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Abstract

We define an inverse subordinator as the passage times of a subordinator to increasing
levels. It has previously been noted that such processes have many similarities to renewal
processes. Here we present an expression for the joint moments of the increments of an
inverse subordinator. This is an analogue of a result for renewal processes. The main
tool is a theorem on processes which are both renewal processes and Cox processes.
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1. Introduction

Subordinators are nondecreasing processes with independent and stationary increments.
The corresponding processes in discrete time are the partial-sum processes with positive,
independent, and identically distributed summands. Renewal processes can be considered
to be passage times of partial-sum processes to increasing levels. Analogously, we can define a
process by the passage times of a subordinator. We call such a process an inverse subordinator.

The inverse subordinators appear in diverse areas of probability theory. As Bertoin [2]
noted, the local times of a large class of well-behaved Markov processes are really inverse
subordinators, and any inverse subordinator is the local time of some Markov process. It is
well known (see Karatzas and Shreve [8]) that the local time of a Brownian motion is the
inverse of a 1

2 -stable subordinator. Inverses of α-stable subordinators with 0 < α < 1 arise
as limiting processes of occupation times of Markov processes (see Bingham [4]). Some
recent applications of inverse subordinators in stochastic models can be found in [7], [10], and
[14]. Kaj and Martin-Löf [7] considered superposition and scaling of inverse subordinators
with applications in queueing theory, Kozlova and Salminen [10] used diffusion local time as
input in a so-called storage process, and Winkel [14] used inverse subordinators in financial
modelling.

In this paper, we study some general distributional properties of inverse subordinators, using
renewal theory and some theory about Cox processes. In particular, we find an expression for
the joint moments of their increments. Other results for inverse subordinators analogous to
those in renewal theory have been proved (see [3] and [13]).

Some well-known results on subordinators and infinitely divisible distributions on the pos-
itive real line are given in Section 2. Section 3 introduces the inverse subordinators and hints
that they may have properties similar to the renewal processes. In Section 4, the main result is
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A renewal-process-type expression 1135

given: an expression for the joint moments of the increments of an inverse subordinator. This
is proved using a representation of the class of point processes that are both Cox processes
and renewal processes. With this representation, we can also give an alternative proof of the
fact that inverse subordinators can be delayed to be given stationary increments (see [13]). We
also provide a bound of the upper tail of the marginal distribution of an inverse subordinator.
Finally, in Section 5 we exemplify the results with three types of inverse subordinator.

2. Some basic facts about subordinators

The following results on infinitely divisible distributions and Lévy processes can be found
in [12]. Let {Yt } be a Lévy process, i.e. a stochastic process in continuous time with Y0 = 0
and stationary and independent increments. The distribution F of Y1 is necessarily infinitely
divisible, i.e. for all n ∈ N there is a distribution Fn such that F�nn = F . Here F�nn is the n-fold
convolution of Fn. The converse is also true: given an infinitely divisible distribution F , there
is a Lévy process {Yt } such that the distribution of Y1 is F . Define F�t for positive, noninteger t
by F�t (x) = P(Yt ≤ x). We recognize that Fn = F�1/n.

If we restrict F to be a distribution on R+ then the increments of {Yt } are all nonnegative.
Lévy processes with nonnegative increments are called subordinators. It is well known that the
Laplace–Stieltjes transform of F�t , where F is an infinitely divisible distribution on R+, can
be written

F̂ �t (u) =
∫ ∞

0
e−uxF �t (dx) = e−tψ(u) = F̂ (u)t ,

where ψ(u) is called the Lévy exponent and can be written in the following form:

ψ(u) = δu+
∫ ∞

0
(1 − e−ux)ν(dx).

Here, δ ≥ 0 is called the drift and ν(dx) is called the Lévy measure. If Y1 has drift δ then Y1 −δ
has drift 0. If

∫ ∞
0 ν(dx) < ∞ then {Yt } is a compound Poisson process, with drift if δ > 0,

and thus only makes a finite number of jumps in any finite interval. We call a function π the
Lévy density if ν(A) = ∫

A
π(x) dx. If we define µ = E[Y1], then µ = δ + ∫ ∞

0 xν(dx). Since
ψ ′(u) = δ + ∫ ∞

0 e−uxxν(dx), we have

ψ ′(0) = µ and ψ ′(u) ↘ δ as u ↗ ∞. (1)

Some parts of the reasoning in the following sections do not apply to compound Poisson
processes without drift. Therefore, we will henceforth, albeit somewhat artificially, exclude the
compound Poisson processes without drift when referring to subordinators.

3. Inverse subordinators and renewal processes

It is advantageous to recall some results on renewal processes before a more thorough study
of subordinators and their inverses. LetX2, X3, . . . be a sequence of independent and identically
distributed (strictly) positive random variables with distribution F , and X1 a positive random
variable with distribution H , independent of X2, X3, . . . . Let S0 = 0 and Sn = ∑n

k=1Xk; we
call {Sn} a partial-sum process. Given a partial-sum process, we define the renewal process
with interarrival distribution F by Nt = min(n ∈ N : Sn > t) − 1. The ‘−1’ in the definition
comes from the fact that we do not want to count the renewal at the origin, as is sometimes
done. If F = H then {Nt } is called an ordinary renewal process.
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1136 A. N. LAGERÅS

It is well known that {Nt } has stationary increments if and only if

H(x) = 1

µ

∫ x

0
(1 − F(y)) dy,

where µ = E[X2] = ∫ ∞
0 (1 − F(x)) dx and is necessarily finite (see [5]). Then we also have

E[X1] = E[X2
2]

2µ
, (2)

and the Laplace–Stieltjes transform of H is

Ĥ (s) = 1

µs
(1 − F̂ (s)). (3)

We note, as in [3], that subordinators are continuous-time analogues of partial-sum processes.
A Lévy process sampled at equidistant time points, for example Yn = ∑n

k=1(Yk − Yk−1) when
the time points are the integers, does produce a partial-sum process with an infinitely divisible
F . As the renewal processes are integer-valued inverses to partial-sum processes, an inverse of
a subordinator could be expected to have some properties similar to renewal processes. Given
a subordinator {Yt }, we define τt = inf(τ > 0 : Yτ > t) and call the process {τt }t≥0 the inverse
subordinator.

The properties of the paths of {τt } differ depending on {Yt }. Let us first consider a compound
Poisson process {Yt } with drift δ > 0. Since a jump in {Yt } corresponds to a flat period in its
inverse, {τt } alternates between linearly increasing with slope 1/δ for exponential periods
of time and being constant for periods of time with lengths drawn from the compounding
distribution, with all these periods having independent lengths. It is more tricky when {Yt } is not
a compound Poisson process and the drift is zero. Owing to the fact that {Yt } in this case makes
an infinite number of jumps in any finite interval, the trajectories of {τt } are continuous and,
considered as distribution functions of measures, singular with respect to the Lebesgue measure
(see [6, p. 39]).

Now we will show that {τt } can be arbitrarily closely approximated by a scaled renewal
process. For any c > 0, let {Y ct } be defined by Y ct = Yt/c. Note that {Y ct } is a subordinator with
Y c1 ∼ F�1/c. Also define the renewal process Nc

t = min(n ∈ N : Y cn > t)− 1. Since

cτt = c inf(τ > 0 : Yτ > t)

= inf(cτ > 0 : Yτ > t)

= inf(τ > 0 : Yτ/c > t)

= inf(τ > 0 : Y cτ > t)

≥ min(n ∈ N : Y cn > t)− 1

≥ inf(τ > 0 : Y cτ > t)− 1

= cτt − 1,

we obtain

τt = 1

c
Nc
t + rt , where 0 ≤ rt ≤ 1

c
,

and the approximation becomes arbitrarily good as c → ∞. This result suggests that the inverse
subordinators may have some properties similar to renewal processes. That this is in fact true
will be shown in Section 4.
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An important function in the theory of renewal processes is the so-called renewal function
V (t) = E[Nt ]. We note that for an ordinary renewal process V (t) = ∑∞

k=1 F
�k(t), and for a

stationary renewal process V (t) = t/µ. If there is a function v such that V (t) = ∫ t
0 v(s) ds,

then v is called the renewal density. If the renewal process had been defined to also count
the renewal at the origin, then the renewal function would be V (t) + 1. We can also define a
renewal function for the inverse subordinator. Given an inverse subordinator {τt }, we define its
renewal function U by U(t) = E[τt ]. The renewal function can be expressed as follows:

U(t) = E[τt ] =
∫ ∞

0
P(τt > x) dx =

∫ ∞

0
P(Yx ≤ t) dx =

∫ ∞

0
F�x(t) dx.

The expression on the right-hand side might be hard to evaluate, but its Laplace–Stieltjes
transform is easily calculated as follows:

Û (s) =
∫ ∞

0
e−st

∫ ∞

0
F�x(dt) dx

=
∫ ∞

0
F̂ (s)x dx

=
∫ ∞

0
e−xψ(s) dx

= 1

ψ(s)
. (4)

Thus, there is a one-to-one correspondence between the renewal function and the distribution
of {τt }. This also correlates with the similar result for ordinary renewal processes and their
renewal functions. Define the factorial power n[k] for n, k ∈ N as follows:

n[k] =

⎧⎪⎨
⎪⎩
n(n− 1) · · · (n− k + 1) for n ≥ k ≥ 1,

1 for k = 0,

0 for n < k, k ≥ 1.

Given a renewal process and its renewal function, moments of all orders can be calculated as
stated in the following proposition (see [5]).

Proposition 1. Let {Nt } be a renewal process with interarrival distribution F , and let V (t) =∑∞
k=1 F

�k(t). If {Nt } is an ordinary renewal process then, for s1, . . . , sn and t1, . . . , tn such
that 0 ≤ s1 < t1 ≤ s2 < · · · < tn and k1, . . . , kn ∈ N \ {0} such that k1 + · · · + kn = k, we
have

E

[ n∏
i=1

(Nti −Nsi )
[ki ]

]
=

n∏
i=1

ki !
∫
C

k∏
j=1

V (dxj − xj−1), (5)

where

C = {x0, . . . , xk : x0 = 0, si < xk0+···+ki−1+1 < · · · < xk0+···+ki ≤ ti , i = 1, . . . , n, k0 = 0}.

If {Nt } is stationary, then the proposition also holds with the first factor of the right-most product
in (5) replaced by dx1/µ.
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Sketch of a proof of Proposition 1. We can write Nt −Ns = ∫
(s,t]N(dx) and

(Nt −Ns)
k =

∫
(s,t]k

k∏
j=1

N(dxj ).

Note that nk is the number of k-tuples of integers from 1 to n, and n[k] is the number of k-tuples
of integers such that no integers in the k-tuple are the same. Thus, we can write

(Nt −Ns)
[k] =

∫
A

k∏
j=1

N(dxj ),

where A = {(x1 . . . xk) ∈ (s, t]k : xp �= xq for p �= q}. The renewal property is used in the
following expression:

E

[ k∏
j=1

N(dxj )

]
= P(N(dx1) = 1, . . . , N(dxk) = 1)

= P(N(dx(1)) = 1)
k∏
j=2

P(N(dx(j)) = 1 | N(dx(j−1)) = 1)

= P(N(dx(1)) = 1)
k∏
j=2

V (dx(j) − x(j−1)).

The first factor is equal to V (dx(1)) in the ordinary case and is equal to dx(1)/µ in the stationary
case. Let

Ai = {(yi1, . . . , yiki ) ∈ (si, ti]ki : yip �= yiq for p �= q},
Bi = {(yi1, . . . , yiki ) : si < yi1 < · · · < yiki ≤ ti}.

Thus, in the ordinary case,

E

[ n∏
i=1

(Nti −Nsi )
[ki ]

]
= E

[ n∏
i=1

∫
Ai

ki∏
j=1

N(dyij )

]

= E

[ n∏
i=1

ki !
∫
Bi

ki∏
j=1

N(dyij )

]

=
n∏
i=1

ki ! E

[∫
C

k∏
l=1

N(dxl)

]

=
n∏
i=1

ki !
∫
C

k∏
l=1

V (dxl − xl−1).

4. Inverse subordinators and Cox processes

An expression similar to (5) for the moments of {τt } can be obtained. First recall the
definition of a Cox process. Let {Nλ

t } be an inhomogeneous Poisson process on R+ with

https://doi.org/10.1239/jap/1134587822 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1134587822


A renewal-process-type expression 1139

intensity measure λ. Let 	 be a random measure on R+. If the point process {Mt } has the
distribution of {Nλ

t } conditional on 	 = λ, then {Mt } is called a Cox process directed by 	.
Note that if {Ñt } is a Poisson process with constant intensity equal to one and is independent of
	, then Mt

d= Ñ(	((0, t])), where ‘
d=’ denotes equality in distribution, and {Mt } can be

considered to be a homogeneous Poisson process subjected to a random time change by the
random function 	((0, t]). The interpretation of the Cox process as a time-changed Poisson
process also describes how the points of the Cox process can be obtained from the points of the
Poisson process. If we letK(t) be the inverse of	((0, t]) and t1, t2, . . . are the points of {Ñt },
then K(t1),K(t2), . . . are the points of {Mt }.

Also define a slight generalization of the inverse subordinators. Let Ỹ0 have the distribution
G on R+ and be independent of the subordinator {Yt } with Y1 ∼ F . Define the process {Ỹt }
by Ỹt = Yt + Ỹ0. Let τt = inf(τ > 0 : Ỹτ > t), and call the process {τt }t≥0 a general inverse
subordinator. If Ỹ0 ≡ 0 then we call {τt } an ordinary inverse subordinator.

We will see in Proposition 4, below, that Ỹ0 can be chosen so that the general inverse
subordinator {τt } has stationary increments if µ = E[Y1] < ∞. The following proposition is
by Kingman [9] and Grandell [6].

Proposition 2. The Cox process {Mt } directed by 	 is a renewal process if and only if
	((s, t]) = τt − τs for all t > s, where {τt } is a general inverse subordinator.

We will only prove the easier, ‘if’ part of this proposition, which is the only part to be used
in Theorem 1.

Proof of Proposition 2. We note that Ỹt is the inverse of 	((0, t]) = τt . If we use the
representation of {Mt } as a time-changed Poisson process {Ñt } with intensity one, then the points
of {Mt } are Ỹ (t1), Ỹ (t2), . . . , where t1, t2, . . . are the points of {Ñt }. Since {Yt } is a subordinator,
Ỹ (t1), Ỹ (t2)− Ỹ (t1), Ỹ (t3)− Ỹ (t2), . . . are independent and Ỹ (t2)− Ỹ (t1), Ỹ (t3)− Ỹ (t2), . . .

are furthermore equally distributed. Thus, {Mt } is a renewal process.

We can say more about the interarrival distribution of {Mt }. Let

Z = Ỹ (t2)− Ỹ (t1) = Y (t2)− Y (t1),

and let ε ∼ Exp(1), independent of {Yt }. We obtain Z = Y (t2)− Y (t1)
d= Y (t2 − t1)

d= Y (ε),
so the interarrival distribution of {Mt } is thus compound exponential. The Laplace–Stieltjes
transform of the distribution of Z is given by

F̂Z(s) = E[e−sZ] = E[E[e−sY (ε) | ε]] = E[e−ψ(s)ε] = 1

1 + ψ(s)
, (6)

where ψ(s) is the Lévy exponent of Y1. We now have the tools to prove the main result.

Theorem 1. Let {τt } be an ordinary inverse subordinator with renewal function U(t). Then,
for s1, . . . , sn and t1, . . . , tn such that 0 ≤ s1 < t1 ≤ s2 < · · · < tn and k1, . . . , kn ∈ N \ {0}
such that k1 + · · · + kn = k, we have

E

[ n∏
i=1

(τti − τsi )
ki

]
=

n∏
i=1

ki !
∫
C

k∏
j=1

U(dxj − xj−1), (7)

where C is as in Proposition 1. If {τt } is stationary then the theorem also holds with the change
that the first factor of the right-most product in (7) is replaced by dx1/µ, but with the same U
in the remaining factors as the ordinary inverse subordinator.
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Proof. Define the random measure	 on R+ by	((s, t]) = τt − τs , for all t > s ∈ R+, and
let {Mt } be the Cox process directed by 	. By Proposition 2, {Mt } is also a renewal process.
Write V (t) for its renewal function. Then

V (t) = E[Mt ] = E[E[Mt | τt ]] = E[τt ] = U(t). (8)

Thus, we can replace V (t) by U(t) in (5) when calculating the factorial moments of {Mt }. As
noted in [5], the factorial moments of the Cox process coincide with the ordinary moments of
its directing measure and, by the construction of the directing measure, the stated result follows.

A renewal theorem for the inverse subordinators can also be given following Bertoin
[2, Theorem I.21].

Proposition 3. If µ < ∞ then U(t) ∼ t/µ as t → ∞.

Proof. Let {Mt } be a Cox process directed by {τt } as in Proposition 2, and V (t) its renewal
function. By (8), V (t) = U(t). An application of the renewal theorem for renewal processes
(see [5]) provides the desired result.

Similar to renewal processes, the inverse subordinators can be delayed to become stationary.
This has been proved by different methods in [7] and [13]. We now state this result and provide
a proof based on the connection with Cox processes.

Proposition 4. Let {τt } be a general inverse subordinator with Ỹ0 ∼ G, Y1 = Ỹ1 − Ỹ0 ∼ F ,
and µ = E[Y1] < ∞, where

ψ(s) = − log F̂ (s) = δs +
∫ ∞

0
(1 − e−sx)ν(dx)

and

G(x) =
⎧⎨
⎩

1

µ

(
δ +

∫ x

0

∫ ∞

y

ν(dz) dy

)
for x ≥ 0,

0 for x < 0.
(9)

Then {τt } has stationary increments.

Proof. By [6, Theorem 1.4], a Cox process is stationary if and only if its directing measure
	 has stationary increments. Therefore, it suffices to check that the Cox process {Mt } directed
by {τt } is stationary. Its interarrival distribution FZ is given by (6). The X1 of {Mt } can be
decomposed into X1

d= Ỹ0 + Z, with Ỹ0 and Z independent, since the inverse subordinator
is delayed by a time Ỹ0 during which it is constant and equal to zero. The Laplace–Stieltjes
transform of the distribution H of X1 is Ĥ (s) = Ĝ(s)F̂Z(s), where

Ĝ(s) = 1

µ

∫ ∞

0
e−sx

(
δ +

∫ ∞

x

ν(dy)

)
dx

= 1

µ

(
δ

s
+

∫ ∞

0

∫ y

0
e−sx dxν(dy)

)

= 1

µs

(
δ +

∫ ∞

0
(1 − e−sy)ν(dy)

)

= ψ(s)

µs
. (10)

https://doi.org/10.1239/jap/1134587822 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1134587822


A renewal-process-type expression 1141

Combining (6) and (10), we obtain

Ĥ (s) = Ĝ(s)F̂Z(s) = ψ(s)

µs

1

1 + ψ(s)
= 1

µs
(1 − F̂Z(s)).

By (3), X1 thus has the right distribution to make {Mt } stationary.

LetWt be the excess of the renewal process and Cox process {Mt }, i.e. the time from t to the
next point of the process. When {Mt } is stationary, Wt

d= X1
d= Ỹ0 + Z. The decomposition

of the excess can be given the following interpretation. From any given time t , the inverse
subordinator will remain constant for a period which has the distributionG. During this time no
points in the Cox process will occur. After that time the inverse subordinator starts anew and the
distribution to the next point in the point process is given byFZ . In the stationary case, we do not
have to knowG explicitly to calculate E[Ỹ0]; if we use (2), we obtain E[X1] = E[Z2]/2 E[Z].
Now, E[X1] = E[Ỹ0] + E[Z] and, by straightforward calculation using, for example, (6), we
obtain E[Z] = E[Y1] and E[Z2] = var(Y1) + 2 E[Y1]2. Collecting and rearranging yields
E[Ỹ0] = var(Y1)/2 E[Y1].

The expression (7) may be hard to use in practice to calculate higher joint moments.
Nonetheless, the results above show that the covariance of two increments of a stationary
inverse subordinator is a simple expression in the renewal function. Let {τt } be stationary and
let U(t) denote the renewal function of the corresponding ordinary inverse subordinator. Also,
let 0 < r ≤ s < t . We obtain

cov(τr , τt − τs) = E[τr (τt − τs)] − E[τr ] E[τt − τs]
=

∫ r

0

∫ t

s

U(dx − y)
dy

µ
− r

µ

t − s

µ

= 1

µ

∫ r

0
(U(t − y)− U(s − y)) dy − r(t − s)

µ2 .

Now consider the particular case where r = 1, s = n ≥ 1, t = n + 1, and U has a density u
such that U(t) = ∫ t

0 u(s) ds. Also assume, for simplicity, that µ = 1. Then the following
approximation can be calculated:

cov(τ1, τn+1 − τn) =
∫ 1

0
(U(n+ 1 − y)− U(n− y)) dy − 1 ≈ u(n)− 1.

Given the distribution of the subordinator {Yt }, the distribution of its inverse is given by
P(τt ≤ x) = P(Yx > t). It may still be hard to find a closed-form expression for this
distribution function. The tail probabilities for the ordinary inverse subordinator can nonetheless
be estimated. Only the case δ = 0 is interesting, since if the drift δ is positive then Yx − δx is
nonnegative and, thus, P(Yx ≤ t) = P(Yx − δx ≤ t − δx) = 0 for x > t/δ. Let s ≥ 0. Then
we have

P(τt > x) = P(Yx ≤ t) = P(e−sYx ≥ e−st ) ≤ E[e−sYx ]
e−st = est−xψ(s).

By (1), the last expression has a unique minimum as a function of s. If x is large enough
(x > t/µ), then the s that minimizes the expression is nonzero and given by s = ψ ′−1(t/x),
where ψ ′−1 is the inverse of ψ ′. Thus, for large enough x,

P(τt > x) ≤ exp

(
tψ ′−1

(
t

x

)
− xψ

(
ψ ′−1

(
t

x

)))
. (11)
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There is another result on the marginal distribution of {τt } that deserves mentioning. This
result can be found in [7] and [11], but we give a short proof based on identifying Laplace
transforms as probabilities.

Proposition 5. Let εs be exponentially distributed with mean 1/s and independent of {τt }.
Then the Laplace–Stieltjes transform of the distribution of τ(εs) is given by

E[e−uτ(εs )] = 1 − uĜ(s)

u+ ψ(s)
,

where Ĝ(s) is the Laplace–Stieltjes transform of the distribution of Ỹ0.

Proof. Let ε̃u be exponentially distributed with mean 1/u, and independent of εs and {τt }.
We note that for a nonnegative random variable X independent of ε̃u, P( ε̃u ≥ X) =
E[P( ε̃u ≥ X | X)] = E[e−uX], the Laplace–Stieltjes transform of the distribution of X. Thus,
we have, in the ordinary case,

E[e−uτ(εs )] = P( ε̃u ≥ τ(εs))

= P(Y ( ε̃u) > εs)

= 1 − P(εs ≥ Y ( ε̃u))

= 1 − E[e−sY ( ε̃u)]
= 1 − E[E[e−sY ( ε̃u) | ε̃u]]
= 1 − E[e−ψ(s)̃εu ]
= 1 − u

u+ ψ(s)
.

Likewise, in the general case,

E[e−uτ(εs )] = 1 − P(εs ≥ Ỹ ( ε̃u))

= 1 − P(εs ≥ Ỹ ( ε̃u) | εs ≥ Ỹ0)P(εs ≥ Ỹ0)

= 1 − P(εs ≥ Y ( ε̃u))P(εs ≥ Ỹ0)

= 1 − uĜ(s)

u+ ψ(s)
,

where we have used the memorylessness of the exponential distribution.

5. Examples

The α-stable distribution on R+ has Lévy exponentψ(s) = sα with 0 < α < 1. This gives a
renewal density u(t) = 1/(�(α)t1−α), where�(·) is the gamma function, for the corresponding
inverse stable subordinator by inverting (4). Theorem 1 thus confirms the moment expressions
in [4] (see, for example, [4, Equation (18)]).

The main obstacle to the use of Theorem 1 is the possible difficulty in finding an expression
for the renewal function. It is possible to find the renewal density not only for the inverse stable
subordinator, but also for the inverses of subordinators with inverse Gaussian and gamma-
distributed increments. In these two cases it is also possible to delay the processes to obtain
stationary versions, which is not possible in the stable case.
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For the inverse Gaussian distribution, with probability density

f (x) = δ√
2πx3

exp

(
δγ − 1

2

(
δ2

x
+ γ 2x

))
, δ > 0, γ > 0,

Lévy exponent

ψ(s) = δ

√
γ 2 + 2s − δγ,

and Lévy density

π(x) = δ√
2πx3

exp

(
−γ

2x

2

)
,

we obtain, by (9), a probability density of the delay Ỹ0 by integratingπ (withµ = ψ ′(0) = δ/γ )
as follows:

g(t) = 1

µ

∫ ∞

t

π(x) dx = γ

√
2

πt
exp

(
−γ

2t

2

)
− γ 2 erfc

(
γ

√
t

2

)
.

Here, erfc(·) is the complementary error function defined by erfc(t) = (2/
√
π)

∫ ∞
t

e−s2
ds.

We note that the density does not depend on the parameter δ. We obtain the renewal density
u(t) from its Laplace transform, which is equivalent to the Laplace–Stieltjes transform ofU(t),
by rewriting (4) as follows:

Û (s) = 1

ψ(s)

= 1

δ
√
γ 2 + 2s − δγ

= γ

2δs
+ 1

δ
√
γ 2 + 2s

+ γ 2

2δs
√
γ 2 + 2s

.

By [1, Equations (29.3.1), (29.3.11), and (29.3.44)], this implies that

u(t) = γ

δ
+ 1

δ
√

2πt
exp

(
−γ

2t

2

)
− γ

2δ
erfc

(
γ

√
t

2

)
.

The estimate (11) gives

P(τt > x) ≤ exp

(
−δ

2x2

2t
+ δγ x − γ 2t

2

)
.

For the gamma distribution we have probability density

f (x) = αν

�(ν)
xν−1e−αx, ν > 0, α > 0,

Lévy exponent

ψ(s) = ν log

(
1 + s

α

)
,

and Lévy density

π(x) = ν

x
e−αx.
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So, by (9), the density of the delay is

g(t) = αE1(αt),

where E1 is the exponential integral defined by E1(t) = ∫ ∞
t

e−s ds/s. As in the inverse
Gaussian case, the density only depends on one parameter. The renewal density is also, in the
gamma case, most easily obtained by first rewriting (4) as follows:

Û (s) = 1

ν log(1 + s/α)

= α

νs

∫ 1

0

(
1 + s

α

)u
du

= α

ν

∫ 1

0

(
1

s

1

(1 + s/α)1−u + 1

α

1

(1 + s/α)1−u

)
du,

which implies, by [1, Equations (29.3.11), (29.2.6), and (6.5.2)], that

u(t) = α

ν

∫ 1

0

du

�(u)
(γ (u, αt)+ (αt)u−1e−αt ),

where γ (u, t) = ∫ t
0 s

u−1e−s ds is the incomplete gamma function. We can also, by (11), obtain
the following tail estimate:

P(τt > x) ≤ exp

(
νx − αt − xν log

νx

αt

)
=

(
αt

νx

)νx
eνx−αt .
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