2

(construction of E) =
∑
ξ∈E

|A(fpξ)|2

(construction of eξ ) =
∑
ξ∈E

∣∣∣∣
∫
X

f eξ dm

∣∣∣∣2

.

This shows

∑
ξ∈E

∣∣∣∣
∫
X

f eξ dm

∣∣∣∣2

=
∫
X

|f |2 dm

for all f ∈ C(X). This is only possible if ‖eξ‖ = 1 for all ξ ∈ E and (eξ ) form an
orthonormal basis of L2(X, m).

It remains to show ergodicity: for each eigenvalue ξ ∈ E we have constructed an
eigenfunction eξ and we have shown that these form a complete set (that is, eξ , ξ ∈ E,
is an orthonormal basis). Hence (as each of these eigenfunctions belong to different
eigenspaces), each eigenspace is one dimensional. In particular. the eigenspace to the
eigenvalue 1 is one dimensional and the system is ergodic.

Remark. Note that the proof relies (and only relies) on the characterizing properties of
Besicovitch almost periodic points given in Proposition 4.2.

The previous theorem shows that any Besicovitch almost periodic point is generic with
respect to a (uniquely determined) measure. It may well be that different Besicovitch
almost periodic points are generic with respect to different measures. Consider, for
example, the full shift X = {0, 1}Z with T x(n) = x(n+ 1). Then, any periodic element
of X is Besicovitch almost periodic. Clearly, elements with different periods will not be
generic with respect to the same measure. This motivates the following definition.

Definition 4.5. (Generic Besicovitch almost periodic points) Let (X, G) be a dynamical
system and let (Bn) be a Følner sequence on G. Then, for any invariant probability measure
m on (X, G), we denote by Bap(X, G, m) the set of those Besicovitch almost periodic
points which are generic with respect to m.
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We have the following consequence of the preceding theorem.

PROPOSITION 4.6. Let (X, G, m) be a dynamical system and let (Bn) be a Følner
sequence. Then, Bap(X, G, m) is a measurable invariant set.

Proof. Clearly, Bap(X, G, m) is invariant as both the set of generic points and the set of
Besicovitch almost periodic points are invariant. If Bap(X, G, m) is empty, there is nothing
left to show. Thus, consider the case Bap(X, G, m) �= ∅. By Theorem 4.4, the dynamical
system (X, G, m) then has pure point spectrum and the set of its eigenvalues Eig(X, G, m)
equals Freq(p) for any p ∈ Bap(X, G, m). Set E := Eig(X, G, m).

CLAIM. Let D be a dense subset of C(X). Then, we have p ∈ Bap(X, G, m) if and only if
the following three points hold:
• A(fp) exists and equals

∫
X
f dm for all f ∈ D;

• A(fpξ) exists for all ξ ∈ E and f ∈ D;
• A(|fp|2) = ∑

ξ∈E |A(fpξ)|2 for all f ∈ D.

Proof of claim. Consider p ∈ Bap(X, G, m). Then, p is generic and the first point holds
(even for all f ∈ C(X)). In particular, A(|fp|2) exists. Now, the second and third point
follow from Proposition 4.2 as p is Besicovitch almost periodic with set of frequencies
given by E.

Consider now a p ∈ X satisfying the three points in the claim. By density of D in C(X),
we then easily infer that A(fp) = ∫

X
f dm holds for all f ∈ C(X) and A(fpξ) exists for

all f ∈ C(X) and ξ ∈ E. In particular, we have A(|fp|2) = ∫ |f |2 dm for all f ∈ C(X).
Given this, we can now follow the proof of Theorem 4.4 to conclude the existence of
(pairwise orthogonal) eigenfunctions eξ to ξ ∈ Eig(X, G, m) with ‖eξ‖ ≤ 1 and

∑
ξ∈E

∣∣∣∣
∫
X

f eξ dm

∣∣∣∣2

=
∫
X

|f |2 dm

for all f ∈ D. As D is dense, this is only possible if ‖eξ‖ = 1 holds for all ξ ∈ E and the
eξ , ξ ∈ E, are an orthonormal basis. This finishes the proof of the claim.

Given the claim, the desired measurability follows easily: by compactness and metriz-
ability of X we can choose a countable dense subset D of C(X). Then, the claim gives that
p ∈ X belongs to Bap(X, G, m) if countably many conditions are satisfied. Clearly, each
of these conditions gives a measurable set.

The following theorem can be seen as both a converse to Theorem 4.4 and an analog to
Theorem 3.8.

THEOREM 4.7. (Discrete spectrum via Besicovitch almost periodic points) Let (X, G, m)
be an ergodic dynamical system and let (Bn) be a Følner sequence along which Birkhoff’s
ergodic theorem holds. Then, the following assertions are equivalent.

(i) The dynamical system (X, G, m) has pure point spectrum.
(ii) m(Bap(X, G, m)) = 1.

(iii) Bap(X, G, m) �= ∅.
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If one of the equivalent conditions (i), (ii) and (iii) holds, then Eig(X, G, m) = Freq(x) for
every x ∈ Bap(X, G, m). Moreover, in this case, for any f ∈ C(X) and ξ ∈ Ĝ the function

ef ,ξ : X −→ C, ef ,ξ (x) :=
{

A(fxξ), x ∈ Bap(X, G, m),
0, otherwise,

satisfies Pξf = ef ,ξ (in L2(X, m)), ef ,ξ (tx) = ξ(t)ef ,ξ (x) for all t ∈ G and x ∈ X and
has constant modulus on Bap(X, G, m).

Remark. By Theorem 4.4, the existence of a generic Besicovitch almost periodic point
entails the ergodicity of m. For this reason, the ergodicity assumption in the above theorem
cannot be dropped.

Proof. The implication (ii)�⇒(iii) is clear. The implication (iii)�⇒(i) follows from
Theorem 4.4. We now show (i)�⇒(ii). As the set of generic points has full measure, it
suffices to show that almost every x ∈ X is Besicovitch almost periodic. To do so, we
denote the inner product on L2(X, m) by 〈·, ·〉 and the associated norm by ‖ · ‖2. Let
ξ1, ξ2, ξ3, . . . , be an enumeration of Eig(X, G, m). Choose for any ξ ∈ E a normalized
eigenfunction eξ : X −→ C. Without loss of generality, we can assume

eξ (sx) = ξ(s) eξ (x)

for all s ∈ G and x ∈ X. (Otherwise, we could replace eξ by ẽξ defined by

ẽξ (x) := lim
n→∞

1
|Bn|

∫
Bn

e(sx) ξ(s) ds

if the limit exists and ẽξ (x) = 0 otherwise.) Moreover, for ξ = 1 we choose the constant
function 1.

Consider now an arbitrary g ∈ C(X). By Birkhoff’s ergodic theorem, we can then find
a subset Xg of X of full measure such that

∫
X

∣∣∣∣g −
k∑
j=1

〈g, eξj 〉eξj
∣∣∣∣ dm(x) = lim

n→∞
1

|Bn|
∫
Bn

∣∣∣∣g(sx)−
k∑
j=1

〈g, eξj 〉eξj (sx)
∣∣∣∣ ds

for all x ∈ Xg and k ∈ N. Let D ⊂ C(X) be a countable dense subset. Define

X′ :=
⋂
g∈D

Xg .

Then, X′ has full measure and a short computation gives

∫
X

∣∣∣∣f −
k∑
j=1

〈f , eξj 〉eξj
∣∣∣∣ dm(x) = lim

n→∞
1

|Bn|
∫
Bn

∣∣∣∣f (sx)−
k∑
j=1

〈f , eξj 〉eξj (sx)
∣∣∣∣ ds

for all f ∈ C(X), x ∈ X′ and k ∈ N. This, in turn, implies that any x ∈ X′ is Besicovitch
almost periodic: indeed, a short calculation invoking Birkhoff’s ergodic theorem and the
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Cauchy–Schwarz inequality shows

M

(∣∣∣∣f (·x)−
k∑
j=1

〈f , eξj 〉 eξj (x) ξj (·)
∣∣∣∣
)

= M

(∣∣∣∣f (·x)−
k∑
j=1

〈f , eξj 〉 eξj (·x)
∣∣∣∣
)

(Birkhoff’s ergodic theorem) = lim
n→∞

1
|Bn|

∫
Bn

∣∣∣∣f (sx)−
k∑
j=1

〈f , eξj 〉eξj (sx)
∣∣∣∣ ds

=
∫
X

∣∣∣∣f −
k∑
j=1

〈f , eξj 〉eξj
∣∣∣∣ dm(x)

(Cauchy–Schwarz inequality) ≤
∥∥∥∥f −

k∑
j=1

〈f , eξj 〉eξj
∥∥∥∥

2

→ 0, n → ∞.

This gives the desired claim.
We now turn to the remaining statements. The equality Freq(x) = Eig(X, G, m) for an

element x ∈ Bap(X, G, m) directly follows from Theorem 4.4. As for ef ,ξ , we note that
it is well defined and invariant (as Bap(X, G, m) is invariant). The equality Freq(x) =
Eig(X, G, m) for x ∈ Bap(X, G, m) rather directly gives that ef ,ξ vanishes identically
for ξ ∈ Ĝ \ Eig(X, G, m). In particular, it has constant modulus on Bap(X, G, m).
Now, by Theorem 4.4, for each ξ ∈ E and x ∈ Bap(X, G, m) there exists a normalized
eigenfunction e(x)ξ with

ef ,ξ (x) = A(fxξ) = 〈f , e(x)ξ 〉.

As each eigenspace is one dimensional, the e(x)ξ arising for different x ∈ Bap(X, G, m)
will only differ by a factor of modulus one. This gives the statement on constancy of the
modulus.

That ef ,ξ is the projection onto the eigenspace of ξ follows from standard theory; see,
e.g., [27] for a recent discussion.

5. Weyl almost periodic points, unique ergodicity and continuity of eigenfunctions
In this section, we consider a strengthening of Besicovitch almost periodicity, namely Weyl
almost periodicity. We show that Weyl almost periodicity extends from one point to its
orbit closure. This allows us to characterize transitive systems all of whose points are Weyl
almost periodic. These are exactly the uniquely ergodic dynamical systems with pure point
spectrum and continuous eigenfunctions. This ties in with various recent investigations
(see the following for details).

Let (X, G) be a dynamical system. Whenever d is a metric on X generating the topology
and (Bn) is a Følner sequence, we define for each n ∈ N the map

Mn : B(G) −→ R, Mn(f ) := sup
s∈G

1
|Bn|

∫
Bn+s

f (t) dt .
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This gives then rise to the functions

Dn := Dn,d : X ×X −→ [0, ∞), Dn(x, y) := Mn(s �→ d(sx, sy)),

for each n ∈ N. Then, each Dn can easily be seen to be an invariant metric. Moreover, for
each x ∈ X the function t �→ Dn(x, tx) is uniformly continuous (by the argument used in
§2 to show uniform continuity of D). The functionDn is referred to as the averaged metric
on level n.

A bounded measurable function f : G −→ C is Weyl almost periodic if for each ε > 0
there exist k ∈ N, ξ1, . . . , ξk ∈ Ĝ and c1, . . . , ck ∈ C with

lim sup
n→∞

Mn

(∣∣∣∣f −
k∑
j=1

cj ξj

∣∣∣∣
)
< ε.

As discussed in Appendix D, an equivalent alternative characterization is that for each
ε > 0 there exist N ∈ N and a relatively dense set R ⊂ G with

MN(|f − f (· − t)|) < ε

for all t ∈ R. A crucial feature of Weyl almost periodic functions is the existence of the
limits

lim
n→∞

1
|Bn|

∫
Bn+sn

f (t) ξ(t) dt

irrespective of (and uniform in) the chosen sequence (sn) ∈ G for each ξ ∈ Ĝ, see
Appendix D.

Definition 5.1. (Weyl almost periodic points) Let (X, G) be a dynamical system, let d be
a metric on X generating the topology, let (Bn) be a Følner sequence and letDn, n ∈ N, be
the associated averaged metrics. Then, a point x ∈ X is called Weyl almost periodic with
respect to d and (Bn) if for every ε > 0 there exists an N ∈ N such that

{t ∈ G : DN(x, tx) < ε}
is relatively dense.

Remark. It follows from Proposition D.1 that an x ∈ X is Weyl almost periodic if and
only if for each ε > 0 there exists a relatively dense set R ⊂ G and an N0 ∈ N such that
DN(x, tx) < ε for all N ≥ N0 and t ∈ R.

Arguing as in §3 with M replaced by Mn we see that Weyl almost periodicity is
independent of the chosen metric and the following holds.

LEMMA 5.2. Let (X, G) be a dynamical system, let d be a metric on X generating the
topology, let (Bn) be a Følner sequence and let Dn, n ∈ N, be the associated averaged
metrics. Then, the following assertions for x ∈ X are equivalent.
(i) The point x is Weyl almost periodic.

(ii) The algebra Ax consists of Weyl almost periodic functions.
(iii) The set {f ∈ C(X) : fx is Weyl almost periodic} separates the points of X.
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(iv) For any s ∈ G the function d(s)x is Weyl almost periodic, where d(s) ∈ C(X) is
defined via d(s)(y) := d(sx, y).

The previous lemma implies, in particular, that any Weyl almost periodic point is
Besicovitch almost periodic. It is not hard to see by examples that the converse does not
hold.

Weyl almost periodicity has a stability property.

LEMMA 5.3. (Stability of Weyl almost periodicity along orbit closures) Let (X, G) be a
dynamical system. Assume that x ∈ X is Weyl almost periodic. Then, any element in the
orbit closure of x is Weyl almost periodic.

Proof. The function DN is lower semi-continuous for each N ∈ N as it is a supremum
over continuous functions. From this and the invariance of DN we find

DN(y, ty) ≤ lim inf
n→∞ DN(snx, tsnx) = DN(x, tx)

whenever snx → y for a sequence (sn) in G. This easily gives the desired statement.

PROPOSITION 5.4. Let (X, G) be a dynamical system with transitive element p ∈ X. Let
p be Weyl almost periodic. Then (X, G) is uniquely ergodic, has pure point spectrum, all
eigenfunctions are continuous and Freq(x) = Eig(X, G, m) holds for all x ∈ X. Moreover,
for any f ∈ C(X) and ξ ∈ Ĝ, the averages

An(fxξ) := 1
Bn

∫
Bn

f (tx) ξ(t) dt

converge (uniformly in x) towards the projection of f onto the eigenspace of ξ .

Proof. It is well known that unique ergodicity is equivalent to uniform (in y ∈ X)
convergence of the averages

1
|Bn|

∫
Bn

f (ty) dt

for each continuous f : X −→ C. Now, uniform existence of these averages on the orbit
of x is a direct consequence of Weyl almost periodicity. This easily gives uniform existence
on the orbit closure. As the orbit closure is X the desired statement on unique ergodicity
follows. Denote the unique invariant probability measure by m.

By the previous lemma and the transitivity assumption on p, every x ∈ X is Weyl almost
periodic. In particular, every element is Besicovitch almost periodic. As (X, G) is uniquely
ergodic every x ∈ X is also generic with respect to m. Hence, X = Bap(X, G, m) follows.
By Theorem 4.7, this implies pure point spectrum as well as pointwise convergence of
the averages An(fxξ) to the projection of f onto the eigenspace of ξ for each f ∈ C(X)
and ξ ∈ Ĝ. Now, by Weyl almost periodicity these averages converge uniformly in x ∈ X.
Hence, their limit is continuous and continuity of the eigenfunctions follows.

THEOREM 5.5. Let (X, G) be a dynamical system with transitive point p ∈ X. Then, the
following assertions are equivalent.
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(i) The dynamical system (X, G) is uniquely ergodic with pure point spectrum and
continuous eigenfunctions.

(ii) The point p is Weyl almost periodic.
(iii) Every x ∈ X is Weyl almost periodic.
In this case, we have Freq(x) = Eig(X, G, m) for all x ∈ X.

Proof. The implication (iii)�⇒(ii) is obvious whereas (ii)�⇒(iii) follows from
Lemma 5.3.

The implication (ii)�⇒(i) and the last part of the theorem were shown in
Proposition 5.4. It remains to show the reverse implication (i)�⇒(ii): this follows by
a variant of the proof of the corresponding part in Theorem 4.7. We denote the unique
invariant measure by m and use the notation introduced in the proof of Theorem 4.7. Thus,
we denote the inner product on L2(X, m) by 〈·, ·〉 and the associated norm by ‖ · ‖2. As
the spectrum is pure point, there exists an orthonormal basis eξ , ξ ∈ Eig(X, G, m), of
L2(X, m) with eξ being an eigenfunction to the eigenvalue ξ for each ξ ∈ Eig(X, G, m).
By assumption, each eξ , ξ ∈ E, can be chosen continuous. By unique ergodicity, we then
find for any finite subset A ⊂ Eig(X, G, m) and any y ∈ X:

lim sup
n→∞

Mn

(∣∣∣∣f (·y)−
∑
ξ∈A

〈eξ , f 〉eξ (y)ξ(·)
∣∣∣∣
)

= lim sup
n→∞

Mn

∣∣∣∣f (·y)−
∑
ξ∈A

〈eξ , f 〉eξ (·y)
∣∣∣∣

= lim
n→∞

1
|Bn|

∫
Bn

∣∣∣∣f (ty)
−

∑
ξ∈A

〈eξ , f 〉eξ (ty)
∣∣∣∣ dt

=
∫
X

∣∣∣∣f (x)−
∑
ξ∈A

〈eξ , f 〉eξ (x)
∣∣∣∣ dm(x)

(Cauchy–Schwarz inequality) ≤
∥∥∥∥f −

∑
ξ∈A

〈eξ , f 〉eξ
∥∥∥∥

2
.

As fξ , ξ ∈ E, is a basis of L2(X, m), the last term becomes arbitrarily small for suitable
A ⊂ E. This shows that t �→ f (ty) is Weyl almost periodic for any y ∈ X.

Remark. Recently, systems satisfying the equivalent conditions of the theorem have
attracted substantial interest.
(a) For G = Z various equivalent characterizations of assertion (i) have been investi-

gated in [11]. In particular, it is shown there that assertion (i) is equivalent to the
topological isomorphy of the system to its maximal equicontinuous factor. The case
of general amenable groups G has been studied in [16]. In particular, it has been
shown there that assertion (i) is equivalent to the continuity of the averaged metric
D on X ×X. This continuity is known as mean equicontinuity of the system. In
this context our preceding result is remarkable as it does not assume control of D
on the whole of X ×X but just on {(x, tx) : t ∈ G}. In this sense, we have found a
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pointwise characterization of mean equicontinuity. Note, however, that we require a
rather uniform control on the orbit of this one point.

Note that [11, 16] also study Besicovitch and Weyl-type averages and metrics
defined by them. It then turns out that for the continuity of some maps with respect
to these metrics (mean equicontinuity) it is not relevant whether the Besicovitch
or the Weyl-type average is considered. This is very different from our previous
considerations. The reason is that the continuity condition in [11, 16] involves
all points of the dynamical system and this then implies unique ergodicity, which
ensures uniform behavior of all points.

(b) A large class of examples satisfying the conditions of the theorem are weakly almost
periodic systems. A recent study of such systems is carried out in [33] to which we
refer for a precise definition and further references, see also §6.

(c) A most important class of examples for the theorem are dynamical systems arising
from regular cut and project schemes. Such systems are at the core of the study of
aperiodic order (see [2]). They belong to the special class of dynamical systems
known as translation-bounded measure dynamical systems (TMDSs), see §7 for
details. In fact, a huge bulk of material in the theory of aperiodic order deals with
TMDSs satisfying assertion (i) of the theorem. A characterization of such systems
via an almost periodicity property of its points had been missing for a long time.
It was only given recently in [31]. The preceding theorem is a generalization of the
corresponding result of [31] in that it is not restricted to TMDSs but rather applies to
general dynamical systems.

If a system is minimal every point is transitive and we can note the following immediate
consequence of the preceding theorem.

COROLLARY 5.6. Let (X, G) be a minimal dynamical system. Then, the following
assertions are equivalent.

(i) Every point in X is Weyl almost periodic.
(ii) There exists a Weyl almost periodic point in X.

(iii) The dynamical system (X, G) is uniquely ergodic with pure point spectrum and
continuous eigenfunctions.

Remark. A system can well be Weyl almost periodic without being minimal. Consider,
for example, the orbit closure in the subshift ({0, 1}Z, Z) of the element ω defined with
ω0 = 1 and ωn = 0 for n �= 0.

6. Weakly and Bohr almost periodic dynamical systems
In the preceding section, we have met Weyl almost periodic points. In this section, we
introduce two special classes of Weyl almost periodic points, namely Bohr almost periodic
points and weakly almost periodic points. This allows us to reanalyze and characterize
weakly almost periodic dynamical system and Bohr almost periodic dynamical system via
the new approach in this paper. Specifically, the main result of this section shows that a
(transitive) dynamical system is weakly almost periodic (Bohr almost periodic) if and only
if every of its points is weakly almost periodic (Bohr almost periodic). We refer to [33]
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for a recent discussion of Bohr and weakly almost periodic systems including relevance,
background and further references.

Let G be a σ -compact locally compact abelian group and denote the set of uniformly
continuous and bounded functions on G by Cu(G). This space is a Banach space when
equipped with the supremum norm ‖ · ‖∞. An f ∈ Cu(G) is called weakly almost periodic
if the set {f (· − t) : t ∈ G} is relatively compact in Cu(G) with respect to the weak
topology of the Banach space (Cu(G), ‖ · ‖∞). Clearly, any Bohr almost periodic f ∈
Cu(G) is weakly almost periodic (as Bohr almost periodicity means, by definition, that
the set {f (· − t) : t ∈ G} is relatively compact in the original topology). In fact, a main
result on weakly almost periodic functions (see, e.g., [1] or [13, 33]) gives that any weakly
almost periodic f can be (uniquely) decomposed into f = g + h with g ∈ Cu(G) Bohr
almost periodic and h ∈ Cu(G) satisfying

lim
n→∞ sup

s∈G
1

|Bn|
∫
Bn

|h(s + t)| dt = 0

for any F ølner sequence (Bn). The existence of this decomposition is [35, Theorem 4.7.11],
whereas the uniqueness follows immediately from [35, Lemma 4.6.8].

When combined with (♥) in Appendix A this easily gives that any weakly almost
periodic function is Weyl almost periodic.

Definition 6.1. (Weakly and Bohr almost periodic points) Let (X, G) be a dynamical
system.
(a) A point x ∈ X is called weakly almost periodic if Ax consists only of weakly almost

periodic functions.
(b) A point x ∈ X is called Bohr almost periodic if Ax consists only of Bohr almost

periodic functions.

Remark. By the discussion preceding the definition, any Bohr almost periodic point is
weakly almost periodic and any weakly almost periodic point is Weyl almost periodic.

In the subsequent discussion, the weakly almost periodic case and the Bohr almost
periodic case can be mostly treated in parallel. To facilitate the reading, we then give
statements for the weakly almost periodic case and mention the Bohr almost periodic case
in brackets only.

With essentially the same proof as Lemma 3.7, we obtain the following statement.

LEMMA 6.2. Let (X, G) be a dynamical system and let x ∈ X be given. Then, the
following assertions are equivalent.
(i) The point x is weakly (Bohr) almost periodic.

(ii) The weakly (Bohr) almost periodic functions in Ax are dense in (Ax , ‖ · ‖∞).
(iii) The set {f ∈ C(X) : fx is weakly (Bohr) almost periodic } separates the points

of X.
(iv) For any s ∈ G the function d(s)x is weakly (Bohr) almost periodic, where d(s) ∈

C(X) is defined via d(s)(y) := d(sx, y).
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Whenever (X, G) is a dynamical system, any f ∈ C(X) gives rise to a function on the
product G×X, namely

Pf : G×X −→ C, (t , x) �→ f (tx).

Roughly speaking one can say that the preceding discussion was concerned with almost
periodicity properties of the functions fx = Pf (·, x) for x ∈ X. It is natural to consider
almost periodicity properties of restrictions of the Pf to X as well for fixed t ∈ G. This
leads to the notion of weakly (Bohr) almost periodic dynamical system. For f ∈ C(X) and
t ∈ G, we define

ft : X −→ C, ft (x) = f (tx) = Pf (t , ·).
Definition 6.3. (Weakly and Bohr almost periodic dynamical systems) The dynamical
system (X, G) is called weakly almost periodic and Bohr almost periodic (in some papers
this is called an almost periodic dynamical system or strongly almost periodic dynamical
system) if for any f ∈ C(X) the family {ft : t ∈ G} has compact closure in the weak
topology and the Banach space topology of (C(X), ‖ · ‖∞), respectively.

The next lemma relates weakly (Bohr) almost periodic dynamical systems to weakly
(Bohr) almost periodic points.

LEMMA 6.4. Let (X, G) be a dynamical system.
(a) If (X, G) is weakly (Bohr) almost periodic, then every x ∈ X is a weakly (Bohr)

almost periodic.
(b) If x ∈ X is transitive and weakly (Bohr) almost periodic, then (X, G) is a weakly

(Bohr) almost periodic dynamical system.

Proof. Fix an arbitrary x ∈ X. Define F : C(X) → Cu(G) via

F(f )(t) = fx .

(a) It is easy to see that F is well defined and ‖F‖ ≤ 1. It follows that F is continuous
and, hence, also weakly continuous [35, Lemma 4.4.2]. Therefore, the image of a
compact (respectively, weak compact) set is compact (respectively, weak compact).
As F commutes with the group action, the claim follows.

(b) We know that F is continuous. Moreover, because x has dense orbit, it follows
immediately that for all f ∈ C(X) we have

‖F(f )‖∞ = ‖f ‖∞.

Therefore, F is an isometry and, hence, it induces an isomorphic isometry F :
C(X) → Im(F ). In particular, Im(F ) is closed in Cu(G) and the mapping

F−1 : Im(F ) → C(X),

is a continuous operator and, hence, is also weakly continuous [35, Lemma 4.4.2].
Therefore, F−1 maps compact and weakly compact sets into compact and weakly
compact sets, respectively. This easily gives the desired statement.

We obtain the following immediate consequence of the preceding lemma.
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THEOREM 6.5. Let (X, G) be a dynamical system with transitive p ∈ X. Then, the
following assertions are equivalent.

(i) (X, G) is weakly almost periodic.
(ii) Every x ∈ X is weakly almost periodic.

(iii) The point p ∈ X is weakly almost periodic.

We also note the following consequence of the theorem.

COROLLARY 6.6. Let (X, G) be a dynamical system with transitive p ∈ X. For s, t ∈ G
define gs,t : X → C via

gs,t (x) = d(sp, tx).

Then, p ∈ X is weakly almost periodic if and only if for each s ∈ G the set {gs,t : t ∈ G}
has compact closure in the weak topology of (C(X), ‖ · ‖∞).

Proof. Indeed, the only if part of the statement is immediate from the definition of weak
almost periodicity and the preceding theorem. To show the if part, we denote (in line with
[33])

WAP(X) := {f ∈ C(X) : {ft : t ∈ G} has compact closure in the weak topology}.
Then, by [33, Propositions 3.3, 3.4] WAP(X) is a closed algebra of (C(X), ‖ · ‖∞), which
contains the constant function 1. Moreover, we have gt ,1 ∈ WAP(X) for all t ∈ G. We next
show that the functions gt ,1 separate the points of X. Let x �= y ∈ X be arbitrary, and let
r = d(x, y).

As p is a transitive point, there exists some t ∈ G such that d(tp, x) < r/3. Then,

gt ,1(x) = d(tp, x) <
r

3
and gt ,1(y) = d(tp, y) ≥ d(x, y)− d(tp, x) >

2r
3

.

This shows that gt ,1(x) �=gt ,1(y). Therefore, WAP(X) is a closed algebra of (C(X), ‖ ·‖∞)
which is separating the points and, hence, by the Stone–Weierstraß theorem,
WAP(X) = C(X). This gives the desired statement.

The preceding theorem allows us to recapture a main result of [33] (compare with [19,
Corollary 2.18]).

COROLLARY 6.7. Let (X, G) be a transitive weakly almost periodic dynamical system.
Then, (X, G) is uniquely ergodic with pure point spectrum and continuous eigenfunctions.

Proof. Let p be a transitive point. Then, by Theorem 6.5, p is weakly almost periodic.
Hence, p is Weyl almost periodic as well and the claim follows from Theorem 5.5.

As should be clear from the preceding discussion, the analog of Theorem 6.5 with
‘weakly almost periodic’ replaced by ‘Bohr almost periodic’ holds as well (and, similarly,
for Corollary 6.6). In fact, a somewhat stronger statement is true for Bohr almost periodic
points. To state this properly, we introduce the following notation when dealing with an
dynamical system (X, G) with metric d. For f ∈ C(X) we consider the mapping

πf : X −→ Cu(G), πf (x) := fx ,
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and, when an x ∈ X is fixed, we set

Y (f , x) := {ftx : t ∈ G},

where the closure is taken in Cu(G) with the (usual) supremum norm. We also define

d : X ×X −→ [0, ∞), d(x, y) := sup
s∈G

d(sx, sy).

Clearly, d is a metric.

THEOREM 6.8. Let (X, G) be a dynamical system. For x ∈ X the following assertions are
equivalent.
(i) The element x ∈ X is Bohr almost periodic.
(ii) For any f ∈ C(X), the map πf : Gx −→ Cu(G), y �→ fy , is continuous with range

given by Y (f , x).
(iii) There exists a G-invariant metric on Gx generating the topology.
(iv) The function d is continuous on Gx.
(v) The orbit closure Gx admits a structure of a locally compact group such that

G −→ Gx, t �→ tx, becomes a continuous group homomorphism.
In particular, the orbit closure of any Bohr almost periodic point is minimal.

Proof. (i)�⇒(ii): Clearly, πf (tx) = ftx = fx(· + t) for any t ∈ G. Thus, it suffices to
show that fy belongs indeed to Y (f , x) for any y ∈ Gx and πf is continuous on Y (f , x).
It is enough to show that πf (yn) converges to πf (y) whenever (yn) is a sequence in Gx
converging to y ∈ Gx such that πf (yn) belongs to Y (f , x). Now, it is not hard to see
that the functions πf (yn) converge pointwise to πf (y). Moreover, by assertion (i), the
set Y (f , x) is compact and, hence, πf (yn) has a uniform convergent subsequence. Now,
any such subsequence must converge to πf (y) (as uniform convergence implies pointwise
convergence). This gives the desired convergence statement.

(ii)�⇒(iii): By assertion (ii), the map df with df (y, z) := ‖πf (y)− πf (z)‖∞ is a
continuous pseudometric on Gx. It is clearly invariant. Now, choose a countable dense
subsetD ⊂ C(X) separating the points ofGx. Assume without loss of generality that any
element of D is normalized, and choose for any f ∈D a cf >0 with

∑
f∈D cf <∞. Then,∑

f∈D cf df is a continuous invariant metric on Gx. As Gx is compact any continuous
metric determines its topology.

(iii)�⇒(iv): Let d
′

be a continuous invariant metric on Gx. Let ε > 0 be arbitrary. As
d

′
is a continuous metric on Gx there exists a δ > 0 with d(y1, y2) ≤ ε for y1, y2 ∈ Gx

whenever d
′
(y1, y2) ≤ δ. As d

′
is invariant, we obtain then d(ty1, ty2) ≤ ε for all t ∈ G

and, hence, d(y1, y2) ≤ ε whenever d
′
(y1, y2) ≤ δ for y1, y2 ∈ Gx. This is the desired

statement.
(iv)�⇒(v): Using the invariant metric d it is not hard to see that there is a group

structure on Gx with tx + sx = (t + s)x. Here, we show only that this is well defined.
The remaining statements then follow easily. Assume tx = t ′x and sx = s′x. Then triangle
inequality and invariance of the metric gives
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d((t + s)x, (t ′ + s′)x) ≤ d((t + s)x, (t + s′)x)+ d((t + s′)x, (t ′ + s′)x)
≤ d(sx, s′x)+ d(tx, t ′x) = 0.

This shows well definedness.
(v)�⇒(i): This is standard. We include some details for convenience of the reader. Let

f be a continuous function on X. We have to show that the set S := {fx(t + ·) : t ∈ G} =
{ftx : t ∈ G} has compact closure in Cu(G) with respect to the supremum norm. From
assertion (iv), we easily see that πf : Gx −→ Cu(G), y �→ fy , is continuous. Hence,
πf (Gx) is compact and, as it clearly contains S, the desired statement follows.

The minimality statement follows directly from assertion (iii).

The preceding result shows that Bohr almost periodic points give rise to minimal orbit
closures. In fact, within the weakly almost periodic points one can even characterize the
Bohr almost periodic points by minimality of their orbit closures.

PROPOSITION 6.9. Let (X, G) be a dynamical system and let x ∈ X be weakly almost
periodic. Then, x is Bohr almost periodic if and only if its orbit closure Gx is minimal.

Proof. We have just seen in Theorem 6.8 that the orbit closure of a Bohr almost periodic
point is minimal. Thus, consider now a weakly almost periodic point x ∈ X with minimal
orbit closureGx. Then, clearly (Gx, G) is weakly almost periodic by Lemma 6.4(b) and it
is minimal (by assumption). Now, as is well known (see, e.g., [33]) any minimal component
of a weakly almost periodic system is Bohr almost periodic. Now, the desired claim follows
from Lemma 6.4(a).

Remark. We note that a Bohr almost periodic dynamical system does not need to be
minimal as can easily be seen by considering the ‘disjoint union’ of two Bohr almost
periodic systems.

It is possible to characterize Bohr almost periodic points by almost periodicity
properties of the metric d .

THEOREM 6.10. Let (X, G) be a dynamical system with metric d. Then the following
assertions are equivalent for a point p ∈ X.
(i) The point p is Bohr almost periodic.

(ii) The function G �→ [0, ∞), t �→ d(p, tp), is Bohr almost periodic.

Proof. We show that (i) implies (ii): by assertion (i) and Theorem 6.8, the orbit closure
of p is minimal and the function d is a continuous metric on Gp. Let ε > 0 be given. As
d is continuous and every Bohr almost periodic point has a minimal orbit, there exists a
relatively dense set R ⊂ G with d(sp, p) < ε for all s ∈ R. As d is invariant, this gives

|d(p, (t + s)p)− d(p, tp)| ≤ d((t + s)p, tp)) ≤ d(sp, p) < ε

for all t ∈ G and s ∈ R. As ε > 0 was arbitrary this gives assertion (ii).
We now show that assertion (ii) implies that p is Bohr almost periodic: it is not hard to

see that assertion (ii) implies that t �→ d(sp, (t + s), p) is Bohr almost periodic for any

https://doi.org/10.1017/etds.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.14


552 D. Lenz et al

s ∈ G. This easily implies that Lemma 6.2(iv) holds and assertion (i) follows from that
lemma.

7. Application to measure dynamical systems
In this section, we use our results to shed light on recent investigations of aperiodic order.
A fundamental issue in the study of aperiodic order is pure point diffraction; see, e.g.,
[4] for a recent survey. Indeed, understanding of pure point diffraction has been a driving
force in the field; see, e.g., the survey article [25]. Recently, a complete understanding of
pure point diffraction via mean almost periodicity has been provided in [31]. That article
mostly deals with single measures. However, it also includes results on pure point spectrum
of certain dynamical systems, namely measure dynamical systems. Here, we discuss how
our results allow one to provide a different approach to these results.

We start with a discussion of TMDSs. Such dynamical systems were brought forward in
[3] to provide a systematic framework to study aperiodic order. In our exposition we follow
[3] to which we refer for further details, proofs and references.

We denote by Cc(G) the vector space of continuous complex-valued functions on G
with compact support. This space is equipped with the inductive limit topology of the
injections

CK(G) −→ Cc(G), ϕ �→ ϕ,

for K ⊂ G compact. Here, CK(G) denotes the subspace of Cc(G) consisting of functions
with support in K. The measures on G are the elements of the dual space of Cc(G). The
total variation |μ| of a measure μ is the smallest positive measure with

|μ(ϕ)| ≤ |μ|(ϕ)
for all ϕ ∈ Cc(G) with ϕ ≥ 0. A measure μ on G is called translation bounded if its total
variation |μ| satisfies

‖μ‖K := sup |μ|(t + U) < ∞
for one (all) relatively compact open U in G. We denote that set of all translation bounded
measures byM∞(G) and equip it with the vague topology. Then, G admits a natural action
on M∞(G) by translations. More specifically, for t ∈ G and μ ∈ M∞(G) the measure tμ
is defined by

tμ(ϕ) = μ(ϕ(· + t))

for all ϕ ∈ Cc(G).
A subsetΩ ⊂ M∞(G) which is invariant under the translation action is compact if and

only if it is vaguely closed and there exists a constant C such that [39, Theorem A.8]

‖μ‖U ≤ C for all μ ∈ Ω .

Whenever Ω is a compact subset of M∞(G), which is invariant under the translation
action to and m is an invariant probability measure on X, we call (X, G, m) a dynamical
system of translation bounded measures or just TMDS for short. If G is second countable
than any TMDS is metrizable. Hence, the theory developed above applies to TMDS
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whenever G is second countable. Consider now an arbitrary TMDS (Ω , G, m) and define
for any ϕ ∈ Cc(G) the function

Nϕ : Ω −→ C, Nϕ(ω) = ω(ϕ).

Then, Nϕ belongs to C(Ω). In addition, there exists a unique translation bounded measure
γ = γm on (X, G, m) with

γ (ϕ ∗ ψ̃) = 〈Nϕ , Nψ 〉
for all ϕ, ψ ∈ Cc(G) and all t ∈ G. (Note that [3] uses a different sign in the definition
of N (called f there) as well as has the inner product linear in the second argument. This
results in a different display of the formula for γ , namely (γ ∗ ϕ̃ ∗ ψ)(0) = 〈fϕ , fψ 〉.) The
measure γ is called the autocorrelation of the TMDS. This measure allows for a Fourier
transform γ̂ which is a (positive) measure on Ĝ. It is known as diffraction of the TMDS.
Of particular interest in this theory are now those TMDSs whose diffraction is a pure point
measure. By a main result of [3] (see references there also for earlier results) the diffraction
of a TMDS is pure point if and only if the TMDS has pure point spectrum. Thus, for this
reason, TMDSs with pure point spectrum are of utmost relevance in the field of aperiodic
order. One particular question is the calculation of the atoms of γ̂ . Here, the basic idea is
that

γ̂ ({ξ}) = lim
n→∞

∣∣∣∣ 1
|Bn|

∫
Bn

ξ(t) dω(t)

∣∣∣∣2

(with (Bn) being a Følner sequence). Validity of this formula is often discussed under the
heading of the Bombieri–Taylor conjecture.

Having provided the framework of TMDSs, we now discuss how the theory developed
in the previous section can be used in the study of aperiodic order.

A translation bounded measure ω is called mean almost periodic (Besicovitch almost
periodic, Weyl almost periodic, respectively) if for any ϕ ∈ Cc(G) the function

ω ∗ ϕ : G −→ C, (ω ∗ ϕ)(t) =
∫
ϕ(t − s) dω(s),

is mean almost periodic (Besicovitch almost periodic, Weyl almost periodic, respectively).

PROPOSITION 7.1. Let (Ω , G, m) be a TMDS and let (Bn) be a Følner sequence. Then,
for ω ∈ Ω the following assertions are equivalent.

(i) The measure ω is mean almost periodic (Besicovitch almost periodic, Weyl almost
periodic, weak almost periodic, Bohr almost periodic).

(ii) The function t �→ Nϕ(tω) is mean almost periodic (Besicovitch almost periodic,
Weyl almost periodic, weak almost periodic, Bohr almost periodic) for any ϕ ∈
Cc(G).

(iii) The point ω ∈ � is mean almost periodic (Besicovitch almost periodic, Weyl almost
periodic, weak almost periodic, Bohr almost periodic).

Proof. We only discuss mean almost periodicity. The remaining statements follow
analogously.
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(i)⇐⇒(ii): A short computation shows

Nϕ(tω) = (ω ∗ ϕ̃)(t),
where ϕ̃ : G −→ C, t �→ ϕ(−t). This gives that ω is mean almost periodic if and only if
t �→ Nϕ(tω), ϕ ∈ Cc(G), is mean almost periodic and the equivalence between assertions
(i) and (ii) follows.

(iii)�⇒(ii): This follows easily as any Nϕ , ϕ ∈ Cc(G), is a continuous function on �.
(ii)�⇒(iii): It is not hard to see that the set of Nϕ , ϕ ∈ Cc(G), separates the points

of � and is closed under complex conjugation. Hence, the algebra generated by the Nϕ
is dense in the continuous functions on � with respect to the supremum norm (see, e.g.,
[4] for further discussion of this type of argument). This gives that assertion (ii) implies
assertion (iii).

When dealing with TMDS (�, G, m) we can now use the previous proposition to
replace the assumption that ω ∈ � is mean almost periodic as element of the dynamical
system (�, G, m) by the assumption that ω is a mean almost periodic measure (and,
similarly, with mean almost periodic replaced by Besicovitch almost periodic, Weyl almost
periodic, weak almost periodic, Bohr almost periodic). This allows then for reformulations
of our main results. We include the most important consequences next.

THEOREM 7.2. Let (Ω , G, m) be an ergodic TMDS. Assume that G is second countable
and that (Bn) is a Følner sequence along which Birkhoff’s ergodic theorem holds. Then,
the following assertions are equivalent.

(i) (Ω , G, m) has pure point spectrum.
(ii) Almost every ω ∈ Ω is a mean almost periodic measure.

(iii) Almost every ω ∈ Ω is a Besicovitch almost periodic measure.
Moreover, in this case, for each ξ ∈ Ĝ with γ̂ ({ξ}) �= 0, the Fourier–Bohr coefficient

aξ (ω) = lim
n

1
|Bn|

∫
Bn

ξ(t) dω(t)

exists for m-almost all ω and satisfies

γ̂ ({ξ}) = |aξ (ω)|2.

Furthermore, there exists a non-trivial eigenfunction fξ ∈ L1(Ω , m) such that fχ(ω) =
aχ(ω) for all ω ∈ Bap(X, G, m).

Proof. The equivalence follows by combining Theorems 3.8, 4.7 and Proposition 7.1.
Next, let ξ ∈ Ĝ with γ̂ ({ξ}) �= 0 and let ϕ ∈ Cc(G) be so that ϕ̂(ξ) �= 0. Then, by

Proposition 4.2 applied to Nϕ , the limit

A((Nϕ)ωξ̄ ) := lim
n

1
|Bn|

∫
Bn

ξ(t)ϕ ∗ ω(t) dt

exists for m almost all ω ∈ X. By [31, Corollary 1.1], the Fourier–Bohr coefficients exist
for all such ω and satisfy

A((Nϕ)ωξ̄ ) = aξ (ω)ϕ̂(χ).

Theorem 4.7 the implies the existence of the eigenfunction.
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Finally, by [4], |ϕ̂|2γ̂ is the spectral measure forNϕ ∈ L2(X, m). The last claim follows
now from Theorem 4.7 and [27, Theorem 3].

By combining Theorem 4.4 with Proposition 7.1 we also immediately obtain the
following consequence.

THEOREM 7.3. Let ω be a Besicovitch almost periodic measure and let (Bn) be a van
Hove sequence along which Birkhoff’s ergodic theorem holds. Then, there exists a (unique)
G-invariant ergodic measure m on X(μ) such that μ is generic for m.

Finally, by combining Theorem 5.5 with Proposition 7.1 we also get the following result.

THEOREM 7.4. Let ω be a translation bounded measure and let (Bn) be a van
Hove sequence along which Birkhoff’s ergodic theorem holds. Then, the following are
equivalent.

(i) μ is Weyl almost periodic.
(ii) Every ω ∈ X(μ) is Weyl almost periodic.

(iii) The dynamical system (X(μ), G) is uniquely ergodic with pure point spectrum and
continuous eigenfunctions.

8. Abstract generalizations
When closing the article, it may be instructive to stop a moment to have a look at the
overall theme of this article from a more abstract point of view. The general approach in
this article may be described as follows: we consider a dynamical system (X, G) and say
that a point x ∈ X is (∗) almost periodic if Ax consists of (∗) almost periodic functions
only. Then, the preceding sections have been devoted to a thorough study of consequences
of existence of (∗) almost periodic points for (∗) being replaced by Bohr, weak, Weyl,
Besicovitch and mean (and in this order these are increasingly weaker notions of almost
periodicity). Now, of course, any other concept of almost periodicity for a function could
also be taken as the starting point of the theory. Then, some of our considerations will
easily carry over. This is discussed in this section.

Let Cu(G) be the set of uniformly continuous bounded functions on G and consider
a dynamical system (X, G). Whenever we are given an A ⊂ Cu(G), we can define for
p ∈ X

Ap := {f ∈ C(X) : fp ∈ A}.
Then, Ap inherits various properties of A. In particular, if A is an algebra, then so is
Ap and if 1 ∈ A then Ap contains the constant function 1. Moreover, if A is closed in
(Cu(G), ‖ · ‖∞), then Ap is closed in (C(X), ‖ · ‖∞). Then, as abstraction of Lemma 3.7
(with the same proof), we obtain the following lemma.

LEMMA 8.1. Let A be a closed subalgebra of Cu(G) containing the constant function 1.
Then, the following assertions are equivalent for p ∈ X.

(i) Ap = C(X).
(ii) Ap separates the points of Gp.

(iii) For each s ∈ G the function d(s) ∈ C(X) with d(s)(y) := d(sp, y) belongs to Ap.
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A particular way to obtain a closed algebra A is by suitable seminorms. This is discussed
next: call a seminorm N on Cu(G) admissible if it is G-invariant and satisfies:
• N(f ) ≤ N(g) whenever |f | ≤ g;
• N(1) = 1.
Note that any admissible seminorm N satisfies N ≤ ‖ · ‖∞ (as |f | ≤ ‖f ‖∞ · 1).

Remark (Examples). It is not hard to see that ‖ · ‖∞ and M ◦ | · | as well as

N(f ) := lim sup
n→∞

sup
t∈G

1
|Bn|

∫
t+Bn

|f (t)| dt

are admissible seminorms on Cu(G).

Definition 8.2
(a) We say that an f ∈ Cu(G) is N-almost periodic if for any ε > 0 the set

{t ∈ G : N(|f − f (· − t)|) < ε}
is relatively dense in G.

(b) We say that an f ∈ Cu(G) is N-trig almost periodic if for any ε > 0, there exists
some trigonometric polynomial P such that N(|f − P |) < ε.

LEMMA 8.3. Let N be an admissible seminorm. Then,

A
N := {f ∈ Cu(G) : f is N-almost periodic}

and

A
T := {f ∈ Cu(G) : f is N-trig almost periodic}

are closed subalgebras of Cu(G). Both subalgebras contain the Bohr almost periodic
functions and A

T ⊆ A
N holds.

In particular, 1 ∈ A
N .

Proof. The statement on A
N is an abstraction of Theorem B.3 in our context. It can be

shown by replacing M ◦ | · | with N in the proof of this theorem. Similarly, the statement
on A

T is an abstraction of Lemma C.2 in our context and can be shown by mimicking the
proof of that lemma. This also gives the last statement.

Definition 8.4. (N-almost periodic points) Let (X, G) be a dynamical system and let N be
an admissible seminorm on Cu(G). We say, that an x ∈ X is N-almost periodic if fx is
N-almost periodic for any f ∈ C(X), that is, if ANx = C(X) holds.

For a continuous metric d on X and x ∈ X we define

dN ,x : G −→ [0, ∞), dN ,x(t) := N((s �→ d(sx, (t + s)x).

Reasoning as in §3, we can infer that for any continuous metric d the function dN ,x is
uniformly continuous. Having set things up, we can now discuss the following abstraction
of the results in §3 (where we include some details for the convenience of the reader).
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Analogously to Lemma 3.2 we find the following.

LEMMA 8.5. Let (X, G) be a dynamical system. Let N be admissible. Let d be a continuous
metric on X. Then, the following assertions for x ∈ X are equivalent.
(i) For any ε > 0 the set

{t ∈ G : dN ,x(t) < ε}
is relatively dense.

(ii) The function dN ,x is Bohr almost periodic.

The following is an abstraction of both the equivalence between assertions (i) and (ii)
in Lemma 3.7 (with N = M ◦ | · |) and Theorem 6.10 (with N = ‖ · ‖∞).

THEOREM 8.6. Let (X, G) be a dynamical system. Let N be admissible. Then, for x ∈ X
the following assertions are equivalent.

(i) The point x is N-almost periodic.
(ii) There exists a continuous metric d on X such that dN ,x is Bohr almost periodic.

(iii) For every continuous metric d on X the function0 dN ,x is Bohr almost periodic.

Remark. As X is a compact metric space, a metric on X is continuous if and only if it
generates the topology.

Proof. (iii)�⇒(ii): This is clear.
(ii)�⇒(iii): This is the analog of Lemma 3.4 in our context. It can be shown by a variant

of the proof of that lemma. Some extra effort is needed as N is not defined on measurable
bounded functions but only on Cu(G). This is tackled by means of Urysohn’s lemma. As
every locally compact group is a normal space, this lemma allows one to separate arbitrary
closed disjoint sets by continuous functions and this is what we use. We now present the
details.

Let e be any metric on X such that eN ,x is almost periodic and let d be any other metric
on X, such that d , e generate the topology. Without loss of generality we can assume that
d , e ≤ 1. Let ε > 0 be arbitrary. By Lemma 8.5, it suffices to show that the set of t ∈ G
with dN ,x(t) ≤ ε is relatively dense.

Choose δ′ > 0 with d(y, z) < ε/2 whenever e(y, z) < δ′. Set

δ := ε

4δ′
.

Let t ∈ G be so that eN ,x(t) < δ. By Lemma 8.5 the set of such t ∈ G is relatively dense.
Thus, it remains to show dN ,x(t) < ε for any such t ∈ G. Define et ,x and dt ,x on G by
et ,x(s) := e(sx, (t + s)x) and dt ,x(s) := d(sx, (t + s)x). Set

A :=
{
s : et ,x ≥ δ′

}
; B :=

{
s : et ,x ≤ δ′

2

}
.

Then, by Urysohn’s lemma, there exists some continuous function f : G → [0, 1] such
that f (x) = 1 for all x ∈ A and f (x) = 0 for all x ∈ B. Set g := 1 − f . Then, et ,x ≥
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δ′/2f and, hence, δ′/2N(f ) ≤ N(et ,x) ≤ δ, showing

N(f ) ≤ 2δ
δ′

= ε

2
.

Moreover, dt ,x(s)g(s) ≤ ε/2. Indeed, if s ∈ A, then g(s) = 0 by the definition of g, and if
s /∈ A, then dt ,x(s) ≤ ε/2 by our choice of δ′. This shows

N(dt ,x) ≤ ε

2
.

Therefore, using d ≤ 1 we obtain

dN ,x(t) = N(dt ,x) ≤ N(dt ,xf )+N(dt ,xg) ≤ N(f )+N(dt ,xg) ≤ ε

2
+ ε

2
= ε.

(i)�⇒(ii): This can be shown as (ii)�⇒(i) in Lemma 3.7.
(ii)�⇒(i): As in the proof of (i)�⇒(iv) of Lemma 3.7 we infer from assertion (ii) that

dzx is N-almost periodic for any z ∈ X. Now, assertion (i) follows from Lemma 8.1.

COROLLARY 8.7. Let (X, G, m) be a dynamical system with metric d. Let N be an
admissible seminorm and let x ∈ X be N-almost periodic. If∫

X

f (y) dm(y) ≤ N(fx)

holds for all f ∈ C(X), then (X, G, m) has pure point spectrum.

Remark. Note that the assumption holds whenever there exists a F ølner sequence (Bn)
along which Birkhoff’s ergodic theorem holds and N satisfies M ◦ | · | ≤ N and x is
generic with respect to m.

Proof. As x is N-almost periodic the preceding theorem (combined with Lemma 8.5)
gives that for any ε > 0 the set of t ∈ G with dN ,x(t) < ε is relatively dense. By using
the assumption on N with f (y) = d(y, ty) (for t ∈ G fixed), we furthermore find for the
function

d : G −→ [0, ∞), d(t) =
∫
X

d(y, ty) dm(y),

the inequality

d(t) ≤ dN ,x(t)

for all t ∈ G. Hence, for any ε > 0 the set of t ∈ G with d(t) < ε is relatively dense as
well. This gives us that d is Bohr almost periodic and the desired statement on pure point
spectrum follows from the main result of [29] (compare with the proof of Theorem 3.8 as
well).
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A. Appendix. Bohr almost periodic functions
In this section, we briefly present some background on Bohr almost periodic function. This
is completely standard and can be found in many places. We include a discussion here in
order to be self-contained and to set the perspective on the weaker (and less well-known)
notions of almost periodicity underlying our considerations. For more details, we refer the
reader to [9, 35].

Let G be a locally compact abelian group. Recall from §2 that a continuous function
f : G −→ C is called Bohr almost periodic if for any ε > 0 the set of t ∈ G with

‖f − f (· − t)‖∞ < ε (♠)

is relatively dense. Any such t ∈ G is then called an ε-almost period of f. It turns out
that a continuous f : G −→ C is Bohr almost periodic if and only if {f (· − t) : t ∈ G} is
compact, where the closure is taken with respect to the supremum norm. It is not hard to see
that any Bohr almost periodic function is bounded and uniformly continuous. Moreover,
the Bohr almost periodic functions form a closed subalgebra of the algebra of all uniformly
continuous bounded functions on G. The main structural result on Bohr almost periodic
functions is that a function f is Bohr almost periodic if and only if for any ε > 0 there exist
k ∈ N, ξ1, . . . , ξk ∈ Ĝ and c1, . . . , ck ∈ C with

∥∥∥∥f −
k∑
j=1

cj ξj

∥∥∥∥∞
< ε. (♥)

The basic idea of the weaker concepts of almost periodicity discussed in the subsequent
sections is to replace the supremum norm ‖ · ‖∞ in (♠) and (♥) by suitable (semi)norms
arising by averaging procedures.

B. Appendix. Mean almost periodic functions
The main result of this appendix shows that the bounded uniformly continuous mean
almost periodic functions form a closed subalgebra of the algebra of bounded uniformly
continuous functions on G. This is certainly well known and a proof can be given by
standard means. For the convenience of the reader and in order to keep this article
self-contained we include a discussion in the following. As our article deals with abelian
groups, we assume that the group G in the following is abelian. Note, however, that this is
not used in the proofs.

We start with a general result on discrete geometry of groups.

PROPOSITION B.1. Let G be a locally compact abelian group. Let D and E be relatively
dense subsets of G and V a relatively compact open neighborhood of the neutral element.
Then, ((D −D)+ V ) ∩ ((E − E)+ V ) is relatively dense.
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Proof. As both D and E are relatively dense, we can choose an open relatively compact
set U ⊂ G with the property that any translate of U intersects both D and E. As addition
is continuous on G, we can choose furthermore a relatively compact open neighborhood
W with W = −W and W +W ⊂ V . As U is relatively compact, there exist N ∈ N and
z1, . . . zN ∈ G with

U =
N⋃
n=1

(zn +W) ∩ U .

Consider now an arbitrary t ∈ D. Then, there exists an s ∈ E with t − s ∈ U . Hence,
for any t ∈ D we can find st ∈ E and nt ∈ {1, . . . , N} with

(t − st ) ∈ znt +W .

Fix now for each n ∈ {1, . . . , N} elements tn ∈ D and sn ∈ E with

(tn − sn) ∈ zn +W .

(If some of the n does not admit elements, we just remove this n from our list.) Then, for
any t ∈ D we can find st ∈ E and n ∈ {1, . . . , N} such that both t − st and tn − sn belong
to zn +W . Hence, we find

t − st + w = tn − sn + w′

for suitable w, w′ ∈ W . This gives

t − tn = st − sn + v

with v = w′ −w∈W−W ⊂V . Now, we clearly have t− tn ∈ (D−D)+V and (st −sn)+
v ∈ (E − E)+ V . Moreover, the set of all t − tn is relatively dense as t is an arbitrary
element of the relatively dense D and there are only finitely many tn. This finishes the
proof.

Let G be a σ -compact locally compact abelian group and let (Bn) be a Følner sequence
on G. Let f be a uniformly continuous bounded function on G. Let ε > 0 be given. As
usual we say that a t ∈ G is an ε-almost period of f if

M(|f − f (· − t)|) < ε.

Denote the set of all ε-almost periods of f by AP(f , ε). Then, it is not hard to see that

AP(f , ε)− AP(f , ε) ⊂ AP(f , 2ε).

A uniformly continuous bounded f : G −→ C is mean almost periodic if for any ε > 0
the set AP(f , ε) is relatively dense.

LEMMA B.2. Let G be a σ -compact locally compact abelian group and let (Bn) be a
Følner sequence on G. Let a natural number n and uniformly continuous bounded mean
almost periodic functions f1, . . . , fn on G be given. Then, the set

n⋂
k=1

AP(fk , ε)

is relatively dense in G for any ε > 0.
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Proof. This is shown by induction in n. The case n = 1 is clear. Thus, assume now
the statement holds for a chosen n. Let ε > 0 and uniformly continuous functions
f1, . . . , fn+1 be given. Then, the set D := ⋂n

k=1 AP(fk , ε/3) is relatively dense by
assumption. As the functions fk , k = 1, . . . , n+ 1, are uniformly continuous we can find
an open relatively compact neighborhood V of the neutral element such that

‖fk − fk(· − s)‖∞ <
ε

3

for all s ∈ V and k = 1, . . . , n+ 1. Set E := AP(fn+1, ε/3). Then, the previous
proposition gives that

((D −D)+ V ) ∩ ((E − E)+ V )

is relatively dense. On the other hand, it is not hard to see that

(D −D)+ V ⊂ AP(fk , ε), k = 1, . . . , n and (E − E)+ V ⊂ AP(fn+1, ε).

This finishes the proof.

THEOREM B.3. Let G be a σ -compact locally compact abelian group and let (Bn) be a
Følner sequence on G. Then, the set of all uniformly continuous bounded mean almost
periodic functions is invariant under taking complex conjugates and a closed subalgebra
of the uniformly continuous bounded functions on G equipped with ‖ · ‖∞.

Proof. We have to show that the set in question is closed under complex conjugation,
sums, products, multiplication by scalars and uniform convergence.

It is not hard to see that the set in question is closed under complex conjugation, uniform
convergence and multiplication by scalars.

We next show that it is closed under sums: let f , g be mean almost periodic uniformly
continuous bounded functions. Then, the previous lemma easily gives that f + g is also
mean almost periodic.

Finally, we deal with products: let f , g be mean almost periodic uniformly continuous
bounded functions. Then, a short computation gives for any t ∈ G

|f (s)g(s)− f (s − t)g(s − t)| ≤ |f (s)g(s)− f (s)g(s − t)|
+ |f (s)g(s − t)− f (s − t)g(s − t)|

≤ ‖f ‖∞|g(s)− g(s − t)| + ‖g‖∞|f (s)− f (s − t)|.
From this we easily obtain

M(|fg − (fg)(· − t)|) ≤ ‖f ‖∞M(|g − g(· − t)|)+ ‖g‖∞M(|f − f (· − t)|).
Now, the desired statement follows easily from the preceding lemma.

The last statement is clear.

For later use we also note the following proposition.

PROPOSITION B.4. Let (fn) be a sequence of uniformly continuous bounded mean almost
periodic functions on G with ‖fn‖ ≤ 1 for all n. Let cn > 0 with

∑∞
n=1 cn < ∞ be given.
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Then, there exists for any ε > 0 a relatively dense set D in G with

M

( ∞∑
n=1

cn|f − f (· − t)|
)
< ε

for all t ∈ D.

Proof. Choose n0 large enough so that
∑∞
k=n0+1 ck < ε/4. Then,

∑∞
n=n0+1 cn‖f −

f (· − t)‖∞ < ε/2 by assumption on the fn and the cn. By Lemma B.2 there exists a
relatively dense set D in G with M(|fk − fk(· − t)|) < ε/2n0 for k = 1, . . . , n0. Now,
the statement follows easily.

Remark. The considerations of this section carry over when M ◦ | · | is replaced by any
invariant seminorm N on the algebra of bounded uniformly continuous functions on G
satisfying:
• N(f ) ≤ N(g) whenever |f | ≤ g;
• N(1) = 1.
This point is taken up in §8.

C. Appendix. Besicovitch almost periodic functions and existence of means
We consider a σ -compact locally compact abelian group G together with a Følner sequence
(Bn). Our aim is to study the set of uniformly continuous bounded functions f : G −→ C,
which are Besicovitch almost periodic, that is, they satisfy that for any ε > 0 there exist
k ∈ N, ξ1, . . . , ξk ∈ Ĝ and c1, . . . , ck ∈ C with

M

(∣∣∣∣f −
k∑
j=1

cξj ξj

∣∣∣∣
)
< ε.

For an in-depth study of these functions, we the reader refer to [31]. Here, we briefly
summarize what is needed for the purposes of the present article.

PROPOSITION C.1. Let G be a σ -compact locally compact abelian group and let (Bn)
be a Følner sequence on G. Then, any uniformly continuous bounded Besicovitch almost
periodic function is mean almost periodic.

Proof. Let ε > 0 be given. Choose c1, . . . , ck ∈ C and ξ1, . . . , ξk ∈ Ĝ such that P :=∑k
j=1 cj ξj satisfies

M(|f − P |) < ε.

AsM is invariant this inequality will then continue to hold if f is replaced by f (· − t) and
P is replaced by P(· − t) for any t ∈ G. Now, clearly P is Bohr almost periodic. Hence,
there exists a relatively dense set R ⊂ G with ‖P − P(· − t)‖∞ < ε for all t ∈ R. This
easily gives

M(|f − f (· − t)|) ≤ M(|f − P |)+M(|P − P (· − t)|)+M(|P (· − t)− f (· − t)|) < 3ε

for all t ∈ R.
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From the definition and simple algebraic manipulations, we infer the following.

LEMMA C.2. Let G be a σ -compact locally compact abelian group and let (Bn) be a
Følner sequence on G. Then, the set of all uniformly continuous bounded Besicovitch
almost periodic functions is invariant under taking complex conjugates and a closed
subalgebra of the uniformly continuous bounded functions on G equipped with ‖ · ‖∞.
It contains all Bohr almost periodic functions and is contained in the algebra of mean
almost periodic functions.

Proof. The set is clearly closed under taking limits with respect to ‖ · ‖∞ as well as under
addition and taking complex conjugates. To show that it is closed under multiplication
consider f , g in this set and let ε > 0 be arbitrary. Let P , Q be trigonometric polynomials
so that

M(|f − P |) < ε

2‖g‖∞ + 4
and M(|g −Q|) < ε

4‖f ‖∞ + 1
.

Define

Q′(x) :=

⎧⎪⎨
⎪⎩
Q(x) if |Q(x)| ≤ ‖g‖∞ + 1,

Q(x)

|Q(x)| (‖g‖∞ + 1) otherwise.

Then, Q′ is a Bohr almost periodic function and |g −Q′| ≤ |g −Q|, which gives
M(|g −Q′|) ≤ M(|g −Q|).

As Q′ is Bohr almost periodic, there exists a trigonometric polynomial R such that
‖Q′ − R‖∞ < min{ε/(4‖f ‖∞ + 1), 1}. In particular,

‖R‖∞ ≤ ‖Q′‖∞ + 1 ≤ ‖g‖∞ + 2.

Then,

M(|fg − PR|) ≤ M(|fg − fR|)+M(|fR − PR|)
≤ ‖f ‖∞M(|g − R|)+ ‖R‖∞M(|f − P |)
≤ ‖f ‖∞(M(|g −Q′|)+M(|Q′ − R|))+ ε

2

≤ ‖f ‖∞(M(|g −Q′|)+ ‖Q′ − R‖∞)+ ε

2
< ε.

This shows that the set in question is closed under multiplication. It clearly contains
all Bohr almost periodic functions and is contained in the set of mean almost periodic
functions.

Remark. The functions referred to as Besicovitch almost periodic were introduced by
Besicovitch in [8] for G = R. A corresponding class of functions was then studied by
Følner for general locally compact abelian groups [14]. This class, however, does not
coincide with the Besicovitch class for G = R. Another approach to Besicovitch almost
periodic functions is developed by Davis in [10]. An account of these developments with a
focus on aperiodic order is given in Lagarias survey [25]. Here, we have taken a ‘shortcut’:
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we have not defined Besicovitch almost periodic functions by some intrinsic features.
Instead we have defined them by what would be a main result in a proper theory starting
with an intrinsic definition.

A crucial feature of Besicovitch almost periodic function is existence of means in the
following sense.

LEMMA C.3. Let G be a σ -compact locally compact abelian group and let (Bn) be a
Følner sequence on G. Let f : G −→ C be a uniformly continuous, bounded Besicovitch
almost periodic function. Then, the limit

A(f ) = lim
n→∞

1
|Bn|

∫
Bn

f (s) ds

exists.

Proof. The statement is well known for functions of the form f = ∑k
j=1 cj ξj with

ξ1, . . . , ξk ∈ Ĝ, c1, . . . , ck ∈ C. It then follows by a limiting procedure for Besicovitch
almost periodic functions.

In fact, existence of means together with a Parseval type equality is a characterizing
feature of Besicovitch almost periodic functions.

PROPOSITION C.4. Let G be a σ -compact locally compact abelian group and let (Bn) be
a Følner sequence on G. Let f : G −→ C be a uniformly continuous and bounded. Then,
f is Besicovitch almost periodic if and only if there exists a countable set F ⊂ Ĝ such that
the following three statements hold.
• The limit A(|f |2) = limn→∞(1/|Bn|)

∫
Bn

|f (t)|2 dt exists.
• For any ξ ∈ F the limit

A(f ξ) = lim
n→∞

1
|Bn|

∫
Bn

f (t) ξ(t) dt

exists.
• The equality

A(|f |2) =
∑
ξ∈F

|A(f ξ)|2

holds.
In this case A(f ξ) = 0 holds for all ξ ∈ Ĝ \ F .

Proof. Let f be Besicovitch almost periodic. Clearly, any ξ ∈ Ĝ is Bohr almost periodic
and, hence, Besicovitch almost periodic. Thus, f ξ is Besicovitch almost periodic as a
product of Besicovitch almost periodic functions. Hence, the second point holds (even for
all ξ ∈ Ĝ). Similarly, |f |2 is Besicovitch almost periodic. Given this, the first point follows.
The last point is contained in [31].

Now, consider f satisfying the three points. Let ξ1, ξ2, . . . be an enumeration of the
ξ ∈ F . A computation involving the Cauchy–Schwarz inequality in the first step,M(1) = 1
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in the second step and existence of averages A in the third step gives

M

(∣∣∣∣f −
N∑
j=1

A(f ξj )ξj

∣∣∣∣
)2

≤ M

(∣∣∣∣f −
N∑
j=1

A(f ξj )ξj

∣∣∣∣2)
M(1)

= M

(
|f |2 − f

N∑
j=1

A(f ξj )ξj − f

N∑
j=1

A(f ξj )ξj +
N∑

j ,k=1

A(f ξj )A(f ξk)ξj ξk

)

= A(|f |2)− A
(
f

N∑
j=1

A(f ξj )ξj

)
− A

(
f

N∑
j=1

A(f ξj )ξj

)
+ A

( N∑
j=1,k

A(f ξj )A(f ξk)ξj ξk

)

= A(|f |2)−
N∑
j=1

|A(f ξ)|2

→ 0

for N → ∞. Here, the penultimate step is a direct computation invoking that A is linear
with A(η) = 0 for 0 �= η ∈ Ĝ. Indeed, this shows that f can be approximated in mean by
a trigonometric polynomial arbitrarily well. This finishes the proof.

D. Appendix. Weyl almost periodic functions and uniform means
In this appendix, we consider a uniform type of mean.

Let (Bn) be a Følner sequence in G and define for bounded f : G −→ R and n ∈ N

Mn(f ) := sup
r∈G

1
|Bn|

∫
Bn+r

f (t) dt .

PROPOSITION D.1. For a bounded measurable function f : G −→ R and ε > 0 the
following assertions are equivalent.
(i) There exists an N ∈ N with MN(f ) < ε.

(ii) There exists an N0 ∈ N with MN(f ) < ε for all N ≥ N0.

Proof. (ii)�⇒(i): This is clear.
(i)�⇒(ii): Consider n ∈ N. Define for r ∈ G

Cr := 1
|BN |

∫
BN

( ∫
1

|Bn|
∫
Bn+r

f (s + t) ds

)
dt .

Fubini’s theorem and the assumption (i) directly give

Cr = 1
|Bn|

∫
Bn+r

(
1

|BN |
∫
BN

f (s + t) dt

)
ds ≤ 1

|Bn|
∫
Bn+r

MN(f ) ds = MN(f ).

On the other hand, we can easily see that (for large n) the additional averaging over BN
does not play a role. More specifically, we can compute as follows:
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∣∣∣∣Cr − 1
|Bn|

∫
Bn+r

f (s) ds

∣∣∣∣ =
∣∣∣∣Cr − 1

|BN |
∫
BN

(
1

|Bn|
∫
Bn+r

f (s) ds

)
dt

∣∣∣∣
=

∣∣∣∣ 1
|BN |

∫
BN

(
1

|Bn|
∫
Bn+r

(f (s + t)− f (s)) ds

)
dt

∣∣∣∣
≤ 1

|BN |
∫
BN

2‖f ‖∞
|(Bn + t) � Bn|

|Bn| dt .

Now, due to the Følner condition the integrand in the last term can easily be seen to
go pointwise to zero for n → ∞. As BN is compact, we find convergence to zero of
the integral for each fixed N. As there is no dependence on r ∈ G, this convergence is
independent of r ∈ G. This easily gives the desired statement.

A bounded f : G −→ C is Weyl almost periodic if for all ε > 0 there exist k ∈ N,
ξ1, . . . , ξk ∈ Ĝ and c1, . . . , ck ∈ C with

lim sup
n→∞

Mn

(∣∣∣∣f −
k∑
j=1

cξj ξj

∣∣∣∣
)
< ε.

By the preceding proposition it is possible to replace this condition by the requirement that
for each ε > 0 there exists an N ∈ N, k ∈ N, ξ1, . . . , ξk ∈ Ĝ and c1, . . . , ck ∈ C with

MN

(∣∣∣∣f −
k∑
j=1

cξj ξj

∣∣∣∣
)
< ε.

As usual it is also possible to characterize this by relative denseness of ε-almost periods.
More specifically, as discussed in [38] a measurable bounded f : G −→ C is Weyl almost
periodic if and only if for each ε > 0 there exists a relatively dense set D ⊂ G and an
N0 ∈ N with

Mn

(∣∣∣∣f − f (· − t)

∣∣∣∣
)
< ε

for all t ∈ D and n ≥ N0. By the preceding proposition, validity for all n ≥ N0 can be
replaced by validity for one n.

Clearly, the set of Weyl almost periodic functions forms an algebra, is closed under
uniform limits and under multiplication with Bohr almost periodic functions. Moreover, a
crucial feature of Weyl mean almost periodic functions is uniform existence of means.

LEMMA D.2. Let G be a locally compact abelian group and let (Bn) be a Følner sequence
on G. Let f : G −→ C be a bounded Weyl almost periodic function. Then, for any
sequence (rn) in G the limit

lim
n→∞

1
|Bn|

∫
Bn+rn

f (s) ds

exists and is independent of the sequence. In particular, the convergence is uniform in the
chosen sequence.
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The proof follows the same lines as the proof of the corresponding statement for
Besicovitch almost periodic functions in the preceding section. For this reason, we leave it
to the reader.
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