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Summary

Theoretical arguments are presented which suggest that each advance of Muller’s ratchet in a

haploid asexual population causes the fixation of a deleterious mutation at a single locus. A

similar process operates in a diploid, fully asexual population under a wide range of parameter

values, with respect to fixation within one of the two haploid genomes. Fixations of deleterious

mutations in asexual species can thus be greatly accelerated in comparison with a freely recombining

genome, if the ratchet is operating. In a diploid with segregation of a single chromosome, but no

crossing over within the chromosome, the advance of the ratchet can be decoupled from fixation if

mutations are sufficiently close to recessivity. A new analytical approximation for the rate of

advance of the ratchet is proposed. Simulation results are presented that validate the assertions

about fixation. The simulations show that none of the analytical approximations for the rate of

advance of the ratchet are satisfactory when population size is large. The relevance of these results

for evolutionary processes such as Y chromosome degeneration is discussed.

1. Introduction

The stochastic process known as Muller’s ratchet has

attracted a good deal of attention from theoreticians,

owing to its potential importance as a factor in the

evolutionary fate of asexual populations and of non-

recombining portions of the genome such as the Y

chromosome (Felsenstein, 1974; Maynard Smith,

1978; Charlesworth, 1996). In its classical verbal

formulation (Muller, 1964; Maynard Smith, 1978),

the ratchet was portrayed as a process by which the

class of individuals containing the lowest number of

deleterious mutations is irreversibly lost from the

population by genetic drift. Consider, for example,

the case of a haploid asexual population, in which

mutations occur exclusively from wild-type to del-

eterious alleles but not in the opposite direction. If the

selective effects of mutations at different loci are

identical, as is usually assumed, a population can be

characterized by the frequencies of genomes con-

taining 0, 1, 2,…mutations. If the frequency of the

mutational class containing the lowest number of

mutations (the least-loaded class) is sufficiently small,

it will be lost from the population after a finite number
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of generations. Given the assumed irreversible nature

of mutation and the lack of opportunity for genetic

recombination, the least-loaded class cannot be

reconstituted, and will be replaced by the class with

one more mutation. This class is now vulnerable to

stochastic loss in the same way. There is thus a

repetitive process of loss of successive least-loaded

classes, in which the loss of each class can be regarded

as a turn of Muller’s ratchet.

As formulated in this way, there is no reference to

the fate of mutant alleles at individual loci. The

ratchet is, indeed, often studied theoretically in terms

of a model in which the genome is assumed to have an

infinite number of loci, with mutant alleles at

infinitesimally low frequencies. The stochastic process

can then be represented by a multinomial sampling

scheme, in which the mutational classes (following

mutation and selection in one generation) are ran-

domly sampled to generate the set of mutational

classes in the next generation (Haigh, 1978; Stephan

et al., 1993). It is thus theoretically possible for the

ratchet to advance without any fixation, or even

noticeable increase in gene frequencies, of mutant

alleles at individual loci.

Some simulation studies of Muller’s ratchet have

been carried out, in which genomes with finite numbers

of loci were modelled, and in which the fates of

mutant alleles at individual loci were followed
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explicitly (Charlesworth et al., 1993; Higgs & Wood-

cock, 1995). The rate of fixation of deleterious mutant

alleles can then be compared with the rate predicted

from fixation probabilities calculated from standard

diffusion equation results (Kimura, 1962). Charles-

worth et al. (1993) studied diploid populations with

either exclusively asexual reproduction, or with sexual

reproduction and varying frequencies of recombi-

nation. They observed that, in randomly mating

sexual populations with low rates of genetic re-

combination and small population sizes, fixation

proceeded at much higher rates than expected from

single-locus results, but that these rates declined

rapidly with increasing population size. With suffici-

ently large population size, a non-recombining popu-

lation could experience a significant rate of advance of

the ratchet, in terms of successive losses of least-

loaded classes and an increase in the mean number of

mutations per individual, without any appreciable

fixation of deleterious mutations at individual loci.

This was less likely with diploid asexual populations,

but some cases in which the ratchet advanced as a

result of accumulation of mutations at unfixed loci

were observed here too. In contrast, Higgs &

Woodcock (1995) simulated asexual haploid popu-

lations and found that the advance of the ratchet

exactly coincided with the fixation of deleterious

alleles. Lynch and his co-workers have also equated

the advance of the ratchet with fixation, but without

providing detailed results on allele frequencies (Lynch

& Gabriel, 1990; Gabriel et al., 1993).

There are thus noticeable discrepancies among the

conclusions of different investigators concerning the

properties of what is supposedly the same process.

The question of whether the advance of Muller’s

ratchet can be equated with fixation events has

considerable biological significance. For instance,

Charlesworth (1978, 1996) argued that the degener-

ation of Y chromosomes and the evolution of dosage

compensation of X-linked loci in the heterogametic

sex may result from the operation of the ratchet,

without any concomitant process of fixation of

deleterious alleles at Y-linked loci. In contrast, several

recent studies suggesting higher rates of molecular

evolution in non-recombining genomes (compared

with freely recombining genomes) have interpreted

these as being due to an accelerated rate of fixation of

deleterious mutations associated with the operation of

Muller’s ratchet (Lynch, 1996; Moran, 1996).

In order to resolve this disagreement about the

nature of the ratchet, we have re-investigated all three

of the cases mentioned above. We find that it is indeed

the case that there is one-to-one correspondence

between the fixation of deleterious alleles in the case of

a haploid asexual population, but that this is not

necessarily so in the diploid cases. The mechanism of

fixation is more complex than is commonly assumed.

Before presenting the simulation results which support

this claim, we will first provide some qualitative

theoretical arguments concerning the operation of the

ratchet.

2. Qualitative theoretical considerations

(i) Haploid asexual population

In the case of a haploid organism, the population can

be divided into classes corresponding to genomes

(haplotypes) that contain 0, 1, 2,…deleterious muta-

tions. We denote the number of individuals carrying i

mutations by n
i
. Within a class, different haplotypes

may contain mutations at different loci, but the

assumption of multiplicative fitnesses across loci and

equal selective effects at each locus implies that these

haplotypes all have the same fitness, which is equal to

(1®s)i for the class with i mutations. Mutation is

assumed to occur according to a Poisson process, with

mean u per genome per generation. The population

size is assumed to be fixed at N breeding individuals

per generation; within a given genotypic class, parents

are sampled randomly for their contributions to the

next generation.

The process of fixation associated with the advance

of the ratchet can be understood by first considering

the case in which the value of n
!

obtained by

multiplying the corresponding deterministic equilib-

rium frequency by N, nW
!
, is so large that the ratchet

advances at a rate of one turn in several tens of

generations (Haigh, 1978; Stephan et al., 1993). In

addition, we assume that Ns is (1, so that a new

deleterious mutation at a given locus would have a

negligible chance of fixation in a freely recombing

population (Kimura, 1962). In the initial phase of the

process, the least-loaded class contains no mutations.

As long as the least-loaded class persists in the

population, the neighbouring class, whose size is n
"
,

receives new haplotypes from the zero class at an

average rate of κ¯©n
!
ª u exp(®u) per generation,

where ©n
!
ª is the mean value of n

!
over the period in

question. Hence, no permanent fixation of haplotypes

is possible within the class with one mutation, unless

κ is so small that no new mutations enter this class in

the time between fixation of a haplotype within this

class and loss of the zero-mutation class. Similar

principles apply to the classes with 2, 3,…etc. muta-

tions, which all originate from classes with lower

numbers of mutations. The fact that, at this stage of

the process, the least-loaded class of gametes contains

no mutations means that fixation of a deleterious

mutation at a given locus in the population as a whole

is impossible, even if fixation has occurred in all other

classes.

When the zero class has been lost from the

population, the least-loaded class is made up of a set

of haplotypes which all have one mutation (Fig. 1). By

assumption, there is no mutational flow into this class.

The finite size of the least-loaded class, and the

selective equivalence of all haplotypes within a

mutational class, means that a purely neutral process
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(a) Soon after initial stage: some mutant-free genomes present

(b) Zero class lost: no further input of mutations to class with one mutation

(c) Fixation within class with one mutation (and high frequency of this allele
in classes with more than one mutation)

New mutation

Existing mutation

0 1 2 3 4 5

1 2 3 4 5 6

1 2 3 4 5 6
Number of mutations per haploid genome

Fig. 1. Distributions of mutations in genotypes, illustrating three stages (a–c) during the process of fixation of mutations
in the least-loaded class. Each line represents a chromosome and mutations are indicated by open (new mutations) or
filled (mutations inherited from earlier generations) symbols. The column heights indicate the numbers of chromosomes
with different numbers of mutations (shown on the abscissa).

of genetic drift within the new least-loaded class will

cause it to become fixed for a single haplotype, if it

was not previously fixed. Fixation for a haplotype

corresponds to fixation of a deleterious allele at a

particular locus. Because all other mutational classes

in the population ultimately derive their haplotypes

from the least-loaded class, the rest of the population

will eventually become fixed for a deleterious allele at

the locus in question, following its fixation within the

new least-loaded class. Fixation in the whole popu-

lation must therefore follow upon the loss of the

current least-loaded class. There is no opportunity for

further fixation events in the entire population until

the loss of the new least-loaded class and its

replacement by the neighbouring class (which now

contains mutations at two loci, at least one of which

is fixed in the entire population). Once this has

happened, fixation can again occur at an additional

locus, and so on with each further turn of the ratchet,

producing a result like that observed in the simulations

of Higgs & Woodcock (1995).

This establishes that, with a slow moving ratchet,

there is a one-to-one correspondence between the loss

of the least-loaded class and fixation of a mutation in

the entire population, so that the rate at which the

mean number of mutations per haploid genome

increases is identical both to the rate at which least-

loaded classes are lost, and to the rate of fixation of

deleterious mutations within the population as a

whole. If fixed loci are excluded from consideration,

there thus is no increase in the mean number of

deleterious alleles per haploid genome, regardless of

the speed of movement of the ratchet. The cause of

each fixation event is the loss of the current least-

loaded class, and the fixations follow the turns of the

ratchet, by many generations if κ is large and ©1}n
!
ª

is small, where ©1}n
!
ª is the mean of the reciprocal of

the size of the least-loaded class while it persists in the
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Mutation at locus
heterozygous for mutation

Mutation at
homozygous
non-mutant
locus

Fig. 2. Possible mutational states of loci in diploid
genomes. As in Fig. 1, the lines represent chromosomes
and mutations at the loci are indicated by open or filled
symbols at the locations of the genes.

population. (The probability of loss of haplotypes by

drift in a given generation is inversely proportional to

the current size of the least-loaded class, and so the

long-term rate of loss will be related to the mean of

1}n
!
.)

If the ratchet is turning rapidly (e.g. if nW
!
!1),

several least-loaded classes may successively be lost

before fixation of a haplotype can occur in the current

least-loaded class. In such cases, the argument just

given must be modified. By the above argument, loss

of several classes will be followed by the simultaneous

fixation in the whole population of all the mutant

alleles contained in the haplotype in question. The

number of mutations that become fixed is equal to the

number of turns of the ratchet since the last fixation

event. Again, there is a one-to-one correspondence

between the rate of loss of least-loaded classes and the

rate of fixation of deleterious alleles.

(ii) Diploid asexual population

In the case of a diploid asexual population, each

individual has two haploid genomes (Fig. 2). Offspring

have the same genotype as their parent, plus any new

mutations that may have arisen. It is reasonable to

assume that the two haploid genomes of an individual

acquire mutations independently, at rate u for each

genome, so that there is a diploid mutation rate of

U¯ 2u. The fitness effect of an individual locus now

requires specification of the number of mutant alleles

present (0, 1 or 2). Homozygotes carrying two mutant

alleles have fitness 1®s, and heterozygotes carrying

one mutant allele have fitness 1®hs, where h is the

dominance coefficient.

A new mutant allele at a given locus arises in one of

the two haploid genomes of the individual which

originally carries it ; random drift can cause the

descendants of this individual to predominate in the

population, but this will cause fixation of the allele

only within one of the two haploid genomes that are

present in each individual. If the product of population

size and per locus mutation rate is sufficiently small,

mutations at a given locus can be treated as unique

events, so that the possibility that another mutation

arises at the same locus before the first has gone to

fixation can be neglected, at least in the short term,

and thus the actions of selection and drift are similar

to the asexual haploid case, with the selection

coefficient s being replaced by hs. If fixation is defined

as spread of a new mutation through the population

within one haploid set (Charlesworth et al., 1993), the

process is completely analogous to that for the haploid

case, and there will be the same correspondence

between fixation and movement of the ratchet as far

as the loss of the least-loaded haploid genomes is

concerned.

If, however, the population size is large enough,

mutations can re-occur at the same locus, and a new

deleterious allele may arise in a haploid genome in an

individual in which the other haploid genome already

carries a mutation at the same locus. The same will be

true if the ratchet has advanced sufficiently far that a

substantial proportion of loci are fixed within haploid

sets. When this happens, the selective equivalence of

different haplotypes within the same mutational class

will break down, unless deleterious alleles are suffi-

ciently dominant. For example, among diploid carriers

of two mutations, an individual whose pair of haploid

genomes each contain a mutant allele at a different

locus has fitness (1®hs)#, whereas an individual

homozygous for a deleterious allele at one locus has

fitness 1®s. These are equal when

h¯
1®o1®s

s
. (1)

For weak selection, this condition is close to h¯ 0±5,

i.e. semidominance (with s¯ 0±1, for example, we

have h¯ 0±513, and for s¯ 0±2 it is 0±528). If h is less

than this critical value, homozygosity for the mutant

allele will impose a selective penalty within the class of

individuals with two mutations, relative to individuals

in the same class which are heterozygous for two

mutations at different loci.

This effect means that selection will tend to resist

the fixation of deleterious alleles at a locus if it has

already acquired deleterious alleles by mutation in the

other haploid set. This effect will be especially strong,

the lower the dominance coefficient and the larger the

population size. Thus, with small values of h, there

will be only a weak relation between fixation in both

haploid sets and loss of the least-loaded class,

especially with a large population size, which increases

the effectiveness of selection. Fixation of a deleterious

allele at a locus within one of the two haploid genomes

is not, of course, expected to be retarded in this way.

(iii) Diploid, non-recombining, random-mating, sexual

population

In the case of a diploid, non-recombining, random-

mating, sexual population the two haploid genomes

that form an individual can segregate from each other,

and combine with haploid genomes drawn at random
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from the population as a whole to form the next

generation. The lack of equivalence of the fitnesses of

haplotypes with the same numbers of mutations when

dominance is not complete is even more obvious than

in the diploid asexual case: a haplotype cannot spread

to fixation within its class without causing individuals

who carry it to become homozygous. If the reduction

in homozygous fitness is sufficiently severe, compared

with the mean fitness of heterozygous carriers of the

haplotype, the probability of fixation will be decreased

to an insignificant level if the size of the class is large

enough. This means that losses of least-loaded classes

can proceed independently of the process of fixation

of deleterious alleles at individual loci, and will be

accompanied by a steady rise in the mean number of

mutations per individual, even if the fixed loci are

disregarded. For the reasons just discussed for the

asexual case, this decoupling of fixation and turns of

the ratchet ismost likely to be seen with low dominance

coefficients and large population sizes ; there will of

course be intermediate sets of parameter values in

which fixation is accelerated compared with the single-

locus case, but does not have a one-to-one cor-

respondence with turns of the ratchet.

3. Simulation methods

Stochastic simulations were done as described by

Charlesworth et al. (1993), with a simple modification

for the case of an asexual haploid population. The

computer programs simulated full details of genetic

transmission in multi-locus genotypes (with 1024 loci

subject to deleterious mutation). This enables allele

frequencies and fixation events at individual loci to be

followed. The sequence of events in each generation

was mutation, reproduction and selection. A popu-

lation size of N haploid or diploid genomes was

assumed, depending on which ploidy level was

investigated. Mutation was performed by assuming a

rate, u, for an entire haploid genome, and generating

haploid genomes with a Poisson distribution of

mutations from wild-type to deleterious alleles. All

mutations had the same selection coefficient, s (and,

for diploid models, the same dominance coefficient,

h), rather than the more biologically plausible as-

sumption that mutations at different loci can have

different effects on fitness (Butcher, 1995), which is

more difficult to simulate. Multiplicativity of fitness

effects of different loci was assumed.

The three different genetic systems described above

were modelled: haploidy with complete asexual

transmission of identical genotypes from parent to

offspring, except for mutation; diploidy with the same

assumptions (both of these have no recombination

between different genotypes) ; and diploidy with

independent segregation of chromosomes but no

within-chromosome crossing over.

The simulations were initialized with numbers of

mutations per individual according to the expected

distribution for an infinite population at equilibrium,

and then run for 100 generations. After this stage,

data were taken every 50 generations. These consisted

of the numbers of mutations in the least-loaded

genotype class, the numbers of fixed and non-fixed

mutations, and the mean fitness of the population.

Since genotypes were recorded after selection, it is

important to note that comparisons of simulation

results with analytical predictions should be made

with predicted values of post-selection variables, such

as the mean and variance of the numbers of mutations

per individual. Note that for diploid asexual models,

the term ‘fixation’ can refer either to the situation

when, at a given locus, all individuals have the

heterozygous genotype, or to the case when a mutant

allele at a locus is present in both haploid genomes of

all individuals. These are explicitly distinguished in

what follows.

The rate of advance of Muller’s ratchet was also

found for each run. The program calculates the

average number of generations between successive

losses of least-loaded classes, taking into account the

difference in the number of mutations between the

least-loaded class and the one that has just been lost.

This gives the average number of generations required

for the number of mutations in the least-loaded class

to increase by one. The rate of the ratchet is the

reciprocal of this time. The rates calculated in this

manner were very similar to rates found from the

regressions of log population mean fitness on gen-

eration number.

4. Simulation results

(i) Haploid asexual populations

Our focus was chiefly on the haploid case, as it is in

this case that results appear to differ from those

already obtained by simulating diploid populations

(see above). We were particularly interested in testing

whether the events during accumulation of mutations

are as described in our interpretation of this case,

outlined above. Fig. 3 illustrates the progress of the

ratchet in a representative case, with successive losses

of least-loaded classes preceding fixation at a locus in

the least-loaded class. As described in Section 2, losses

of least-loaded classes are followed after a relatively

short time by fixation of a mutant allele in the class

with one more mutation than the least-loaded class,

and shortly after that by its fixation in the population

as whole. The parameter values for this simulation

were u¯ 0±35, s¯ 0±1 and N¯1000. Similar findings

were obtained with a range of other parameter values.

Runs with parameters such that fixations occurred

faster are, of course, more complex to interpret,

because several fixations can occur in the least-loaded

class before this class is lost. The genotypes at these

loci then spread through the population and multiple

fixations can occur in a brief time period. Despite this
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Fig. 3. Sequence of events in the first 2000 generations of a typical simulation of a haploid population of size 1000, with
u¯ 0±35, s¯ 0±1. The numbers of loci fixed are plotted, as well as the numbers in the least-loaded genome, at intervals
of 100 generations. The generation numbers at which fixations occurred are shown on the abscissa, with filled arrows for
fixations in the least-loaded class of genomes, and open arrows for those in the class with one more mutation than in the
least-loaded genomic class.

Table 1. Rate of Muller’s ratchet in a haploid population, and comparison with se�eral analytical predictions

Parameters of mutation distribution Mean time between losses of least-loaded classes (T )

s N nW
!

Mean Variance Simulated SA SS C D

0±050 1000 0±91 8±37 5±58 27±3³0±7 32±4 35±4 a 18±7
2000 1±82 8±24 5±56 36±0³0±9 35±4 28±2 13±9 18±3

0±075 200 1±88 6±11 3±56 23±9³0±8 20±3 — 10±5 17±6
1000 9±40 5±70 4±01 66±9³4±2 44±4 — 42±7 43±5
2000 18±8 4±74 4±12 128³9 74±4 — 79±9 67±8
4000 37±6 4±68 4±20 3018³33 135 — 156 114

0±100 200 6±04 4±55 2±93 43±9³1±1 27±2 33±8 25±6 45±5
1000 30±2 3±37 3±15 314³38 104 162 147 ¢
2000 60±4 3±40 3±09 3263³1037b 201 809 477 167

The mutation rate, u is 0±35 in each case. Most of the results are based on runs of 2000 generations, which generally
accumulated enough mutations for T to be estimated. Longer runs, for cases with very slow rates, are indicated in the table.
Values of T are shown for the present simulations, for eqn (8) and the multinomial simulations of Stephan et al. (1993) (SA
and SS, respectively), for (A 5) of the present paper (C), and for the formula of Gabriel et al. (1993) (D). See text for further
explanation.
The means are values for the numbers of mutations at unfixed loci.
a No values are shown for cases with nW

!
E1, because the formula is not valid for such cases.

b Results based on 5 runs, of 10000 generations each (in one further run, no mutations had accumulated by this time).

difference, the process is essentially similar to that

with a slower rate of the ratchet. As simulation results

for such cases were described by Higgs & Woodcock

(1995), we do not show any details here.

In addition to supporting the interpretation of the

haploid ratchet process that has been outlined above,

the simulations provide data on the rate of advance of

the ratchet, and it is interesting to compare these with

analytical predictions that have been developed. Two

classes of analytical approximations have been pro-

posed. One is based on the change in mean and higher

moments of the distribution of n
i
, treating it as a

quantitative trait (Pamilo et al., 1987; Gabriel et al.,

1993; Higgs & Woodcock, 1995; Gessler, 1995;

Pru$ gel-Bennett, 1997). The changes in mean and

variance of the n
i
(given their current values) can be

obtained by standard methods. In large populations,

reasonably accurate closed forms for these can be

obtained. Using the approach of Gabriel et al. (1993),

the expected rate of change of mean (correcting for

the fact that it is measured post-selection in the

simulations) is

©∆naªE u(1®s)®s©V
n
ª, (2)

where the angle brackets represent means over

independent replications of the process, and na and V
n
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are the mean and variance of the distribution of the

number of mutations within a population in a given

generation (na includes contributions from loci which

have gone to fixation; V
n

is obviously affected only by

segregating loci). If the ratchet settles down to a fairly

constant rate, as indicated by previous work and by

our simulations (see Fig. 4), the rate of change of n-
should approximately parallel the rate of loss of the

least-loaded class. Although it is not possible to

obtain a closed form for V
n

in the case which we are

studying (nW
!
(1), the mean of V

n
over replicate runs

can be obtained from the simulations, and used in (2).

The reciprocal of the resulting expression can be

compared with the mean time between successive

losses of the least-loaded class, T.

The other method is to use diffusion equation

theory to predict the expected time to loss of the least-

loaded class. This method was originally proposed by

Stephan et al. (1993). Their eqn (8) is the appropriate

formula for T for the parameter sets used here (W.

Stephan, personal communication). A modification of

the diffusion equation approach, based on slightly

simpler assumptions, is described in the Appendix.

Numerical integration of (A5) yields a value for T.

Table 1 shows some of these comparisons between

theory, based on sets of replicate runs, where averages

over replicates of the means and variances (dis-

regarding loci at which fixations had occurred) were

calculated 2000 generations after initialization. In

addition, the mean intervals between successive losses

of the least-loaded classes were calculated for the

duration of each run and averaged over runs. These

are the source of the column labelled ‘Simulated’ for

the mean time between turns of the ratchet (T ) in

Table 1 (standard errors as well as means of T are

shown). The columns headed ‘SA’ and ‘SS’ are

obtained from eqn (8) and the multinomial sampling

simulations of Stephan et al. (1993), respectively ; the

column headed ‘C’ is obtained from (A5) of the

present paper; the approximation based on (2) is

shown in the column headed ‘D’, using the averages

of the means and variances of mutant numbers

(disregarding loci which have become fixed for mutant

alleles) in generation 2000, which are shown to the left

of the simulation results for T.

Several points are noteworthy. First, the rate of the

ratchet is not well predicted by the approximations

when population size is large and selection is moderate

or strong. Even the multinomial sampling simulation

fails to predict T correctly for large population sizes.

The analytical approximations mostly perform even

worse, especially for large N (when the ratchet is

moving slowly). Eqn (8) of Stephan et al. (1993)

agrees well with the simulation results for the case of

weak selection or moderate selection (s¯ 0±05 and

0±075) when N%1000. For larger population sizes,

(A5) generally perform the best, although their

predictions increasingly fall well below the simulation

results as N increases. Second, there is a pronounced
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Fig. 4. Numbers of fixed mutations, numbers of
mutations in the least-loaded class of genomes, and
means and variances of numbers of mutations at non-
fixed loci. Numbers are given per haploid genome during
the first 2000 generations of a typical simulation with
population of size 1000, u¯ 0±35 and s¯ 0±075. E,
Number fixed; D, mean number of mutations; _,
variance in number of mutations; X, number in least-
loaded class.

departure from a Poisson distribution for small

population sizes, but the average mean and variance

(discounting fixed mutations) converge as N increases.

Their values are in fact quite close to the deterministic

equilibrium values, given by u(1®s)}s ; e.g. for the

case u¯ 0±35 and s¯ 0±075, the deterministic mean

and variance are both equal to 4±32, compared with

simulated average values of 4±68 and 4±20 with a

population size of 4000. This suggests that con-

vergence towards the deterministic equilibrium values

should be observed as N increases further but we were

unable to investigate this because of computer speed

limitations.

Examination of the results of individual simulation

runs shows clearly that the mean and variance of the

numbers of unfixed mutations within a population

show no tendency to increase systematically, but

rather fluctuate around mean values. An example is

shown in Fig. 4. The increase in mean number of

mutations over time is driven completely by the

increased number of fixed mutations, which exactly

parallels the number of mutations in the least-loaded

class, as is to be expected from the results shown in

Fig. 3.
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Table 2. Results of diploid simulations at generation 2000 with no

recombination but with segregation

Final mean numbers and standard errors

U s h N In least-loaded class Fixed

0±1 0±1 0±05 50 77±2³2±60 0
0±1 0±1 0±1 50 56±9³1±59 0±545³0±390
0±1 0±1 0±2 50 32±1³2±80 1±50³0±522
0±1 0±1 0±35 50 11±4³1±01 11±1³1±04
0±1 0±1 0±5 50 6±70³0±684 6±60³0±632
0±1 0±1 0±6 50 4±60³0±400 4±50³0±428

Ten runs were done for each set of parameters. The population size, N, is the
diploid value.

Table 3. Results of fully asexual diploid simulations at generation 2000

Final mean numbers and their standard errors

U s h N
In least-loaded
class Fixed

Fixed as
heterozygote

0±2 0±2 0±5 50 154±1³3±23 0 307³5±04
0±2 0±2 0±1 50 130±6³4±17 0±56³0±294 259³6±77
0±2 0±2 0±2 50 104±1³2±66 1±00³0±373 207³3±73
0±2 0±2 0±35 50 71±4³1±37 2±00³0±365 141³2±50
0±2 0±2 0±5 50 56±3³1±34 3±20³0±573 125³3±94
0±2 0±2 0±6 50 48±4³4±30 3±88³0±398 119³6±11

Ten runs were done for each set of parameters. The population size, N, is the
diploid value.

(ii) Diploid populations

Our interpretation of the cause of fixations in the case

of haploid populations leads to the prediction (above)

that if the dominance coefficient h is sufficiently high

in the diploid case with segregation but no re-

combination, the behaviour will become similar to

that under haploidy, i.e. that an increase in the

number of mutations in the least-loaded class will be

closely followed by fixation of mutations in the

population. But if h is sufficiently small, fixation will

be retarded, and there can be a loss of least-loaded

classes and an increase in mean number of mutations

without fixation, as found by Charlesworth et al.

(1993).

Table 2 shows simulation results for the case of

sexual reproduction with segregation but no recom-

bination, for a population of size 50 in which the

ratchet moves quickly. The results for low h confirm

that, in the diploid case with segregation of chromo-

somes, the loss of least-loaded classes under the

ratchet is not paralleled by fixation events (cf. Section

2.iii). For instance, there were no fixations after 5000

generations in the case of a diploid population size of

only 100, assuming a mutation rate and selection

coefficient of 0±1, and with a dominance coefficient of

0±05 or 0±1. In these runs, gametes accumulated very

high minimum numbers of mutations (ranging from

127 to 167), and the mean fitnesses were very low (0±10

with h¯ 0±05, 0±034 with h¯ 0±1). The simulation

results also show that, as expected, greater dominance

leads to similarity to the haploid case, i.e. with h"
0±5, the numbers of mutations that have accumulated

and the numbers that are fixed become identical.

Increased dominance also, of course, reduces the rate

of the ratchet, because selection reduces the frequency

of mutations even when they are heterozygous.

A peculiarity of the cases with low dominance

coefficients, which is only observed if the population is

run for a long time (of the order of 100 times the

population size) is that the population becomes

‘crystallized’ into two segregating haplotypes, within

each of which deleterious alleles are fixed. This creates

a situation in which there is effectively very strong

heterozygote advantage, so that the two haplotypes

are maintained at approximately equal frequencies.

The driving force for this comes from the fact that,

given sufficient time, the restricted effective population

size of the least-loaded class permits deleterious alleles

at two different loci to reach high frequencies in

repulsion from each other ; since this genotype is the

ancestor of the rest of the population, it comes to

consist of 10 and 01 haplotypes (where 0 and 1

represent mutant and wild-type alleles, respectively).

Given the irreversible nature of mutation assumed in

this model, further fixations of mutant alleles within
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each of these haplotypes will occur by the process

described for the haploid case, whereas selection will

be resistant to fixation of a deleterious allele at the

same locus in both haplotypes. This phenomenon may

be relevant to the accumulation of heterozygous

deleterious mutations in small populations that has

been observed by a number of Drosophila workers

(Kidwell, 1972; Charlesworth & Charlesworth, 1985;

Albornoz & Domı!nguez, 1994). With large population

sizes, this state will be reached only exceedingly slowly

for selection coefficients of the magnitude we have

studied here, since the time for a deleterious allele to

reach a high frequency is very long, so that this

phenomenon is likely to be observable only in

relatively small populations.

Table 3 shows some results for the fully asexual

diploid model, in which parental genotypes are

propagated exactly in the absence of mutation. In this

case, fixations of mutations as heterozygotes occur

much more rapidly than do fixations of mutations in

both haploid sets. It will be seen that the number of

loci in which mutations have been fixed as hetero-

zygotes almost exactly parallels the mean number of

mutations per individual in the least-loaded class, as

would be expected if the fixation of a heterozygous

mutation accompanies the loss of a least-loaded class

(see Section 2.ii). The rate of fixation of mutations in

both haploid sets proceeds very slowly, and is retarded

by low values of the dominance coefficient, as expected

(see Section 2.ii).

5. Discussion

The results for the case we have studied, where the

deterministic prediction of the number of individuals

in the least-loaded class (nW
!
) exceeds one, are fairly

clear-cut. In the haploid asexual case, losses of the

least-loaded classes are followed by fixations of

deleterious alleles. As has previously been shown by

Higgs & Woodcock (1995) for the case of nW
!
%1, the

accumulation of deleterious mutant alleles in the

asexual haploid case is due entirely to the fixation of

alleles at individual loci, not to a steady increase in

mean number of mutations at unfixed loci as has been

assumed by several authors (e.g. Charlesworth, 1978,

1996). Our results appear to have elucidated the

mechanism of this fixation process, as described in

Section 2.i. It is the loss of the least-loaded class in a

particular generation, the subsequent restriction of

effective population size for the selectively equivalent

haplotypes contained in the new least-loaded class,

and the fact that the rest of the population will

eventually trace their ancestry from this class, which

jointly permit the fixation of deleterious mutations

(Figs. 1, 3). With the population sizes and selection

parameters assumed here (N
e
s(1), these mutations

would have only an infinitesimal chance of fixation in

a freely recombining genome (Kimura, 1962). Al-

though we have assumed equal selective effects of each

locus, the same principle will apply if there is variation

in the selection coefficients, but clearly mutations with

weaker effects will be more likely to become fixed,

since haplotypes with more mutations of small effect

than average will experience a selective advantage.

Fixation is thus caused by the ratchet, as classically

described in terms of losses of least-loaded classes

(Muller, 1964; Felsenstein, 1974; Haigh, 1978;

Maynard Smith, 1978). It is not, however, legitimate

to describe situations in which fixation of deleterious

mutations has apparently occurred in evolution as

necessarily representing examples of the ratchet, as is

sometimes done (e.g. Moran, 1996; Lynch, 1996). The

Hill–Robertson effect of interference between selected

alleles at different loci (Hill & Robertson, 1966;

Felsenstein, 1974) can cause accelerated rates of

fixation of weakly selected deleterious mutations in

situations where the products of selection coefficients

and effective population size are so low (N
e
s'1) that

no approach to the deterministic mutation–selection

balance equilibrium is possible even in a freely

recombining population (Li, 1987; Charlesworth et

al., 1993). This is a process that is conceptually

distinct from the ratchet, which involves the effect of

finite population size when N
e
s is so large that a freely

recombining population would remain close to the

deterministic equilibrium for a very long time, even

with irreversible mutation from wild-type to del-

eterious alleles. In addition, the process of background

selection, in which strongly selected alleles under

mutation and selection restrict the effective population

size experienced by weakly selected or neutral loci in

a non-recombining genome, can also increase the

fixation probabilities of deleterious alleles for which

N
e
s is much smaller than for the set of strongly

selected loci, but is nevertheless (1 in the absence of

background selection (Birky & Walsh, 1988; Charles-

worth, 1994).

We have concentrated on the case of nW
!
"1, partly

because fixations in the haploid model have already

been documented by Higgs & Woodcock (1995) for

the case nW
!
%1, but mainly because this is the

parameter range which is most relevant to the problem

of the evolutionary degeneration of an incipient Y

chromosome or neo-Y chromosome (Charlesworth,

1996). The case of a haploid asexual genome is very

similar to that of an incipient Y chromosome, which

fails to recombine with its homologue in the hetero-

gametic sex, and is thus in principle vulnerable to the

operation of the ratchet. It was previously argued that

the ratchet in this case does not lead to fixation of

deleterious mutations at individual loci, so that the

evolution of inactivation of the Y of dosage com-

pensation in response to the increased mutational

load carried by Y must involve levels of organization

higher than individual genes (Charlesworth, 1978,

1996). Since the statements about fixation are now

known to be wrong, this conclusion about the role of

the ratchet must be modified.
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The accelerated rate of fixation of deleterious

mutations that we have shown for the asexual haploid

casewith nW
!
"1 almost certainly applies to an incipient

Y chromosome. If the ratchet is operating at a

significant rate, an incipient Y chromosome will

therefore experience fixations of deleterious mutations

with moderately large effects on fitness, given the

evidence that detrimental mutations in Drosophila

typically have heterozygous fitness effects of the order

of 1–2% (Crow & Simmons, 1983; Charlesworth &

Hughes, 1997). There will thus be a substantial

selective premium in increasing the activity of the

mutation-free X-linked loci, at the expense of their Y-

linked partners that carry fixed deleterious alleles.

This can cause the evolution of dosage compensation

on a gene-by-gene basis, rather than at the level of

whole groups of genes as was originally suggested

(Charlesworth, 1978). Given the evidence for cis-

acting factors involved in dosage compensation in

Drosophila (Baker et al., 1994), this strengthens the

claim for a role of Muller’s ratchet in the evolution of

inactive Y chromosomes and dosage compensation,

relative to the other processes that have been proposed

(Charlesworth, 1996). However, our present knowl-

edge of population sizes and mutation and selection

parameters suggests that it is doubtful whether the

ratchet could have operated sufficiently fast to account

for the well-studied cases of degeneration of neo-Y

chromosomes in Drosophila, although it could have

been important in mammals, with their much smaller

effective population sizes (Charlesworth, 1996).

Finally, the failure of the various approximations to

predict the rate of movement of the ratchet when nW
!
"

1 in the haploid asexual case needs some comment. It

appears that considerations based on the changes in

the moments of the distribution give adequate

approximations to the movement of the ratchet in the

case when nW
!
'1 (Gabriel et al., 1993; Gessler, 1995).

Gessler (1995) has argued convincingly that the

movement of the ratchet when nW
!
'1 is a quasi-

deterministic process, driven by the fact that the

expected frequency of the least-loaded class is always

too small for it to be represented at all in the

population. Agreement of the rate with a quasi-

deterministic description such as (2) is thus not

surprising. But this argument does not apply to the

case of nW
!
"1, and none of the methods proposed take

into account the complexities which we have described

here. It is particularly noteworthy that even the

multinomial simulations of Stephan et al. (1993) fail

to predict the movement of the ratchet when N is

large, which is where one might have expected the best

agreement with the true results. For large N, the two

approximations based on diffusion theory, as well as

the multinomial simulations, mostly underestimate

the time between turns of the ratchet (Table 1). They

seem to be increasingly conservative as N increases, so

that it is probably safe to treat them as lower bounds

to the true time between turns. Further theoretical

and simulation work is needed to improve our

understanding of the process.
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this paper.

Appendix

We make the simplifying assumption that the mean

fitness of the population, measured relative to the

fitness of the current least-loaded class, is affected

mainly by fluctuations in the size of the currently

least-loaded class. The frequencies of classes with 1,

2,…mutations additional to those carried by the

least-loaded class are assumed to remain approxi-

mately constant until the current least-loaded class is

lost from the population, and then to undergo a rapid

readjustment to approach the same values as before

the movement of the ratchet (Haigh, 1978; Stephan et

al., 1993). The simulations indicate that this procedure

is valid, at least as an approximation. They also show

that the expectation of the number of mutations per

individual, disregarding mutations that have been

lost, remains for most of the time quite close to u}s,

the deterministic equilibrium value, if population size

is sufficiently large. The simplest assumption about

the mutational class frequencies is that they follow a

Poisson distribution with this mean, although the

simulations indicate that this assumption is not quite

correct.

Denote the above measure of mean fitness by wa . If

f
i

is the frequency of the class carrying i more

mutations than the least-loaded class, we have

wa ¯ f
!
­f

"
(1®s)­f

#
(1®s)#­… (A 1a)

Let the deterministic equilibrium value for the

frequency of the ith mutational class be fW
i
. Under the

above assumptions, the fW
i

are given by a Poisson

distribution with mean u}s ; in particular, the fre-

quency of the least-loaded class is fW
!
¯ exp®u}s. wa

can thus be written as

wa E f
!
®fW

!
­fW

!
­fW

"
(1®s)­fW

#
(1®s)#­…

(A 1b)
¯ ( f

!
®fW

!
)­e−u.

The deterministic change in f
!
due to mutation and

selection is given by

∆f
!
¯

f
!
(e−u®wa )

wa

E®
f
!
( f

!
®fW

!
)

²( f
!
®fW

!
)­e−u´

. (A 2)

The variance of f
!

due to sampling over one

generation is

Vδf
!

¯
f
!
(1®f

!
)

N
e

, (A 3)

where N
e
is the effective population size.
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If we assume that the distribution equilibrates

rapidly after the loss of the previous least-loaded

class, the time to loss of the current least-loaded class

can be determined by the standard formulae for a one-

dimensional diffusion process, with initial state fW
!
. If

both f
!

and fW
!

are small, the drift and diffusion

coefficients (Ewens, 1979, p. 116) are approximately

as follows (substituting x for f
!

and x
!

for f #
!
) :

a(x)E®x(x®x
!
)eu, (A 4a)

b(x)E
x

N
e

. (A 4b)

Since x¯ 0 is an absorbing boundary but x¯1 is not,

eqns (4.39) and (4.40) of Ewens (1979, p. 123) are

appropriate for determining the expected time spent

in an interval x to x­dx :

t(x,x
!
)¯ 2²b(x)Ψ(x)´−"&x

!

Ψ(y) dy 0%x!x
!
,

(A 5a)

t(x,x
!
)¯ 2²b(x)Ψ(x)´−"&x

!

!

Ψ(y) dy x
!
%x%1,

(A 5b)

where

Ψ(y)¯ exp®2&y

!

a(z)

b(z)
dz. (A 5c)

In this case, (4) imply that

Ψ(x)E exp 2N
e
eux0x2®x

!
). (A 6)

This can be substituted into (A 5a) and (A 5b). If

these are then integrated over their ranges and

summed, we obtain the expected time to loss of the

least-loaded class. This double integral expression can

be evaluated numerically, given values of the para-

meters. This forms the basis for the results denoted by

C in Table 1.
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