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A b s t r a c t . I consider the effect of rapid fluctuations in the mean lielicity on a plane dynamo 
wave in the c*u/-approximation and in the weak forcing limit. The phase shift and the logarithmic 
amplitude of the wave exhibit a correlated random walk, so that weaker (stronger) cycles last 
longer (shorter). The solar cycle data follow this prediction rather well. Mean lielicity fluctuations 
are concluded to be an important, source of solar cycle variability. 
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1. Introduction 

Dynamos modeled by linear mean field theory are strictly periodic under conditions 
of marginal stability. This strict periodicity ceases to exist when nonlinear effects 
are taken into account. Even if this is not done, there is a source of period and 
amplitude variability which has not been considered until recently. I employ the 
usual dynamo equation 

d < ^ > = V x ( v x + a - / ? V x ) <B> . (1) 

Here, ν is the mean flow and a and β are the usual dynamo coefficients (see e.g. 
Moffatt 1978). I interpret < > as a. longitudinal average (Braginskii 1965). In that 
case, α and β are also defined as longitudinal averages, and hence they must exhibit 
temporal fluctuations since there is only a finite number of eddies along a. circle of 
constant radius ν and latitude Θ. Here I consider only fluctuations in a : 

a = a 0 + δσ(ί) ; β = βο , (2) 

and βο is regarded as a constant, while the fluctuations 6a(t) are taken to be 
independent of position. 

In this paper I study period and amplitude variations in the mean field caused 
by δα(ί) in a simple dynarnu model. An important motivation is that nonlinear 
mean field models suggest that there are only attractors of very high dimension. 
The behaviour of such a. system is stochastic and may be studied by stochastic 
random forcing. Another source of inspiration is the work of Barnes et al. (1980) who 
simulated remarkably 'real' sunspot cycles from narrow band Gaussian noise. The 
present work is an extension of their model in the sense that a dynamo wave is used 
as the oscillator. For a completely different approach to the effect of fluctuations I 
refer to Van Geffen (1993). 
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Fig. 1. Traveling dynamo waves in a boundary layer between the convection zone and the 
radiative interior of the Sun. For simplicity, we consider an infinite homogeneous plane 
layer of thickness L. The mean flow is along the y-direction and has a constant shear a 

2. Model 

I consider a single plane dynamo wave in a plane layer of thickness L, see Fig. 1. 
The wave propagates in the —z direction, and is represented by 

< B > = V χ Aey + Bey , (3) 

with 

A— Pcos(kzz — ωί -j- ip0 -f δχ) sin πχ/L , (4) 
Β = kTcos(kzz — ωί + δ φ) sin πχ/L , (5) 
k = y/k* -f (tt/L)2 . (6) 

Here, kzz — ωί is the phase, k the wave number and <po the phase difference be-
tween the poloidal and toroidal field of the unperturbed wave. The amplitudes of 
poloidal and toroidal field are Ρ and T, respectively. The fluctuations δα(ί) cause 
the amplitudes Ρ and Τ and the phase differencesN^x and δ φ to become random 
functions of time. There are no boundary conditions, and I really consider a plane 
wave in infinite space, with wave numbers kz and π/L in the z- and x-direction, 
respectively. This simplifies the problem considerably. 

Choudhuri (1992) has studied the effect of fluctuations in this model numerically. 
However, the model is sufficiently simple to allow a complete theoretical analysis 
by stochastic methods (Hoyng 1993). Random forcing by helicity fluctuations has 
also been studied in a. simple spherical geometry (Hoyng and Van Geffen 1993). 

3. Me thod 

The first step in the analysis is to find the properties of the unperturbed, marginally 
stable wave, when δσ(ί) = 0. In that case, Ρ and Τ are constant and δ χ = δ φ — 0. 
I restrict myself to the αω-limit, which means that, the two dynamo numbers 
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dQ = ao/ßok and άω ΞΞ a.kz jßok^ (7) 

satisfy \da\ < 1 and \άω \ » 1. Inserting (3), (4) and (5) in (1) leads to 

Po/Το = dQ ; dad» = 2 ; = ττ/4 ; ω = /?0*2 . (8) 

Here, P0 and T0 are the unperturbed wave amplitudes. For details on the derivation 
of (8) I refer to Hoyng (1993). The next step is to write a from (2) as 

α = α0( 1 + à ) , i.e. a(t) = Sa( t ) /a 0 , (9) 

and to define the random phase difference δ and the relative amplitude variation c: 

δ = δχ-δφ·, C = (10) 

From now on, e, δ, Τ and δφ are treated as the independent variables. They turn 
out to obey the following simple equations (Iloyng 1993): 

i + 2e=-2<5 + à T/T=6 + e n 

6 + 26 = 2e-à (δψγ=δ-€ [ '> 

Time is now measured in units of the diffusion time {ßok2)~l, and ' represents differ-
entiation with respect to the dimensionless time ίβok2. Eqs. (11) are valid provided1 

ô^r.m.s.y/^c 1, where rc is the correlation time of a(t) in units of (Aj^2)""1· This 
is called the weak forcing limit. It is assumed that rc < 1. The equations for c and 
δ form a closed set with an additive noise term. When the initial condition c(0), 
6(0) has died out, i.e. for t > 1, the solution may be written as 

z ( 0 = /o°° exp(—As) f(t — s)ds , (12) 

with 

z = € + i6\ Λ = 2 — 2i ; f ( t ) = (1 - i) 5(t) . (13) 

It is straightforward to generate a. numerical solution of Eqs. ( l la ,b) , see Fig. 2. Eq. 
(12) is a good starting point to determine the statistical properties of c and δ, and, 
via ( l ib) , those of the phase shift δψ and the logarithmic amplitude log Τ of the 
toroidal field. Note that according to Eq. ( l ib ) Τ cannot change sign. 

4. Resu l t s 

The properties of the solutions such as those in Fig. 2 can be summarised as follows 
(Hoyng 1993): 
1. Both log Τ and the phase shift δφ of the toroidal field perform a. random walk 
with the same diffusion coefficient D: 

(logr)r .m.e . - ^r.m.s. ^ \ / 2 D l ; D = \aim s rc , (14) 

= < 0 7 2 > 1 / 2 for any zero-mean random variable x . 
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Fig. 2. Irregular cycles of an αω-dynamo randomly forced by mean lielicity fluctuations. 
Plotted is {Τ €θδ(δψ —ωί)}2 (the square of the toroidal field strength, apart from irrelevant 
phase factors) versus time in units of the unperturbed dynamo period 2π/ω. Parameters: 
«r.m.s.λ/^c = 0.218; T(0) = 1; δφ(0) = ττ/2; e(0) = 6(0) = 0 

and D 1 due to the assumption of weak forcing. The implication is that the 
amplitude Τ reaches any desired order of magnitude if we wait long enough. 
2. The random walks of log Τ and δφ are completely anticorrelated: 

log Τ + δφ = const. + F(t) ; Fr.m.s. = yfö < 1 . (15) 

F(i) is a noise t.erm of constant r.m.s. magnitude. The constant in (15) depends 
on the initial conditions. Eq. (15) implies that cycles of shorter/longer duration 
have larger/smaller amplitudes. This effect is clearly visible in Fig. 2, and is also 
observed in the solar cycle (Waldnieler 1935; Iloyng 1993). 
3. The quality factor of the oscillator, defined as Q — ω/Αω where Αω is the width 
of the line in the power spectrum, is given by 

Q = D~l . (16) 

4. The poloidal field follows the behaviour of the toroidal field since er.m.s. = 
^r.m.s.\/3 = V / 3 D < l . 

5. Applicat ion to the solar dynamo 

To verify to what extent the solar cycle follows the predicted correlation (15) I 
use the epochs ίk of sunspot maxima and the corresponding sunspot numbers R^ 
(Allen 1973) to define the phase shift at the Ar-th maximum and log Τ*,.: 

6il>k = üJ(t.k-h)-(k-l) π , (17) 
log Τ* = jilogiÄfc/Äx). (18) 

In this way, δφχ = logXi = 0 at ί\ — 1705.5. Here, ω is the unknown frequency 
of the solar dynamo. The sunspot numbers R^ are assumed to be proportional to 
some power of 7*, and I write Tk oc A least square fit. of (17) and (18) to rela-
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Fig. 3. Plot of 6φι< defined in (18) versus \og(Rk / Ri) for the parameters of the best fit. 
T h e dashed line is the best correlation line, and is given by δφ -h 1.07 \og(R/Ri) = 0.3. 
T h e labels 1 and 25 indicate the first and last, data point. The points labeled 6 through 
10 comprise what Dicke (1988) refers to as the 'great, solar anomaly' 

tion (15) gives 2π/ω = 22.4 yr and μ = 1.07 (plus the irrelevant value of the 
constant in (15)). Furthermore I find that Q « s « 10. The result of the fit is 
shown in Fig. 3. The anticorrelation between δφ and log Τ is rather convincing. 

I conclude that fluctuations in the mean lielicity are a promising mechanism to 
explain the observed solar cycle variability. From Q « 10 we infer that the fluctua-
tions are large, <$ar.m.s./lao| « 5 for rc = 15 days. The fact that, μ ~ 1 implies that 
the sunspot numbers are directly proportional to the mean field strength. Model 
simulations (Hoyng 1993) show many features also seen in the real cycle (quasiperi-
odicity, amplitude modulation, recurrent long minima, etc.). However, nonlinear 
effects must be included to prevent an unrestricted drift of the amplitude. 
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