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In this paper we consider two contact problems for an anisotropic elastic
half-space in which the stress is independent of one of the Cartesian co-ordinates.
The results hold for the most general anisotropy in which no symmetry elements of
the material are assumed. Problems of this type have been considered by Brilla
[1], Clements [2], Galin [3], Green and Zerna [4] and Milne-Thomson [5], but
the work of these authors is only applicable to a restricted class of anisotropic
materials. We begin in section 1 by deriving some fundamental equations for the
stress and displacement. It will be noted that at an early stage (equation (7)) the
roots of a sextic polynomial are required. Since these cannot be obtained explicitly
any application of the general theory must, of necessity, be numerical. However
the calculation of the stress and displacement is simplified if certain symmetry
elements of the material are assumed and the way in which these simplifications
occur is indicated in section 2. In sections 3 and 4 we consider contact problems
in which the elastic half-space is indented by a rigid body. For the problem
considered in section 3, the rigid body is assumed to be able to move relative to
the surface of the half-space, while for the problem considered in section 4 it is
assumed to be linked to the half-space.

1. General equations

The stresses au are related to the elastic displacement uk by the equations

duk
(1) Oil = dxt'

where i,j,k,l= 1,2,3 and the convention of summing over a repeated Latin
suffix is used. The elastic moduli clJkl have the symmetry properties

(2) cijkl = cjikl = clJlk = ckUj.

On substituting (1) in the equilibrium equations
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36 D. L. Clements [2]

we obtain

Now we suppose that uk is independent of x3 and take

(5) uk = AJ(Xl + px2\

where /(z) is an analytic function of the complex variable z; (5) is a solution of
the equations (4) provided the constant vector Ak satisfies the equations

(6) (ciiki + pcnki + PCnki + P2ci2k2)Ak = 0.

Values of Ak, not identically zero, can be found to satisfy these equations if p is a
root of the sextic equation

(7) | ctlkl + pcilk2 + pci2kl + p2ci2k21 = 0.

By applying the condition that the strain energy density should be positive for
any state of strain Eshelby. Read and Shockley [6] have proved that equation
(7) has no real root, so that the roots occur in complex conjugate pairs. The
three roots with positive imaginary part will be denoted by pa (a = 1,2,3) with
complex conjugates px; the corresponding values of Ax obtained from equation
(6) are Akx and Akx. Summation over a, and generally over Greek suffices,
will always be indicated explicitly. It will be assumed that the roots px are all
distinct; equal roots being regarded as the limiting case of distinct roots. A
general expression for the displacement may then be written

(8) uk = £ Akxfx(zx) + I AkJx(zx),
a a

where za = Xj + pxx2- From (1) we write the stresses as

(9) otJ = 2 Ltjjfc.) + I LiJxfx(zJ,

where

(10) LiJx = (cijkl + pxcijk2)Akx

and primes denote differentiation with respect to zx. It will be useful subsequently
to have an alternative form of the equations (9) and (10). We define

(11) 2 W . ( z ) = ̂ (z),

where the ^(z) (i = 1,2,3) are analytic functions of the complex variable z.
Stroh [7] has shown that the matrix [L,-2(J is non-singular so we may write
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[3] Two contact problems in elasticity 37

(12) /«(z) = Mxj4>j(z),

where

(13) I Lnjaaj = 8l).
a.

Hence substituting (12) in (8) and (9) it follows that

(14) uk = E A^M^/zJ + Z AkJt,fa{za),

(15) ffy = £ Ly.Mrtft(z.) + £ LiJxMxk$'k(zx).
a a

In the subsequent sections, we shall be concerned with contact problems for an
elastic material occupying the lower half-space x2 < 0. Hence for such problems
the 4>i(z) occurring in (14) and (15) are defined and analytic in the region x2 < 0,
but in the region x2 > 0 where the material is absent these functions are undefined.
We can therefore define the <j>,(z) for x2 > 0 in any way we please. It will prove
useful to define

(16) 4>t(z) = - 4>t(z), 4>Kz) = - 0J(z), x2 > 0,

and hence

(17) <£;(z) = - 4>t(z), 4>'t(z) = - 4>\iz), x2 < 0.

Hence (14) and (15) may be written

(18) uk = Z AkaM«j4>£z*) ~ 2 A^M^/zJ, x2<0,

(19) ffy = I LiJxMak<l>'k(za) - I LijaMxk(j>'k{zx), x2 < 0.
a a

On the plane x2 = 0 (18) and (19) reduce to

(20) uk = BrfJixJ-BtjtHxO,

(21) at2 = ^ ' - (* i ) - 0i'+(xx),

where

Um (j>i(z) = 4>t(x1), lim 0,-(z) = &"(xi)

and

(22) * „ = 1 ^ M a ; .

Finally, in this section, if we require the <fi't(z) to be analytic in the whole plane
cut along the real axis from xt = - b to xt = a, where a and b are positive
constants, then it follows from (21) that on the plane x2 = 0

(23) ffj2 = 0» * , < - & , *!> a.
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2. Particular cases of elastic symmetry

The expressions for the stress and displacement derived in the previous
section involve the roots of the sextic (7) and in the general case these must, of
necessity, be obtained numerically. However there is some simplification if the
material exhibits elastic symmetry with respect to one or more of the planes
X; = 0 (( = 1,2,3). In the case of elastic symmetry with respect to the x, = 0
plane, the elastic constants cijiU with an uneven number of ones occurring in their
subscripts are zero, so that the sextic in p (7) reduces to a cubic in p2. It is then
possible to use equations (6) and (10) to obtain conditions which the Akx and
Lija may be required to satisfy when elastic symmetry of this type exists. Details
of the way in which these conditions may be obtained are available in Clements [2].
A similar simplification occurs if there is elastic symmetry with respect to the
x2 = 0 plane. For elastic symmetry with respect to the x3 = 0 plane, the elastic
constants with an uneven number of threes occurring in their subscripts are zero,
so that the sextic (7) factorizes into a quartic and a quadratic. The solution of
particular problems for this class of materials has attracted the attention of a
number of authors and the contact problems considered in this paper have been
solved by Galin [3] for such materials.

3. Contact problem with friction

Consider an anisotropic elastic material which occupies the half-space
x2 < 0 and suppose the boundary x2 = 0 of the half-space is indented by a rigid
punch over the region — b <xr< a, — oo < x3 < oo where a and b are positive
constants. For simplicity we restrict our attention to a single punch although the
work may be easily generalised to include the case of several punches. We shall
assume that the punch is in a state of limiting equilibrium so that, in either or
both of the xt and x3 directions, it is subjected to the action of a force equal to
the product of the coefficient of friction and the force pressing down the punch.
On the plane x2 = 0 we have the following boundary conditions

(24) a 1 2 = a22 = a23 = 0, x1< — b,xl>a, — oo < x 3 < co,

- b < xx < a, — co < x3 < oo,
with

(26)

where nx and \i2 are equal to plus or minus the coefficient of friction and P is the
total applied force per unit length. In the absence of friction in the xx or x3
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directions we may put fit or fi2 respectively equal to zero. The boundary conditions
(24) and (25) will be satisfied if we put

(27) * i (z ) = / * i 0 2 ( z ) , 4>,{z) = ii2<j>2{z)

and require the <f>2{z)to be analytic in the whole plane cut along (— b,a) and to
be such that

(28) Nrf + ixJ-Nzfc- (x,) = - / ' ( * , ) , - b < x, < a,

where

(29) N2 = n,B2l + B22

The problem (28) is a special case of the Hilbert problem. The appropriate solution
is given by (see Muskhelishvili [8])

where

(31)

(32)

-X(z) f f'(t)dt

J.. x+mz) + KX(Z)>

where the argument of N2 jN2 is chosen between 0 and 2n and we select the
branch of X(z) such that zX(z) -»• 1 as | z\ -»• oo. In (30), Z + ( 0 refers to the value
on x2 = 0 + of the function X(z) with xx replaced by the variable of integration t.
Also using the condition (26) we may show that the constant K occurring in (30)
is given by

K = Pj2ni.

Equation (30) will only provide a valid solution to the problem of this section
if ^ 2 ¥" 0. Thus the solution will not hold for real values of fit and \i2 which give
rise, through (29), to N2 = 0. However if such values of iix and /i2 exist then we
may modify the problem as follows. From (20) and (27) it follows that when
— b < xx < a

(33) «t(xi,0) = N.fcixJ - #t02
+(*i), fc = 1,2,3,

where
+ Bk2 + /x2Bk3.

Now if JV2 T* 0 then the shape of the end of the punch (which determines the
function/^!) in (25)) may take a fairly general form but if N2 = 0 then it follows
from (33) that u2(x1;0) = 0 for all x t and hence, if contact is to take place over
the whole of the region — b < xt < a, we must require the punch to be flat-ended
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so that f(xt) = 0. Equation (28) with N2 = 0 is then consistent but it does not
enable us to determine <f>2(z). However if the form of M^XI.O) or u3(x,,0) can be
determined for — b < xt < a then the equation (33) with k = 1 or 2 may be used
in place of (28) to determine <f>'2(z). It is of interest to note that, using the method
developed by Clements [2], it is possible to show that when the x1 = 0 plane is a
plane of elastic symmetry B22 and B23 have zero real part while B21 has zero
imaginary part. Thus, in this case, real values of fit and fi2 which give N2 = 0 are
fii = 0 and [i2 = — B22jB23. Similarly Clements' method may be used to show
that when the x2 = 0 plane is a plane of elastic symmetry B21 and B23 have zero
imaginary part and B22 has zero real part. Thus, when such symmetry exists, it is
not possible to choose real values of /zt and n2 to give N2 = 0 unless B22 = 0.

4. Contact problem with linkage

In this case we assume that the punch is rigidly linked to the half-space so
that the boundary conditions on the plane x2 = 0 are

(34) al2 = ff22 = a23 = 0, x^< -b, xt>a, - oo < x 3 < oo,

(35) uk =fk(x1), — b < xt < a, — oo < x3 < oo,

with

(36) f ^[aJ2\ X2 = 0dXl=- Pj, j= 1,2,3.

The boundary conditions (34) and (35) will be satisfied if we choose functions
4>'i(z) which are analytic in the whole plane cut along (— b,a) and are such that

Bkj<t>'j+(xi) ~ BkJ(pj~ (xj) = —f'k(x^), — b < xt < a.

Multiplying by constants Ck which are yet to be determined and summing over k
it follows that

(37) CkBkj(j)j
+ (xt) — CkBkj^>'j~ (xj) = — CjJlix^), — b < xt < a.

We choose the Ck such that

(38) CkBkJ = DJt CkBkj = XDj,

where the Dj and X are yet to be determined. Eliminating the Dj we obtain

(39) (BkJ - XBkJ)Ck = 0.

These equations have a non-trivial solution if

(40) \BkJ-Mkj\=0,

which is a cubic in X with roots which we will denote by Xp (j8 = l,2,3); the cor-
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responding values of Ck and Dk, obtained from (38) and (39), will be denoted by

Cpk and Dpk. Equation (37) may now be written

(41) {D,} #
+ (xf)} - A, { DfiJ </>;-(*,)} = - CtJi{Xl), -b<Xl<a,

0 = 1 , 2 , 3 .

Equation (41) is a special case of the Hilbert problem. The appropriate solution is

given by

f °' ^ i^ J_6z+(0(r-z)+ x"*'(z)' P ~ l'2'3

where

X/z) = (z-ay-Hz + by1,

where we select the branch of Xf{z) such that zXp(z) -»1 as | z | -> oo. Also the

argument of Xf is chosen between 0 and 2n and the K$ are constants which may

be evaluated by using the conditions (36). Provided the matrix [Dw] is non-

singular we may write

Cfikf'k(t)dt , F K X r

Equation (19) then gives the stress at all points of the half-space.
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