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Abstract
Conjoint analysis is widely used for estimating the effects of a large number of treatments on multidimen-

sional decision-making. However, it is this substantive advantage that leads to a statistically undesirable

property, multiple hypothesis testing. Existing applications of conjoint analysis except for a few do not

correct for the number of hypotheses to be tested, and empirical guidance on the choice of multiple testing

correction methods has not been provided. This paper first shows that even when none of the treatments

has any effect, the standard analysis pipeline produces at least one statistically significant estimate of

averagemarginal component effects inmore than 90%of experimental trials. Then, we conduct a simulation

study to compare three well-known methods for multiple testing correction, the Bonferroni correction, the

Benjamini–Hochberg procedure, and the adaptive shrinkage (Ash). All three methods are more accurate in

recovering the truth than the conventional analysis without correction. Moreover, the Ash method outper-

forms in avoiding false negatives, while reducing false positives similarly to the other methods. Finally, we

show how conclusions drawn from empirical analysis may differ with and without correction by reanalyzing

applications on public attitudes toward immigration and partner countries of trade agreements.

Keywords: conjoint analysis, multiple hypothesis testing, false discovery rate, empirical Bayes

1 Introduction

Conjoint analysis has been one of the most widely used survey experimental designs in political

science, since Hainmueller, Hopkins, and Yamamoto (2014) defined the average marginal com-

ponent effect (AMCE) as an estimand in conjoint designs and developed a simple estimator. In

a typical conjoint experiment, respondents are asked to assess pairs of profiles and choose a

preferred one in each paired comparison. The profiles consist of theoretically relevant attributes

that reflect multiple dimensions of respondents’ preferences, and the attributes are indepen-

dently randomized across the profiles. For instance, Hainmueller and Hopkins (2015) examined

individual-level attributes of ahypothetical immigrant suchas gender, education, occupation, and

the country of origin. Using a conjoint experiment, the authors estimated the AMCEs of those

attributes on the probability that the immigrant’s admission is preferred. After this canonical

study, conjoint designs are used to study voting (e.g., Carnes and Lupu 2016; Incerti 2020; Ono and

Burden 2019; Teele, Kalla, and Rosenbluth 2018), bureaucratic selection (e.g., Liu 2019; Oliveros

and Schuster 2018), and other types of multidimensional decision-making (e.g., Fournier, Soroka,

and Nir 2020; Sen 2017; Shafranek 2021).1

Conjoint analysis “enables researchers to estimate the causal effect of multiple treatment

components and assess several causal hypotheses simultaneously” (Hainmueller et al. 2014, 1).
This property is extremely valuable substantively. Since a number of factors contribute to deci-

sions, isolating the causal effect of each factor under all combinations of the others would

require impractically many experimental conditions. Conjoint analysis overcomes this difficulty

by identifying the AMCEs of multiple attributes at once. AMCE is the causal effect of an attribute

1 For a more comprehensive list of conjoint experiment papers, see de la Cuesta, Egami, and Imai (2022).
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averagedover all profiles of theother attributes, and it has an intuitive interpretation (Bansaketal.
2022). The combination of conjoint designs and AMCE enables researchers to estimate the effects

of multiple features simultaneously.

Despite this substantive advantage, producing many estimates leads to a statistically undesir-

able property, multiple hypothesis testing. Testing multiple hypotheses in statistical inference is

problematic, because the more null hypotheses are tested, the more likely at least one of them is

tobe rejected, even if all of themare true. Thepre-specified critical value, conventionally set at .05,

represents the probability of falsely rejecting the null hypothesis assuming that only one is tested.

When several hypotheses are tested simultaneously, the test procedure needs to be modified.

In political science, multiple testing has not been considered as a common concern, because

studies usually intend to examine only a few hypotheses.2 However, since conjoint analysis is

designed exactly for estimating multiple effects, it cannot avoid multiple statistical tests. The

immigration application in Hainmueller et al. (2014), for example, involves 41 hypothesis tests in
total. Theoretically, even if all 41AMCEsare zero in truth, estimatesof twoAMCEswill be statistically

distinguishable from zero on average across experimental trials. The promise of conjoint analysis

implies many statistical tests, and false-positive conclusions may follow as a result.

To the best of our knowledge, existing studies in political science using conjoint analysis do

not correct for multiple testing in their main analysis except for Hainmueller, Hangartner, and

Yamamoto (2015), which use the Bonferroni correction (BC). A few others, for example, Clayton,

Ferwerda, and Horiuchi (2021), confirm their results with corrections as robustness checks. In

fact, researchers are aware that multiple hypothesis testing is an inherent problem with conjoint

designs. Bansak et al. (2021a, 28) point out that the concerns about multiple comparisons make
pre-registration and pre-analysis plans especially valuable. However, no systematic assessments

have been done on the severity of the problem in the literature. Moreover, to avoid haphazard

selection, applied researchers need guidance on which correction method among several well-

known ones is appropriate under their circumstances.

In this paper, we quantify the multiple testing problem in conjoint designs and assess easy-to-

implement correction strategies. First, we show that under a classic conjoint setup the standard

analysis pipeline produces at least one statistically significant AMCE estimate inmore than 90%of

experimental trials even when all AMCEs are zero.

Second, we compare the strengths and limitations of two well-known correctionmethods: the

BC (Bland and Altman 1995; Dunn 1961) and the Benjamini–Hochberg (BH) procedure (Benjamini

and Hochberg 1995). In addition, we introduce a recently developed correctionmethod, adaptive

shrinkage (Ash) (GerardandStephens2018;Stephens2017).Whilenoneof themethodscompletely

resolves the problem, all of themare better than the standard practice. Among the threemethods,

the BC guards against false-positive conclusions, but the cost of false-negative conclusions can be

significant. On the other hand, the BH is the least susceptible to false-negative conclusions, but it

is most lenient with false positives. The Ash takes a middle ground.

To illustrate how different correction methods perform in real data, we reanalyze two conjoint

design applications. The first application using the dataset of Hainmueller et al. (2014) demon-
strates that results corrected by the Ash are more consistent with the original authors’ argument

than other methods. Second, reanalysis of an experiment in Vietnam about the selection of trade

agreement partners (Spilker, Bernauer, and Umaña 2016) shows that corrected methods remove

the statistical significance on an attribute that is hard to interpret given Vietnam’s security policy.

Compared to other studies that propose improvements on conjoint survey designs, this

paper exclusively focuses on statistical inference. Existing studies have examined estimands and

2 Recently, however, multiple testing correction is used more often as robustness checks than before. We thank Yusaku
Horiuchi for pointing this out.
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interpretation (Abramson et al. 2020; Abramson, Koçak, and Magazinnik 2022; Bansak et al. 2022;
de la Cuesta et al. 2022; Egami and Imai 2019; Ganter 2021), implementation (Bansak et al. 2018;
2021b), social desirability bias (Horiuchi, Markovich, and Yamamoto 2020), and subgroup analysis

(Clayton et al. 2021; Leeper, Hobolt, and Tilley 2020). While this paper does not directly engage
with any of these, the issue of multiple testing is relevant to any statistical inference with conjoint

analysis due to its multiple comparison feature, unless the purpose of the analysis is exclusively

exploration of higher-order interaction effects (Egami and Imai 2019).

This paper proceeds in four sections. First, we discuss why multiple testing is a problem in

conjoint designs and quantify the problem. Then, we examine three correction methods and

compare their performance in a simulation study. Third, we apply the correction methods to two

conjoint experiment datasets. Finally, we summarize the paper and discuss suggested analysis

pipelines for conjoint designs in the concluding section.

2 False-Positive Findings in Conjoint Analysis

When a large number of hypothesis tests are conducted, some reject null hypotheses purely by

chance. With the conventional significance level of .05, a test rejects a true null hypothesis with

probability .05. That is, the test tolerates five false positives out of 100 experimental trials on aver-

age. However, the probability that at least one of multiple tests rejects its null hypothesis can be
much larger depending on the number of hypotheses. When 10 hypotheses are tested, this prob-

ability, known as the familywise error rate (FWER), is 1−Pr(None of the 10 tests rejects the null) =
1− (1− .05)10 = .401. If the number of tests is 20, the FWER increases to .642. (See Section A of

the Supplementary Material.) Since the number of hypotheses is greater than 20 in most conjoint

experiments, the problem is even more severe—in fact, it is almost guaranteed that at least one

AMCEwill be deemed statistically distinguishable from zero in any conjoint experiment, even if all

AMCEs are zero in truth.

To illustratehow likely conjoint experimentsmayproduce false-positive findings,weconducted

a simulation study. Simulated datasets are generated from the conjoint design of Hainmueller

et al. (2014). The design consists of nine attributes with total 50 levels, and therefore requires 41
comparisonsexcludinga reference level ineachattribute. The forced-choicedesign is simulatedby
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Figure 1. False-positive results of estimated AMCEs when all null hypotheses are true. Each bar presents the
number of datasets (y-axis) for each number of statistically significant estimates (x-axis), with the truth (no
significant findings) shaded by gray.
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coarsening linear continuous responses into abinary choice in eachpair of profiles. A total of 1,000

simulationdatasets are generatedunder the scenario that the trueAMCEsof all attributes are zero.

In particular, the individual marginal component effect (MCE) is generated fromN (.06, .0152) for

a half of the respondents and fromN (−.06, .0152) for the other half. We estimate AMCEs for each

simulated dataset following the standard analysis pipeline for conjoint analysis and test the null

hypothesis that each AMCE is zero.3

Figure 1 shows that only less than 75 out of 1,000 experimental trials correctly conclude that

none of the attribute levels has any average effect. In other words, more than 90%of experiments

may produce false-positive findings. Although we observe that the rate of false-positive findings

is a little lower (around 80%) under some other simulation settings (see Section B of the Supple-

mentary Material), the high false-positive rate is concerning for applied research.

3 Multiple Testing Correction Methods

This section briefly introduces two popular methods, BC and BH procedure, and a recently

developed method, Ash. Then, the respective advantages and limitations of these methods will

be illustrated by Monte Carlo simulations.

3.1 Bonferroni Correction
The BC (Bland and Altman 1995; Dunn 1961) reduces the FWER by using amore stringent threshold

as the number of tests increases. To control the FWER below α , the BC tests each hypothesis at

the significance level α/(number of tests). For instance, when five hypotheses are tested at the

conventional 5% level, each test is conducted at the 1% level. The BC is easiest to implement

among the methods to control the FWER, since researchers only need to implement the standard

test procedure and construct confidence intervals with a new significance level.

One caveat is that the BC can be overly conservative. In many applications, the BC reduces the

FWER substantially lower than the level set by the user. Hence, the BC may suffer low statistical

power and false-negative findings. We illustrate this point later in our simulation study.

Another critique of the BC is that the total number of tests in a “family” cannot be unam-

biguously defined and tracked (Sjölander and Vansteelandt 2019). Hochberg and Tamhane define

family as “[a]ny collection of inferences for which it is meaningful to take into account some
combined measure of errors” (1987, 5). While conjoint designs clearly pre-specify the number of

attribute levels, researchers often conduct many tests to ensure survey quality such as balance

and attention checks. Moreover, many applications include subgroup comparisons (Leeper et al.
2020). It may not be obvious which tests should be included in the “family” when using the BC.

While thedecision on thenumber of testsmay increase the researchers’ degree of freedom, this

problem should be ameliorated by pre-registration, as Bansak et al. (2021a) suggest for conjoint
experiments in general. What constitutes a family depends on whether the type of research is

exploratory or confirmatory. “In purely exploratory research the question of interest (or lines

of inquiry) are generated by data-snooping. In purely confirmatory research they are stated in

advance. Most empirical studies combine aspects of both types of research” (Hochberg and

Tamhane 1987, 5). Discussing this issue in greater detail is beyond the scope of this paper, but pre-

registration will ameliorate this ambiguity to some extent. In the conclusion section, we provide a

recommendation checklist for conjoint users.

3.2 Benjamini–Hochberg Procedure
The BH procedure (Benjamini and Hochberg 1995) controls another measure of false-positive

findings, the false discovery rate (FDR), which is defined as

3 For greater details of the simulation settings, see Section B of the Supplementary Material.
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FDR ≡ �

[
# false discoveries

# total discoveries

]
.

The FDR indicates the average proportion of false positives among all statistical findings. There-

fore, lowering the FDR implies that researchers can be more confident in their findings. The BH

is a method for containing the FDR under a pre-set level α . The value of α is commonly set to

.05, that is, 5%of null hypothesis rejections are false positives on average. The key idea of the BH

is to remove some findings after conducting standard hypothesis tests. In other words, it prunes

significant estimates so that researchers obtain fewer false findings.

The BH is a rank-basedmethodwith four steps. (1) Form hypotheses, anm-vector of p-values is
produced. (2) Rank the p-values in the ascending order and index by i. (3) Define k ≡max{i : pi ≤

α × i /m,0 ≤ i ≤ m}. (4) Reject null hypotheses Hi for i = 1,2, . . . ,k , whose p-values are smaller
than or equal to pk , or reject none if k does not exist.
Although discussing theoretical properties of the BH (e.g., Benjamini and Hochberg 1995;

Benjamini and Yekutieli 2001) is beyond the scope of this paper, the BH is less susceptible to

false-negative conclusions than the BC, because it accepts all statistically significant findings in

its first step. However, the BH eliminates fewer false-positive findings. Moreover, the BH does not

offer confidence intervals because it uses the p-values. We illustrate these limitations below by

simulations and applications.

3.3 Adaptive Shrinkage
The Ash is a recently-proposed, empirical Bayes approach to controlling the FDR developed by

Stephens (2017) and Gerard and Stephens (2018). Applied researchers can easily incorporate the

Ash in conjoint analysis routine using the ashr package in R (Stephens et al. 2020).
The basic idea of the Ash is post hoc regularization of estimated coefficients using a spike-

and-slab prior (see Figure 2). Regularization, in general, decreases the sampling variance of an

estimator by introducing additional information into estimation. For the Ash, the spike-and-slab

prior is such auxiliary information. On the one hand, the spike part reflects the fact that some

estimates are false positives, inducing estimates to be zerowith a certain probability. On the other

hand, the slab part allows estimates to be non-zero with the remaining probability. As a result,

the Ash shrinks estimated coefficients and produces narrower confidence intervals and smaller

mean squared error. As shown in Section 5, the Ash moves point estimates of small absolute

Prior for β
−0.4 −0.2 0 0.2 0.4

Figure2.Exampleof the spike-and-slapprior distribution. The spike (pointmass) is at zero, and the slap (gray
curve) follows a normal distribution.

Guoer Liu and Yuki Shiraito � Political Analysis 384

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
2.

30
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2022.30


values toward zero and removes their statistical significance. By contrast, large point estimates

are preserved and their confidence intervals are shortened.

Formally, let β = (β1, . . . ,βJ ) denote estimates for J attribute levels, let β̂ = (β̂1, . . . , β̂J ) denote

point estimates of β , and let ŝ = (ŝ1, . . . , ŝ J ) be the standard errors of β̂ . Consider the posterior

distribution of β given β̂ and ŝ :

p(β |β̂, ŝ ) ∝ p(β̂ |β, ŝ )p(β |ŝ ). (1)

The likelihood in Equation (1) is the sampling distribution of β̂ approximated by the normal

distribution withmean β and variance ŝ2. To regularize a large number of estimates, independent

spike-and-slab prior distributions are placed. Since the Ash is an empirical Bayes method, the

mixture probabilities of the spike-and-slab prior are estimated by maximizing the penalized

likelihood and then the posterior parameters are estimated using the prior parameter estimates.

The confidence intervals are constructed based on the posterior distribution of β . Section C.1 of

the Supplementary Material provides a greater detail of the model and estimation.

The Ash delivers an additional benefit because of the shrinkage property. Its regularization

leads to smaller mean squared errors of the point estimates. This is attractive because in many

social science applications, researchers are interested not only in “whether factor X affect respon-

dents’ choice,” but also in “to what extent.” The classic immigrant conjoint experiment, for

instance, found a bonus for some education relative to no formal education. When researchers

would like to estimate the amount of the education bonus, the other correction methods do not

reduce the sampling error of point estimates. The Ash, however, enables us to get more precise

estimates in a principled manner. Section C.2 of the Supplementary Material illustrates this point

by simulations.

4 Comparing Correction Methods

This section examines the performance of the three methods by a series of simulations. In all

simulations, we generate 1,000 samples from simulation experiment using the immigrant profile

data of Hainmueller et al. (2014), and conduct hypothesis tests at the conventional significance
level of .05. The total number of tests for the BC is set to the total number of comparisons of

attribute levels and a reference category. First, we apply the correctionmethods to the casewhere

the true AMCE is zero for all attributes (identical to Section 2). Second, we compare the correction

performance in more realistic cases where some attributes have non-zero AMCEs.

4.1 Zero AMCEs
The results are summarized in Figure 3. As in Figure 1, the bars represent the number of datasets

for each number of statistically significant estimates. Note that the black bars are identical to

Figure 1. Figure 3 also shows the results of the BC, the BH, and the Ash with a mixture of uniform

components and with a mixture of normal components.

All three correction methods dramatically reduce the probability of false findings. Because

all null hypotheses are true, all simulations should result in zero significant coefficients. As we

discussed inSection2,more than90%ofexperimental trialswouldproduceat leastonesignificant

estimate without correction. By contrast, both the BC and the BH remove false findings in more

than 90% of simulation datasets. The Ash performs even better. It eliminates almost all false-

positive findings.

4.2 Non-Zero AMCEs
It isperhaps rare thatall AMCEsare zero inapplications, becauseattributesaredesigned tocapture

promising theoretical hypotheses. We consider two sets ofmore realistic simulations where some

AMCEs are not zero to see how the correction methods perform in such settings.
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ashUnif corr.
ashNorm corr.

Figure 3. False-positive AMCE estimateswhen all null hypotheses are truewith correctionmethods.Whereas
the standard analysis pipeline correctly accepts all null hypotheses in fewer than 80 datasets, the BC, the BH,
and theAshall correctmultiple testing inmore than900experimental trialswith theAshperforming thebest.

In the first scenario, one binary attribute has a non-zero AMCE, and the results are shown in

Table 1. In the original profile data, this attribute corresponds to Gender. We vary the noise in
simulations by changing the heterogeneity of AMCEs and the error variance of the regression

model for latent responses. Since only Gender has an effect, the shaded cells are the target we
would like to hit: tests identify only one true-positive finding and no false findings. The pattern is

quite consistent with the simulation results shown in Section 4.1. Without correction, about 80%

of experimental trials produce at least one false-positive finding. All correction methods improve

the situation remarkably, with the Ash has the best performance in all circumstances.

In the second scenario, all levels of the attributes that correspond to Gender, Education, and
English in the original data have non-zero AMCEs, whereas the AMCEs of the others are zero.4

Table 2 presents the results. Because 10 levels have non-zero AMCEs, the shaded cells indicate the

number of datasets in which hypothesis tests are perfectly accurate. All cells to the right (above)

are the number of samples where some false positives (negatives) are produced. For example,

without correction, 248 experimental trials successfully detect exactly the true non-zero AMCEs;

314 detect those AMCEs, plus one false-positive result; three experiments do not yield any false-

positive findings, but missed one non-zero effect.

Table 2 shows the trade-off in using correction methods. On the one hand, the use of a

correction method dramatically improves the number in the shaded cells. In contrast to 248

without correction, almost all correction methods find the truth in more than 600 samples. On

the other hand, as the Sum column indicates, all correction methods produce false negatives

more often than the standard approach. Reducing the number of false positives comes at a cost

of increasing the number of false negatives. Moreover, the trade-off exists among the correction

methods, too. As the most conservative correction method, the BC produces false negatives in

about 30% of experimental trials. The BH is least likely to miss the true AMCEs, but it produces

more false-positive conclusions than the other two. The Ash takes themiddle ground: it produces

false-negative findings less likely than the BC, and false-positive results less likely than the BH.

Given this trade-off, should researchers use a correction method? In Figure 3 and Table 1, the

answer is clear: any correctionmethoddominates non-correction.Whenonly zero or one attribute

4 Section B.2 of the Supplementary Material describes simulation parameters.
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Table 1. Number of datasets for each number of true- and false-positive findings when the AMCE of Gender
is non-zero. (a) The effect of male is −.06 and the effects of female and all other attributes are drawn
independently fromN (0, .0152). The error variance of the regressionmodel for continuous responses is .012.
(b) AMCEs are identical to Table 1a, but the error variance of the regression model is .12. (c) The effect of
male and the other attributes and the error variance are identical to Table 1b, but the effect of female is
independently drawn fromN (0, .122). Empty cells indicate zero.

level has AMCE, the use of correctionmethods reduces the risk of false-positive findings at no cost

since there is nothing to be missed. However, if many levels have AMCEs as in Table 2, correction

methods decrease the number of false positives in exchange for an increase of the number of false

negatives. Hence, correction methods may not be uniformly better than not correcting.

Figure 4 presents a measure to evaluate this trade-off. It shows the distribution of the true-

positive rate (TPR) minus the false-positive rate (FPR) across samples in the same simulations as

Table 2. The TPR is the number of true positives divided by the number of true non-zero AMCEs

while the FPR is the number of false positives divided by the number of true zero AMCEs. If a test is

perfect, its TPR is one and FPR is zero, because the ideal test finds all non-zero AMCEs anddoes not

falsely reject the null on any zero AMCEs. Therefore, the higher density is concentrated on the right

in Figure 4, the better. The figure shows that the BH and the Ash achieve a value larger than .85

in almost all simulated samples while the distribution without correction has a longer tail on the

left. The figure indicates that researchers aremore likely to get the ideal outcomewith a correction

method than without any.

These simulationsdemonstrate thepromiseandpitfalls ofmultiple testingcorrectionmethods.

First, researchers should always use some correction method when conducting conjoint survey
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Table 2. Number of datasets for each number of true- and false-positive findings when the true AMCEs of all
levels inGender, Education, andEnglisharenon-zero.Obtaining 10 truepositives and zero falsepositives
(shaded) is the ground truth. Empty cells indicate zero.

No. of false positives
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Figure 4.Density Histogramof the Difference between True Positive Rate (TPR) and False Positive Rate (FPR).
A larger value on the x-axis indicates better performance. The figure is based on the same simulations as
Table 2.

experiments. Since conjoint analysis inherently requires a large number of hypothesis tests, some,

if not all, statistically significant findings are likely to be false positives. Second, the risk of false-

positive findings cannot be entirely eliminated, and correction methods differ across the ability

and cost of reducing the number of false positives. The BC is most aggressive in avoiding false

positives, but its cost of missing true findings may be substantial. The BH is the opposite, and

the Ash is in between the two. Although none provides the perfect solution, researchers should

choose a correction method that best suits their needs. In particular, the choice should be based
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onacareful assessmenton the relative toleranceof falsepositives and falsenegatives.5 Weprovide

a checklist as an additional guidance in concluding remarks.

5 Reanalysis

To illustrate how the use of the correction methods may change empirical conclusions, we apply

thecorrectionmethods to twopublishedapplicationsof conjoint experiment.6 Overall, thepattern

we observe in the reanalysis is consistent with the simulations. The BC reduces the number of

findings themost, and someof the results that are changed to null are substantively questionable.

On the other hand, the BH does not eliminate any findings of the original papers. The Ash corrects

fewer findings away than the BC, but its results seem tomake the most substantive sense.

5.1 Selecting Immigrants in the United States
In the seminal paper on conjoint designs for causal inference, Hainmueller et al. (2014) employ
the conjoint design to explore the AMCEs of immigrants’ attributes on preference for admission to

the United States. There are nine attributes: Gender, Education, Language, Origin, Profession, Job
experience, Job plans, Application reasons, and Prior trips to U.S. To exclude unrealistic attributes
combinations, the randomization for Education, Profession, Country of Origin, and Application
reasons are conditionally independent given some constraints, and the randomization for the
other five attributes are completely independent. The outcome variable is whether a respondent

prefers a given profile in a paired comparison.

We focus on two attributes, Country of origin and Profession, shown in Figure 5.7 The left panel
of Figure 5 shows the estimates of the AMCE of each country of origin relative to India, with no

correction, the BC, the BH, and the Ash. The most noticeable pattern is that the BC eliminates the

statistical significance of all estimates except for the effect of Iraq. If we believe the BC results,

respondents in their survey did not distinguish immigrants from India, Mexico, France, Germany,

Sudan, and Somalia. On the other hand, coefficients adjusted by the BH and the Ash largely

preserve the original paper’s conclusion that immigrants from Sudan, Somalia, and Iraq are less

preferred than those from India.

The right panel of Figure 5 presents the results on the Profession attribute. Janitor is the refer-
ence category. Theoriginal results suggest that there is a bonus for financial analysts, construction

workers, teachers, computer programmers, nurses, research scientists, and doctors. Again, the

BC renders more coefficients insignificant: financial analysts and computer programmers are

indistinguishable from janitors. While the BH preserves all the original findings, the Ash changes

the results for constructionworkers—the bonus for constructionworkers is indistinguishable from

zero. The Ash result is in fact consistent with the argument of the original paper that high-skilled

immigrants are preferred to low-skilled workers.

While we cannot adjudicate on the differences with certainty because the true value is

unknown, some correction methods lead to more substantively understandable results over the

others. The BC seems overly conservative, and its null findings may require further theoretical

justification. The BH results agree with most non-corrected results, including some unexpected

significant estimates. The Ash corrects some findings away but not as aggressively as the BC does,

and it leads to conclusions that makemost substantive sense in this application.

5.2 Selecting Trading Partners in Vietnam
Conjoint experiment is also useful in examining attributes of units other than individuals. Spilker

et al. (2016) explore what types of countries are preferred partners for Preferential Trade Agree-

5 Additional simulation results with more noisy data are shown in Section B.3 of the Supplementary Material.
6 Section D.3 of the Supplementary Material shows the reanalysis of another paper in comparative politics.
7 For the entire replication results, see Figure D.1 in the Supplementary Material.
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Figure 5. Effects of the immigrant’s country of origin (left) and profession (right) on the probability of being
preferred for admission to the United States. For country of origin, the reference category is India; for
profession, the reference category is janitor. The plot shows estimates with no correction, the BC (Bonf),
theAshwithamixtureof normal components (ash.Norm), and theAshwithamixtureof uniformcomponents
(ash.Unif) for each pair of comparison. BH� next to a point estimate indicates the BH corrected coefficient
is significant for the corresponding attribute level. The estimates are based on regression estimators with
clustered standard errors at the respondent level; thebars represent 95%confidence intervals. The estimates
with no correction replicate the results for the corresponding attributes in Figure 3 in Hainmueller et al.
(2014, 21).

ments (PTAs) by conducting conjoint surveys in Costa Rica, Nicaragua, and Vietnam. They include

eight attributes in their design: Distance from the partner country’s capital with three levels;

Size of the economy with three levels; Culture, a binary variable indicating similarity in tradition
and language of the partner country; Religion, which contains three religions for Costa Rica and
Nicaragua and four religions for Vietnam; Political system, three levels of the extent to which
citizens democratically elect political leaders;Military ally, a binary variable indicateswhether the
partner country has a security alliancewith respondents’ home country; Environmental protection
standards andWorker rights protection standards, each takes three levels. All these attributes are
completely randomized, and no profile is excluded in the original surveys. The outcome is binary,

whether respondents choose a country profile in a paired comparison.

Figure 6 focuses on the effect of two attributes Military ally and Environmental protection
standards on the respondents in Vietnam.8 Among the three countries, Vietnam is the only one

where non-military allies are punished relative to military allies. The original paper justifies the

finding by its geopolitical location and military-security rivalries in the region (Spilker et al. 2016,
710, 714). However, Vietnam has a “Three Nos” defense policy since 1998: no military alliance, no

aligning with one country against another, and no foreignmilitary bases on Vietnamese soil.9 The

8 The complete replication results can be found in Figure D.2 in the Supplementary Material.
9 Socialist Republic of VietnamMinistry of National Defence, 2009.
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Figure 6. Effects of Military ally (top) and Environmental protection standards (bottom) on the probability
of being preferred as trading partners in Vietnam. For Military ally, the reference category is allied;
for Environmental Protection Standards, the reference category is lower standards. The plot shows
estimates with no correction, the BC (Bonf), the Ash with a mixture of normal components (ash.Norm),
and the Ash with a mixture of uniform components (ash.Unif) for each pair of comparison. BH� next to
a point estimate indicates the BH corrected coefficient is significant for the corresponding attribute level.
The estimates are based on regression estimators with clustered standard errors at the respondent level;
the bars represent 95% confidence intervals. The estimates with no correction replicate the results for the
corresponding attributes in Figure 1.3 in Spilker et al. (2016, 715).

contextmakes it difficult to interpret the significant result, because it is unclearwhatmilitary allies

mean to Vietnamgiven this defense policy.While the BHpreserves the original finding, the BC and

the Ash correct it away.

For environmental standards, while the preference for higher standards relative to lower stan-

dards is robust to different correction results, the bonus for countries with similar standards is

not. Again, the BC and the Ash render it a false-positive conclusion. The BH agrees completely

with the original conclusion, but we cannot rule out the possibility that this is guaranteed by the

design of BH: there are not enough significant discoveries to beginwith to control for FDR. A lower

FDR may be needed to accommodate the smaller number of significant findings in social science

researches.

The replication exercise demonstrates the usefulness of applying correction methods in con-

joint design from a substantive perspective. Correction methods could raise alarms of potential

limitations in the profile design. Such warnings would be valuable especially in the phase of pilot

researchor pretesting.Moreover, results that stand the test of correctionwouldhelp authorsmake

more convincing arguments. In this application, the authors of the original paper needed to justify

their finding on the preference for military allies only in Vietnam, but it is difficult to interpret

this finding given the fact that Vietnam has not have military allies for a while and will not for the

foreseeable future. The authors could have avoided interpreting this result by using the BC or the

Ash, even though they included theMilitary ally attribute, which should have been excluded from
the design.

6 Concluding Remarks

Conjoint analysis is widely used in political science because it allows researchers to estimate the

effects of many variables on preference formation. Unfortunately, exactly because it is designed

for estimating multiple effects, statistical inference on estimates in conjoint designs suffers from

themultiple testingproblem.However, fewsystematic assessmentson the severity of theproblem
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Figure 7. Checklist for multiple hypothesis testing in conjoint analysis.

and little empirical guidance on the choice of correction methods have been provided. In a series

of simulations and applications to published data, we examined the probability of getting false-

positive conclusions from a typical conjoint survey experiment, and compared the performance

of three off-the-shelf multiple testing correction methods.

Although some correction is always better than no corrections, none of the methods provides

the perfect solution to the problem. The BC is most conservative. Therefore, it is least likely to

mislead researchers to false-positive conclusions, whereas it is most likely tomislead researchers

to false-negative conclusions. The BH procedure is the opposite. We even found that the BH

procedure does not change the statistical significance of any estimates in some applications. The

Ash method takes a middle ground between the two. While it reduces the probability of false

positives than the BH, it avoids false negatives better than the BC.

Whether being conservative (or lenient) is a virtue rather than a vice depends on the purpose

of researchers. We believe that the Ash method should be recommended when researchers do

not have much prior knowledge on the existence of AMCEs, because it is unclear which of false

positives or false negatives the researchers need to avoidmore. However, the BHproceduremight

be preferred if previous studies strongly suggest the existence of AMCEs, whereas the BC should

be recommended for AMCEs whose existence is considered unlikely. In the former, although the

rejection of the null is not surprising, researchers can cast more doubt on the prior knowledge if

the null is accepted. In the latter case, passing a more conservative test is valuable information

because it is more likely to be a new finding. The comparison in our paper provides a guide in

selecting the correction method that suits a particular application.

Figure 7 summarizes our recommendations on the use of multiple testing correction methods

in conjoint analysis. It helps researchers reduce missing steps and ensures consistency and com-

pleteness. Importantly, for our purpose, it guides researchers to contemplate a series of questions

related tomultiple hypothesis testing at different stages of the study. The checklist is divided into

three sections: design, pre-registration, and analysis.
During the design phase, scholars determine their research objective, whether the conjoint

experiment is to confirm findings in existing studies or it is exploratory in nature. The distinction

between the two types of research is fuzzy in many empirical studies. This item is not designed to
force researchers to choose one or the other, but rather it reminds them to be more precise, and

their inclination will provide a direction for the pre-registration stage.

As discussed above, if the research objective is confirmatory, we recommend that researchers

use the more stringent BC and specify the number of tests they plan to conduct in the
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pre-registration. The number of tests is the collection ofmeaningful inferences from a substantive

perspective, defined by the researchers. Usually, the bare minimum includes all the possible

attribute-level combinations10. It should also include all the subgroup analysis, balancing checks,

and other quality check tests that researchers usually perform.11 On the contrary, we recommend

the more lenient BH method if the research is primarily exploratory. Here researchers need to

specify the FDR. For instance, the default FDR in many R packages is set at .05, meaning that 5%
of the “declared” positive findings will be purged as false positives. For the remaining types, we

recommend Ash. Researchers need to specify the mixture distribution they are going to use.12

Setting the mixture distribution requires some prior knowledge of the subject matter. However,

because the number of hypothesis testing in most social science applications is not so large, the

corrected results do not diverge drastically when different mixture distributions are used, as our

simulation studies demonstrate.

In the analysis and write-up stage, uncorrected and corrected data should be included in the

paper regardless of the chosen method. Researchers should consider the false-positive and the

false-negative trade-off in this particular application and justify the method of choice. If any of

the corrected and uncorrected results differ, the discrepancy should be described and discussed

explicitly. In summary, the steps in the checklist are intended to reduce the researchers’ degrees

of freedom when selecting different methods. Furthermore, it aids researchers in incorporating

multiple testing correction into the conjoint analysis routine in a principled and transparent

manner.

Multiple hypothesis testingmay also be a problemwith empirical studies using other methods

than conjoint designs. In fact, one of the major sources of publication bias is the property of

the frequentist hypothesis testing that the probability of false findings is controlled. We focused

on conjoint analysis in this paper because the number of hypotheses to be tested is relatively

unambiguous. Applying the correction methods we discussed to studies where the number of

statistical hypotheses varies over the stages of research, for example, adding robustness checks to

address reviewers’ comments, ismuch harder than to conjoint designs. More research onmultiple

testing correction in the other contexts is warranted.
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