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ON HOMOGENEOUS IMAGES OF COMPACT ORDERED SPACES 

J. NIKIEL AND E. D. TYMCHATYN 

ABSTRACT. We answer a 1975 question of G. R. Gordh by showing that if X is a 
homogeneous compactum which is the continuous image of a compact ordered space 
then at least one of the following holds: 

(i) X is metrizable, (ii) dimX = 0 or (iii) X is a union of finitely many pairwise 
disjoint generalized simple closed curves. 

We begin to examine the structure of homogeneous 0-dimensional spaces which are 
continuous images of ordered compacta. 

1. Introduction. The aim of this paper is to investigate homogeneous spaces which 
are continuous images of ordered compacta. In 1975, G. R. Gordh proved that if a homo
geneous and hereditarily unicoherent continuum is the continuous image of an ordered 
compactum, then it is metrizable, and so indecomposable [7, Theorem 3]. Further, he 
asked if, in general, every homogeneous continuum which is the continuous image of an 
ordered compactum must be either metrizable or a generalized simple closed curve. 

Our Theorem 1 provides an affirmative answer to Gordh's question. Moreover, in 
Theorem 2, we prove that a homogeneous space which is not 0-dimensional and which 
is the continuous image of an ordered compactum is either metrizable or a union of 
finitely many pairwise disjoint generalized simple closed curves. Our methods of proof 
involve characterizations of continuous images of arcs obtained in [ 16] in terms of cyclic 
elements and T-sets. 

When dealing with the class A of all homogeneous and 0-dimensional spaces which 
are the continuous images of ordered compacta, the situation becomes less clear. By a 
recent theorem of M. Bell, each member of A is first countable. Moreover, by a result 
of [18], each member of A can be embedded into a dendron. We give a rather simple 
construction leading to a wide subclass of A. In particular, we show that not all members 
of A are orderable, and that there exists a strongly homogeneous space X which is the 
continuous image of an ordered compactum and which is not first countable. It follows 
that X $ A. Our investigations of the class A led to some natural questions which are 
stated at the end of the paper. 

All spaces considered in this paper are Hausdorff. 
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A continuum is a compact connected (Hausdorff) space. A point x is a separating 
point of a connected space X if X — {JC} is not connected. A point x is an end-point of a 
continuum X if X has a neighbourhood basis at JC of open sets with one point boundaries. 
If X is a locally connected continuum then by a cyclic element of X is meant a separating 
point of X, an end-point of X or a maximal connected subset of X which contains no sep
arating point of itself. Each cyclic element of X is itself a locally connected continuum. 
We say that a locally connected continuum X is cyclic if it contains no separating points. 
It follows that a point x G X is an end-point of X if and only if X — {x} is connected and 
x is contained in no non-degenerate cyclic element of X. 

Let X be a locally connected continuum and JC, y G X with x ^ y. Let 

can be separated between JC and y}. 

Then £^ is a compact naturally ordered set (see e.g. [26, III 4.2]). Let F be an irreducible 
continuum in X from JC to y. Let Cxy denote the union of Y and the cyclic elements of X 
which meet Y in at least two points. Then Cxy is a locally connected continuum called 
the cyclic chain from x to y (We recall that it does not depend on any particular choice 
of Y). The set of separating points of Cxy is Exy — {x,y}. 

A space X is homogeneous if for each JC, y G X there is a homeomorphism /z of X onto 
itself such that h(x) — y. 

By an ordered space is meant a space X which admits a linear ordering such that the 
order topology on X coincides with the given topology. An ordered space X has a gap if 
X = AUB where A and 5 are sets (one of them possibly void) such that A has no largest 
element, B has no smallest element and JC < y for each JC G A and each y G B. We say X 
has a jump if there exist a and b in X such that a < & and if JC G X with a < x < b then 
either a = x or & = JC. We call b the immediate successor of a in X. 

A compact ordered space (often called: ordered compactum) has no gaps. In particular, 
it has first and last elements. An arc is a non-degenerate, compact, connected, ordered 
space. Alternatively, an arc is a non-degenerate, compact, ordered space with no jumps. 
A (generalized) simple closed curve is a space obtained from an arc by identifying the 
first and last elements of the arc. 

A continuum / is said to be hereditarily equivalent if it is homeomorphic to each of its 
non-degenerate subcontinua. There exist many hereditarily equivalent arcs (see e.g. [8] 
or the recent paper [14], where more references can be found). It is well-known that 
each hereditarily equivalent arc is first countable, [1], [11] and [22]. The reader should 
be warned that there exists an hereditarily equivalent arc which does not admit an order 
reversing (i.e., end-points exchanging) homeomorphism onto itself (see [8]; more per
verse examples can be found in [4]). Fortunately, if [a, b] is an hereditarily equivalent 
arc and [p, q] is a subarc of [a, b] such that a < p < q < b in the natural ordering of 
[a, b], then there is a homeomorphism h: [a,b] —• \p,q\ such that h(a) — p (see [22, 
p. 1417] or [14, Lemma 2.2]). The latter fact implies that each simple closed curve ob
tained by identifying the end-points of an hereditarily equivalent arc is a homogeneous 
space. However, it is unclear to the authors if an arc obtained by splitting a point of a 
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homogeneous simple closed curve into two points must always be an hereditarily equiv
alent continuum (Note that in a less general situation considered in [22, Theorem 2] that 
was the case). 

We remark that a closed subspace of a space which is the continuous image of an 
ordered compactum must be also the continuous image of an ordered compactum. Fur
thermore, since arcs are locally connected continua, each space which is the continuous 
image of an arc is a locally connected continuum as well. 

If A, B and C are arcs with a common end-point x and {x} = AnB=AnC = BP\C 
then the continuum A U B U C is said to be a simple triod. 

A continuum is said to be rim-finite if it has a basis of open sets with finite boundaries. 
Clearly, every subcontinuum of a rim-finite continuum is a rim-finite, locally connected 
continuum. If a and b are two points of a rim-finite continuum X every subcontinuum of 
X which is irreducible with respect to containing a and b is an arc. It is also well-known 
that each rim-finite continuum is the continuous image of an arc (see e.g. [20, p. 179]). 

A continuumX is said to be a dendron if each pair of distinct points of X is separated by 
a third point of X. It is easy to see that each dendron is rim-finite. If X is a dendron we let 
R(X) denote the set of ramification points of X. i.e. the set of x G X such that X— {x} has 
at least three components. Recall that dendrite is synonymous with metrizable dendron. 

The reader is referred to the survey papers [20] and [13] for more results and refer
ences concerning continuous images of ordered compacta and dendrons, respectively. 

2. Background on images of compact ordered spaces. A subset A of a continuum 
X is said to be a T-set in X if A is closed and each component of X — A has a two point 
boundary. A T-set A in X is said to be a strong T-set in X if each component of X — A is 
homeomorphic to the open interval ]0,1[ of real numbers. 

It is well-known and easy to prove that if A is a T-set in a cyclic, locally connected 
continuum X and J is a component of X — A with bd(/) = {a, b} then cl(J) is a locally 
connected continuum which is a cyclic chain from a to b. 

Let X be a cyclic, locally connected continuum. A sequence {An}^j of T-sets in X 
T-approximate s X (resp. deeply T-approximate s X) if the following conditions (i)-(iv) 
(resp. (i)-(v)) are satisfied: 

(i) A\ is metrizable, 

(ii) Ai C A 2 C - - - , 

(iii) if 7 is a component of X — An then An+\ contains the set of separating points of 

(iv) if J is a component of X — An and M is a non-degenerate cyclic element of cl(J), 
then MnAn+\ is a metrizable T-set in cl(M) and MHAn+\ contains at least three 
points, 

(v) if 7 is a component of X — An then the set of separating points of ci(J) is not 
metrizable. 
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THEOREM [2]. Let X be a Hausdorff space which is the continuous image of a com
pact ordered space. If some Cartesian power Xa ofX is a homogeneous space, then X is 
first countable. 

THEOREM B (SEE [16, THEOREM 1.1] AND [17, THEOREM 4]). IfX is a cyclic, locally 
connected continuum, then the following conditions are equivalent: 

(i) X is the continuous image of a compact ordered space, 
(ii) there is a sequence {An}

(^=l of T-subsets ofX which T-approximates X, 
(iii) there is a sequence {An}

(^l of T-subsets ofX which deeply T-approximates X. 

THEOREM C. Let Xbea locally connected continuum which is the continuous image 
of a compact ordered space. Let {An}

(^l be a sequence of T-sets in X which 
T-approximates X and let A — \J^LxAn. Then A is a dense subset ofX and X — A is 
0-dimensional. Moreover, ifx G X — A and, for each n,Jn is the component ofX — An 

which contains x, then {Jn } ^ j is a local basis ofX at x. 

PROOF. That A is dense in X was proved in [16, Lemma 3.4]. Let x £ X — A and, 
for each n, let Jn be the component of X — An which contains x. By [24, Theorem 8], 
n^Li cl(Jn) = {x}. Hence, {Jn}

(^Ll is a local basis of X at x and, therefore, X — A is 
O-dimensional. 

LEMMA 1 (SEE [15, THEOREM 2] OR [10, LEMMA 8]). If a Hausdorff space X is the 
continuous image of an ordered compactum, then there is a continuum Y such that Y is 
the continuous image of an arc, X is a subset of Y and X is a strong T-set in Y. Further, 
ifX is a continuum with no separating point then Y is cyclic. 

LEMMA 2. A homogeneous continuum has no separating point. 

PROOF. Every continuum has at least two non-separating points, see e.g. [26] or [9]. 

LEMMA 3. A compact, homogeneous space X which contains a non-empty open and 
metrizable subset is metrizable. 

PROOF. By homogeneity and compactness, X has a finite cover by closed metrizable 
sets, and so X is metrizable by [5, Theorem 4.4.19]. 

3. On Gordh's question. 

THEOREM 1. IfX is a homogeneous continuum which is the continuous image of an 
ordered compactum, then either X is metrizable or X is a simple closed curve. 

PROOF. We may assume that X is not metrizable. By Lemma 2, X has no separating 
point. By Lemma 1, there is a cyclic locally connected continuum Y such that X C F,X 
is a strong 7-set in F, and Y is the continuous image of an arc. By Theorem B, there is 
a sequence {A„}^j of T-subsets of Y which T-approximates Y. Let A = \J%L{An. By 
Theorem C, A is dense in Y and Y — A is O-dimensional. 

Suppose first that X is not contained in A. Let x £ X — A C Y — A. For each n, let Jn 

be the component of Y — An such that x G Jn and let U„ — X D Jn. By Theorem C, the 
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collection {Un : n — 1,2,...} is a local basis for X at x. Obviously, bdx(Un) C bdy(7„) 
and so bdx(Un) consists of at most two points, for n = 1,2,.... It follows that X is a 
rim-finite continuum which has a basis of open sets with at most two point boundaries. 
Therefore, X contains no simple triod. Thus X is either an arc or a simple closed curve. 
By Lemma 2, X is a simple closed curve. 

Now, suppose that X C A. Let Bn — XDAn for n = 1,2,... . Then each Bn is a closed 
subset of X and X = |J£Li Bn. Hence, there is a positive integer n such that the interior of 
Bn in X is non-empty. Let m = min{/î : Bn has non-empty interior in X}. If m = 1, then 
intx(#i) is a metrizable open subset of X (because A \ is metrizable), and X is metrizable 
by Lemma 3. Thus it suffices to consider the case when m > 1. 

By the choice of m, there is a component J of Y—Am- \ such that JHBm has non-empty 
interior in X. Let V = intx(J Pi #m). Let bd(7) = {a, b} and £ = {x G 7 : x separates 
J} U {a, b}. Then c£(7) is a cyclic chain from a to b, and £ is a compact ordered space. 
Let C be a non-degenerate cyclic element of c£(7). Then C H £ consists of exactly two 
points which will be denoted by Oc and 1 ç. Moreover, C — E is an open subset of J and 
of Y. We have two cases to consider. 

First, assume that there is a non-degenerate cyclic element C of cl(J) such that V D 
(C - E) ^ 0. Let W = V fl (C - E). Then W is a non-empty open subset of X. Since 
W CBmn(C -E) CAmnCmdAmnCis metrizable, it follows that W is metrizable. 
By Lemma 3, X is metrizable. 

Finally, consider the case when V C E. Since V is a non-empty open subset of a 
continuum X, it contains a non-degenerate continuum K. Thus, AT is a non-degenerate 
subcontinuum of the compact linearly ordered space E. Therefore, K is an arc. Let W = 
£—(end-points of AT). It is easy to see that W is an open subset of J. Therefore W is an 
open subset of X. This proves that each point of X has a neighbourhood which is an arc, 
whence, X is a simple closed curve. This completes the proof of Theorem 1. 

Let X be a locally connected continuum. Let E(X) denote the set of end-points of X. 
Recall also that a subset Z of X is said to be a node of X provided Z is an end-point of X 
or Z is a non-degenerate cyclic element of X such that bd(Z) is a single point. It is well-
known, [26, IV.8.2], that every locally connected continuum which is not cyclic has at 
least two nodes (The argument given in [26] can be easily extended to the non-metric 
case; see also [27]). 

THEOREM 2. Let X be a homogeneous space which is the continuous image of an 
ordered compactum. IfX has a non-degenerate component, then either X is metrizable 
or X has only finitely many components. 

PROOF. Let K denote a component of X. Then K is homogeneous and each compo
nent of X is homeomorphic to K. By Theorem 1, either K is metrizable or A' is a homo
geneous and non-metrizable simple closed curve. Hence, we have two totally different 
cases to consider. 

CASE 1 : THE COMPONENTS OF X ARE NON-METRIZABLE. By Theorem 1, each com
ponent K of X is a non-metrizable simple closed curve. If A is a subcontinuum of K then 
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A has a non-empty interior in K. By Lemma 3, A is non-metric. Thus, X contains no 
non-degenerate metrizable subcontinuum. We are going to prove that X has only finitely 
many components. 

Let I be an arc which contains no subset homeomorphic to [0,1] (e.g. one can take 
I to be [0,1]°° with the order topology induced by the lexicographic ordering). Then I 
contains no nondegenerate metrizable subcontinuum. Let 0/ and 1/ denote the end-points 
of/, </ denote the natural ordering of / from 0/ to 1/, and 1° — I — {1/}. 

Let/: C —» X be a continuous surjection of an ordered compactum C onto X. Let <c 
denote a natural ordering of C. Since C is compact, (C, <c) has no gaps. 

We let D denote an arc which is formed from C by inserting a copy of 7 — {0/, 1/} 
into each jump of (C, <c). Namely, let B = {x G C : there is an immediate successor to 
x in (C, <c)}, let D = (C x {0/}) U(f ix i ° ) and place a lexicographic ordering < on 
D : (c, 0 < (c\ i') provided either c <c c\ ore — c' and i </ i'. Then (Z), <) has no gaps 
and no jumps, and so D with its order topology is an arc. It contains a homeomorphic 
copy C — Cx {0/} of C and each component of D — C' is homeomorphic to /— {0/, 1/}. 

Let G denote the decomposition of D into sets/_1(jt) x {0/}, x G X, and single points. 
Since/ is continuous, G is upper semi-continuous. Let F be the quotient space Y — DJQ. 
Then F is a continuous image of the arc D. Hence, F is a locally connected continuum. 
Observe that Y contains X and each component of Y—X is homeomorphic to / — {0/, 1/}. 

Let M be a non-degenerate subcontinuum of Y. Then either M is contained in a com
ponent of X or M meets a component K of Y — X. In the latter case MHK contains a 
non-degenerate continuum (because K is an open subset of Y). Recall that neither X nor 
K contains a non-degenerate metrizable subcontinuum. It follows that no non-degenerate 
subcontinuum of Y is metrizable. 

We have proved that F is a continuous image of an arc and F contains no non-
degenerate metric continuum. By [23], F is a rim-finite continuum. 

Let {Ja : a < 6} be a well-enumeration of the collection of all components of F — X. 
Define sets Za, a < <5, by transfinite induction: 

(a)Zo = F, 
(b) Z\ = PlcxA Za if A is a limit ordinal number, 0 < À < <5, 
and 

_ { Za if Za — Ja is not connected 
\Za — Ja otherwise. 

It follows that each Za, a < 6, is a compact space which contains X. Since the in
tersection of a nested collection of continua is a continuum again, it follows that each 
Za is a continuum. Let Z = f]a<6 Za- Then X C Z, and each component of Z — X is a 
component of F — X homeomorphic to / — {0/, 1/}. Also, Z — Â  is not connected for 
each component K of Z — X, and Z is a subcontinuum of F. Since F is rim-finite, Z is 
rim-finite as well. Being a rim-finite continuum, Z is locally connected. 

If Z is cyclic then X — Z because each point of Z — X disconnects Z by the definition 
of Z. In particular, X is connected. 

Suppose, therefore, that Z is not cyclic and let Q be a node in Z. Let # be a component 
of Z—X. Since c£(AT) is an arc such that each point of K disconnects Z and Q is a node of 
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Z it follows that KC\ Q = 0. Hence, there is a component L of X such that Q C L. Recall 
that, in the case under consideration, the components of X are simple closed curves. Thus, 
Q = L. Since Q is a node, let x be the unique point in the boundary of Q in Z. Then L—{x} 
is an open set of Z and, hence, in X. Since X is homogeneous, each point of X has an open 
neighbourhood which meets exactly one component of X. Hence, by homogeneity, each 
component of X is open in X. Since X is compact, X has only finitely many components. 
This completes the proof when each component of X is non-metrizable. 

CASE 2: X HAS A METRIZABLE COMPONENT. Then all components of X are non-
degenerate and metrizable continua. Let F be a locally connected continuum such that 
X C F, X is a strong T-set in F, and F is the continuous image of an arc. 

Below, we shall consider the case when F is not cyclic. If F is cyclic, the argument is 
somewhat simpler and is left to the reader. 

Assume that F is not cyclic. First, we shall show that F has no end-point. Suppose on 
the contrary that x is an end-point of F. It follows that x G X. Let M be the component of 
X which contains x. Then M is a non-degenerate homogeneous continuum. By Lemma 
2, M has no separating point. Therefore, there exists a cyclic element Y' of F such that 
x G M C F', and so x is not an end-point of F, a contradiction. 

Let Z be a node of F. Since F contains no end-point, Z is a non-degenerate cyclic 
element of F. Then bd(Z) consists of a single point z. Let X1 — XC\ (Z — {z}). Since each 
component of F—X is a copy of ]0,1 [, it follows that z G X. Let M denote the component 
of X which contains z. By Lemma 2, M has no separating point and, consequently, either 
MCZorMDZ= {Z}. In each case, X1 is a non-empty open subset of X. Moreover, if 
MHZ = {z} then each component of X which meets X' is contained in Xf, and if M C Z 
then each component of X which meets X' is contained in X' U {z}. 

Let {An}
(^l be a sequence of 7-subsets of Z which deeply T-approximates Z. Let 

A = \J%L\ kn. By Theorem C, A is dense in Z and Z — A is O-dimensional. 

Now, we shall show that X' C A (our argument shows also that Z — {z} C A). Let L 
be a component of X which meets X'. Then L c Z . Since L is non-degenerate and Z — A 
is O-dimensional, there is a positive integer m such that LDAm consists of at least two 
points. Suppose that L is not contained in Am. Then there is a component J of Z — Aw 

such that L n J ^ 0. Let bd(7) = {a,b}. Since L is a continuum which meets Am, it 
follows that LPl {a, b} ^ 0. First, assume that LD {a, b} consists of a single point, say a. 
Recall that LC\Am has more than one point, and so L is not a subset of ci(J). It follows 
that a is a separating point of L. However, the continuum L, being non-degenerate and 
homogeneous, has no separating points, a contradiction. Now, assume that a,b G L. Then 
there is a subcontinuum L' of L such that a,b G L' C c£(7). Since c£(7) is a cyclic chain 
from a to /?, it follows that each separating point of J belongs to L'. However, L and L' are 
metrizable and the set of all separating points of J is non-metrizable (because {A„}^j 
is assumed to deeply T-approximate Z), a contradiction. We have proved that L C Am. 
This concludes the proof that X' C A. 
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Recall that X' is a non-empty open subset of X. Let V be a non-empty open subset of 
X such that c£(V) C X'. Then c£(V) C A. Since c£(V) = [JZ\ {ct(V) H A„), there is an 
integer n such that c£(V) (1 An has a non-empty interior in c£(V). 

Let m = min{n : c£(V) D An has a non-empty interior in c£(V)}. Let £/' denote the 
interior of ci(V) Pi Am in c£(V), and let U = [/'flV. Then £/ is a non-empty open subset 
of X. We shall show that U contains a non-empty open and metrizable subset W of X. 
Then Lemma 3 will imply that X is metrizable. 

If ra = 1, then Am = Ai is metrizable and it suffices to let W = U. Suppose that 
m > 1. By the choice of m, there is a component J of Z — Am_i such that J P\U ^ 0. 
Let W' = / n £/. Then Wf is a non-empty open subset of X. Let bd(7) = {#,&} and 
£" = {a,b}U {x £ J : x separates / } . Recall that c£(J) is a cyclic chain from a to &. 
Hence, if C is a non-degenerate cyclic element of c£(J), then CHE consists of exactly 
two points and C — E is an open subset of Z. Suppose that Wf Pi (C — E) ^ 0 for some 
non-degenerate cyclic element C of c£(J). Let W = W ' n ( C - £ ) . Recall that AmHC 
is metrizable and W C Uf C Am.lt follows that W C Am P\ C is a non-empty, open and 
metrizable subset of X. 

Finally, suppose that Wf C £. Recall that E is a compact linearly ordered space. 
Since W' is an open subset of X and each component of X is non-degenerate, it follows 
that W' contains a non-degenerate subcontinuum W" of X. Then W" is a non-degenerate 
subcontinuum of E, and therefore W" is an arc. Obviously, W" is metrizable (because it 
is a subset of a single component of X). Let W = ^'-(end-points of W"). It is easy to 
see that W is an open subset of J. Consequently, W is a metrizable open subset of Z— {z} 
and of X. By Lemma 3, the proof of Theorem 2 is complete. 

4. O-dimensional homogeneous spaces. Now, it is natural to investigate the homo
geneous O-dimensional spaces which are continuous images of ordered compacta. Let X 
be a homogeneous and O-dimensional space which is the continuous image of an ordered 
compactum. By Theorem A, X is first countable. In the case when X is metrizable we have 
a very simple classification: either X is finite or it is a Cantor set. However, the case when 
X is not metrizable is still unclear. The following fact is now much appreciated: 

THEOREM D, [18, THEOREM 2.1]. A O-dimensional space which is the continuous 
image of an ordered compactum is homeomorphic to a strong T-set in a dendron. 

We remark that, by [19, Lemma 6.3], each compact subset of a dendron is homeo
morphic to a strong T-set in another dendron. 

A family F of subsets of X is said to be cross-free if for all U, V G F one of the 
following conditions holds: U CV, V C U, U HV = ® or UUV = X. 

THEOREM E ([2], SEE ALSO [13, THEOREM 6.6, P. 79]). A Hausdorff space X can be 
embedded into a dendron if and only ifX admits a subbasis which is a cross-free family 
of subsets ofX. 

By Theorems D and E, we have the following immediate corollary: 

https://doi.org/10.4153/CJM-1993-019-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-019-7


388 J. NIKIEL AND E. D. TYMCHATYN 

COROLLARY 1. The following conditions are equivalent/or a compact O-dimensional 
space X: 

(i) X is the continuous image of an ordered compactum, 
(ii) X admits a subbasis which is a cross-free family. 

By Theorem D, we may restrict our attention to homogeneous closed subsets of tien
drons. One might be tempted to conjecture that such sets are orderable. However, the 
example below shows that such a conjecture fails. 

Following [12], we say that a O-dimensional space X is strongly homogeneous pro
vided each non-empty closed-open subset of X is homeomorphic to X. It is easy to see 
that a first countable, strongly homogeneous and O-dimensional space is homogeneous. 
It would be interesting to know if each homogeneous and closed subset of a dendron or 
even of an arc is strongly homogeneous (clearly, such a subset must be O-dimensional). 

The following fact is well-known (see e.g. [13]): 

LEMMA 4. IfX is a dendron, then the collection 

IP : P is a component ofX — {x} for some x G X\ 

is a subbasis for the topology ofX. 

Let X be a non-degenerate dendron. If JC G X, we let K(x) denote the collection of 
all components of X — {x}, and we let k(x) denote the cardinality of the collection K(x). 
Recall that E(X) denotes the set of end-points of X, i.e., E(X) = {x G X : k(x) = 1}, and 
R(X) = {x G X : k(x) > 3} denotes the set of ramification points of X. 

Let C be a subset of X such that k(x) is finite for each x G C. We are going to construct 
a space s(X, C) which is formed from X by splitting each x G C into k(x) points (we 
remark that our construction is a particular form of more general constructions described 
in [6] ). Let 

s(X, Q = ( X - Q U {(JC,P) : JC G C and P G K(x)} 

and define ir. s(X, Q —• X by 

ff ifteX-C 
n{t) ~ \ x if t = (JC, P) for some JC G C and P G K(x). 

Let J be the collection which consists of all sets Q such that 

n— \7r_1 (p) f o r s o m e x € X and P G K(x), or 
^ ~ 1 TT-{ (P) U {(JC, P)} for some JC G C and P G K(x). 

We take 7 as a subbasis for open sets in s(X, C). 
The following fact has a rather easy and straightforward proof: 

PROPOSITION 1. IfX is a non-degenerate dendron and C C X such that k(x) is finite 
for each x G C then 

1. s(X, O is a compact space, 
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2. 7r: s(X, Q —-> X is continuous and irreducible, 

3. 5"(X, C) can be embedded into a dendron, and so it is the continuous image of an 

ordered compactum, 

4. s(X, C) is orderable provided X is an arc, and 

5. s(X, C) is O-dimensional if and only if, for each arc / C X, CD / is a dense subset 

of/. 

By Lemma 4, one easily gets the following: 

PROPOSITION 2. IfX is a dendron, then X is first countable if and only if each arc 

contained in X is first countable and k(x) < Ho for each x G l 

Moreover, it is not difficult to see that 

PROPOSITION 3. IfX is a dendron and C C X such that k(x) is finite for each x £ C, 

then s(X, C) is first countable if and only if each arc contained in X is first countable and 

k(x) < Ho for each x G l - C 

Observe that s([0,1], [0,1]) is canonically homeomorphic to s([0,1], ]0,1[), and it is 

homeomorphic to the Alexandrov double arrow space. Let Q denote the set of rational 

numbers in ]0,1[. Then s([0,1], Q) is homeomorphic to the Cantor set. It is also easy 

to see that s-([0,1], [0,1]), ,s([0,1], Q) and s([0,1], [0,1] - Q) are strongly homogeneous 

spaces. That observation can be generalized as follows: 

PROPOSITION 4. Let I be an arc with end-points a and b and let C be a dense subset 

of I. If for each subarc J of I such that the end-points of J belong to C, there exists a 

homeomorphism hy.I —> J such that 

hj(C — {a, b}) = CHJ — (end-points of J), 

then s(I, C) is strongly homogeneous. 

PROOF. It is easy to prove by induction that, for each finite discrete space D, the 

product s(I, C) x D is homeomorphic to s(I, C). Now, every closed-open subset of s(I, C) 

consists of finitely many convex closed-open subsets of s(I, C) equipped with its canon

ical ordering induced from /. 

Proposition 4 admits the following generalization to dendrons: 

PROPOSITION 5. Let X be a non-degenerate dendron and let C be a subset ofX such 

that CD I is dense in I for each subarc I ofX and k(x) is finite for each x G C. 

Suppose that 

(a) for each finite collection { P i , . . . , Pn} such that P\ D • • -nPn ^ 0 and each Pi is 

a component ofX — {JC/} where X( E C, there is a homeomorphism hy ofX onto the set 

Y = c£(Pi H • • • n Pn) such that hY(C - E(X)) = YHC- E(Y), and 

(b) s(X, C) is homeomorphic to s(X, Q x {0,1}. 

Then s(X, C) is strongly homogeneous. 

The authors do not know whether the condition (b) is really necessary in Proposition 5. 

Note that (b) holds when there is JC G C such that k(x) = 2. 
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Let a G {3,4, . . . , KQ}« It is well-known (see e.g. [3]) that there exists a unique up to 
a homeomorphism dendrite Xa with respect to the following properties (a\) and (oti)'. 

(a\) if x G Xa then/:(;c) G {1,2, a} , 
((*2) if J C Xa is an arc in X, then /?(Xa) D 7 is a dense subset of / . 

The dendrite Xa has also the following properties: 
((X3) R(Xa) is a countable dense subset of Xa, 
(0:4) Zs(Xa) is a dense subset of Xa and E(Xa) is homeomorphic to the space of all 

irrational numbers, 
(a^) if F is a dendrite such that k(y) < a for each y G Y, then Y can be embedded into 

Xa-
In particular, X#0 is a universal dendrite (it was constructed in 1923 by T. Wazewski, 

[25]). 

EXAMPLE 1. Let a G {3,4,...} and let Xa be the dendrite defined above. 
(a) Observe that s(Xa, R(Xa)) is a compact, metrizable and 0-dimensional space with 

no isolated point. Hence, it is homeomorphic to the Cantor set. 
(b) Let Ca — Xa—(is(Xa)U/£(Xa)). Then the hypotheses of Proposition 5 are satisfied. 

Consequently, s(Xa, Ca) is a strongly homogeneous, compact and 0-dimensional space. 
Since TT: s(Xa, Ca) —• Xa is irreducible, s(Xa, Ca) is separable. Moreover, it is easy to see 
that s(Xa, Ca) is first countable (by Proposition 3), non-metrizable and homogeneous. We 
are going to show that s(Xa, Ca) is not orderable. 

Let A denote the Alexandrov double arrow space and < be the standard linear ordering 
on A. Let B be a dense countable subset of A which does not contain the <-first and <-last 
elements of A. Let P denote the collection of all ordered pairs (t\, ti) G A x A such that 
t\ < t2 and t2 is the immediate successor of t\. Moreover, let Q = {(t\,t2) £ P : t\ G B 
or t2 G B}, Z = (A x {0}) U {(*i, 1): there is t2 G A such that (tut2) G Q} and let 
-< denote the lexicographic ordering on Z, i.e., (a, i) < (bj) if and only if a < b, or 
a — b and / < j . We take Z with its order topology induced by -<. Then Z is a compact 
ordered space. Clearly, A is homeomorphic to a subspace of Z, and Z is 0-dimensional 
and separable (roughly speaking, Z is formed from A by inserting an isolated point in 
each jump of a countable dense set of jumps in A). 

Let G denote the decomposition of Z into the sets {(f, 0), (tf, 0)} such that (t, t') G Q, 
and single points. Then G is upper semi-continuous. Let Y = Z/G denote the quotient 
space. In [21] it was proved that Y is not orderable. 

It is not difficult to see that Y can be embedded into s(Xa, Ca). Therefore s(Xa, Ca) is 
not orderable. 

(c) Clearly, s(Xa,Xa) is homeomorphic to s(Xa,Xa — E(Xa)). Note that s(Xa,Xa) 
is a compact and 0-dimensional space and the hypotheses of Proposition 5 are satisfied. 
Hence, it is strongly homogeneous. Moreover, s(Xa,Xa) is separable, because 
IT: s(Xa,Xa) —> Xa is irreducible. It is also clear that s(Xa,Xa) is first countable, non-
metrizable and homogeneous. We remark that s(Xa,Xa) is orderable and, in fact, one 
can prove that s(Xa,Xa) is homeomorphic to s([0,1], C), where C is a dense subset of 
[0,1] such that C is a union of countably many Cantor sets. 
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EXAMPLE 2. Now, we shall construct a space X such that X is the continuous image 
of an ordered compactum and, moreover, it is O-dimensional, strongly homogeneous and 
not first countable. By Theorem A, X is not homogeneous. We let X = s(Z, C) be the 
space obtained by splitting certain points of a dendron Z. 

First, we claim that there is a dendron Z which is unique with respect to possessing 
the following properties: 

(1) there exist a (necessarily non-continuous) functiony: Z —> [0,1] and a point zo G Z 
such thaty_1(0) = {zo} andy'l^] is a homeomorphism of [zo,z] onto [0,1] for each 
zeE(Z)- {zo}, 

(2) if z G j~~l(q) for some q G Q then k(z) — 2 (recall that Q is the set of all rationals 
in]0, l [ ) , 

(3) if z ej~\t) for some t G]0,1[-Q, then k(z) = Hi, and 
(4) k(zo) = 1 and if z G j~\l), then k(z) = 1. 
In fact, Z is a pseudo-tree compactification (see [19, Theorem 4.8]) of the space 

(G((]0, l[-Q,<),Ki) ,r< c) 

of [19, Theorem 7.6]. The uniqueness of Z follows from [19, Theorem 7.7 (c)]. We let 
C = j~l(Q). It is not difficult to see that all the assumptions of Proposition 5 are satisfied 
((a) holds by the uniqueness of Z). We let X = s(Z, C). Then X is a compact subset of 
some dendron, and so it is the continuous image of an ordered compactum. Moreover, X 
has all the properties listed above. 

5. Problems. Now, we summarize several problems which arose in the present pa
per. 

1. Let X be an arc formed by splitting a point of a homogeneous simple closed curve 
into two points. Is then X hereditarily equivalent? (Compare with [22, Theorem 2]). 

2. Let X be a homogeneous space which is a closed subset of an arc or more generally 
of a dendron. Does it follow that X is strongly homogeneous? 

3. Let X be an infinite, strongly homogeneous, O-dimensional, closed subset of an 
arc. Does it follow that X is first countable and, hence, homogeneous? (Compare with 
Example 2). 

4. Is the assumption (b) necessary in Proposition 5? 
5. Let X be an infinite strongly homogeneous and O-dimensional closed subset of a 

dendron. Can X be obtained as s(Y, C) for some dendron Y and some C C Y such that 
k(x) < H0 for each x G C? 

6. The following is (loosely) related to Example 1 (c). Let C and D be dense subsets of 
[0,1] each of which is a union of countably many Cantor sets. It is easy to see that there 
exists a homeomorphism /i: [0,1] —> [0,1] such that h(0) = 0 and h(C — {0,1}) = D — 
{0,1}. Therefore, C and [0,1] — C are homogeneously embedded into [0,1] in the sense 
of [14]. The inverse limit construction given in [14] provides us with two hereditarily 
equivalent arcs ([0,1], Q w and ([0,1], [0,1] — CV It would be interesting to know if 
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those arcs are not homeomorphic to the ones considered in [14]. 

7. Let X be a compact O-dimensional space such that X x {0 ,1 , . . . , w} is homeo
morphic to X for some positive integer n. Does it follow that X x {0 ,1 , . . . , n — 1} is 
homeomorphic to X? More generally, what is the set of all positive integers m such that 
X x {0 ,1 , . . . , m} is homeomorphic to XI 
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