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ON RELAXATION OSCILLATIONS G O V E R N E D BY 
A SECOND ORDER DIFFERENTIAL EQUATION 

FOR A LARGE PARAMETER A N D WITH 
A PIECEWISE LINEAR FUNCTION" 

BY 

K. K. A N A N D 

ABSTRACT. This paper deals with the differential equation: x + 
lxF(x) + x = / ( X , x, tlT[x) for JUL » 1 where F is a piecewise linear 
function and f is a periodic function of period /ULT, where T is to be 
chosen. It is established that periodic forced vibrations exist in an 
annular domain R(ix) constructed for the free vibration (/ = 0), 
provided / is not of higher order than 0 (/UL 1/3 — r), 0 < r < ^ . Subse
quently with / = A cos (27rf/|ULT*), an asymptotic treatment of the 
forced vibration problem is carried out, by finding the proper initial 
conditions and the proper period JUIT* of /. Finally it is concluded 
that IJLT* is close to the period of the free vibration. 

1. Introduction. The mathematical formulation of the problem giving the 
current x(f) in one branch of an electrical circuit containing a triode vacuum 
tube is: 

(1) x - j a ( x - è x 3 ) + x = / ( x , x, — Y n > 0 , 

where T is a parameter, whose usefulness will become apparent later in this 
paper. Doronitsyn [2] has dealt with this differential equation with / = 0, that is 
the van der Pol equation, with JUL, a large parameter. Haag [4] has considered 
differential equations of a very general type (including the van der Pol 
equation) in a series of important papers. In 1975, J. Grasman, E. J. M. Veling 
and G. M. Willems [3] published a joint paper called 'Relaxation Oscillations 
Governed by a van der Pol equation with periodic forcing term'. Of course J. J. 
Stoker [5] published 'Periodic Forced Vibrations of Systems of Relaxation 
Oscillators' more recently in the May 1980 issue of Communications in Pure 
and Applied Mathematics. 

In this present paper, we mainly follow Stoker, use his methods with certain 
modifications and extend his work. 

The equation dealt with in this paper is: 

(2) X + JLLF(X) + X = / (X , x— I for JLL»1 
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RELAXATION OSCILLATIONS 81 

where F is defined by, 

-F(x) = x 

= ±2-

for |x|: 

x for \x[: 

This equation for / = 0, that is for the free vibration has a character similar to 
the van der Pol equation dealt with in Stoker's recent paper [5]. The equation 
(2) with f = 0 describes a physical phenomenon, which may be viewed as a 
simplified version of the one described by the van der Pol equation. 

Firstly following Stoker [6] and [5], we construct an annular domain R(IJL) 

Fig. 1, in which, we show the existence of a unique periodic free vibration 
governed by the differential equation. 

X + ILF(X) + X = 0 , |UL»1 

(3) -F(x) = x, 

= ±2-x, UI>1 

H+i8,3-36) 

(-/>-/) D 

(/-2SJS-3) 

\P*a+Sr3) 
tf(/+S, -3-S) 

Figure 1. The annular region R(ix) with its outer boundary R+(JUL) and its inner boundary R_(JUL) 
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Secondly we show the existence of a periodic forced vibration in the same 
annular domain, when the right-hand side of the above equation (3) is not zero 
but f(x, x, t/Tjui) and / is permitted to be of order, no higher than 0(/UL1/3 r), 
0 < r < 5 . This restriction on / follows from Stoker [5] and requires modifica
tions in the construction of JR(JH). 

Thirdly, we take / appearing in (2) to be a periodic function A cos(27rt/fxT*), 
where A is a constant. This function / certainly falls under the class of 
functions mentioned above. Consequently then, there does exist a periodic 
solution of the same equation with / = A cos(27rt/|mT*) given by a closed 
solution curve in the annular domain R((JL) constructed originally for the free 
vibration in the phase plane. 

Lastly, an asymptotic treatment of the forced vibration problem, 

2irt 
x + ixF(x) + x = A cos r , jut » 1, 

fxT 
(4) -F(x) = x for | J C | < 1 

= ±2 — x for | x | ^ l 

comes about by finding the proper initial conditions and the proper period pT* 
of the forcing term on the right-hand side of equation (4). This implies that the 
period of the forcing term is not prescribed in advance nor is the exact starting 
point at £ = 0. We aim at obtaining JUIT* up to the leading term for the 
contribution of the forcing function. It turns out that the period p,T* is close to 
the period of the free vibration found in Stoker's 'Non Linear Vibrations' [6] to 
the order of accuracy required. The leading term for the period pT* is 
(2 In 3)JLX as in the case of the free vibration. 

2. Treatment of the homogeneous case. We deal with the homogeneous 
case first i.e. the equation (3). To start with, we change the variables by means 
of substitutions, | = x/p,, T = f/p,, p = g = d£/dr = x and transform (3) into a 
system of two equations namely, 

(5) 

^ = H 2 [ - F ( p ) - | ] 

where 
-F(p) = p, | P | < 1 

= ± 2 - p , | p | > l 

Construction of R+(p.) and R-(ix). We construct R+dx) and JRL(JLL), [Fig. 1], 
the outer and inner boundaries respectively of the annular domain R(ix) [Fig. 
1] in the phase plane i.e. the (£, p) plane. We accomplish the drawing of R+in) 
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Figure 2. The piecewise linear characteristic A'DBA, £ = ~F(p) 

by shifting the characteristic curve £ = —F(p) (Fig. 2) to the right by 2 8 units. 
At this point, we might mention that 8 is small, while /x is arbitrarily large and 
positive [8 and p, are found to satisfy the relation 8 = 0(l/p,2/3)]. We let Qt and 
Q2 be the points on the uppermost branch of the translated curve with 
^-co-ordinates - 1 and 1 respectively. A parallel through Qx to the £-axis is 
drawn and a point P5 is marked on it such that its ^-co-ordinate is -1-8 and 
the p co-ordinate is the same as that for Qx. We let P5P4P3 be a vertical 
(parallel to the p-axis) drawn to cut the characteristic curve at P4 so that P5 is 
( - 1 - 0 , 3 + 20), P4 is ( - 1 - 0 , 3 + 0) and P3 is ( - 1 - 0 , 3 ) . We join Q2 with P3, 
the point symmetrical to P3. One half of the curve R+(ii) then consists of the 
vertical segment P3P4P5, P5QU QiQ 2 and Q2P^ In the lower half plane the 
construction is made symmetrically with respect to the origin. Next R-(^JL) is 
constructed by translating £ = —F(p), a distance 8 in the negative £ direction. 
We let JR3 and R4 be the points in the uppermost branch of the translated 
curve at which £ = —1 + 26 and £ = 1 — 6 respectively. Let P6 be the point on 
£ = -F(p) with co-ordinates £ = 1 — 6, p = 1 — 8. We join R4 to P6 and then P6 

with R'3, the point symmetrical to R3 by a straight line segment cutting the 
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£-axis at R'0. One half of i?_(fx), then consists of the straight line segments 
R3R4, R4P6 and P 6 #3. The other half is completed symmetrically with respect 
to the origin. 

It is to be noted that everytime the characteristic curve is cut by R+(n) or 
,R_(JLI), it is cut by means of a vertical line segment, that is a line segment 
parallel to the p axis. This happens to be essential to the argument that follows 
later for the corresponding non-homogeneous case. 

By considering slopes of line segments bounding J?+(JUL) and R-(IJL) and the 
directions of the field vectors (dg/dT, dp/dr) at the boundary points, it is found 
that 8, the basic width of R(ix) cannot be too small in relation to (x. 8 and fx 
are found to satisfy the relations 6>2/JLL 2 / 3 . With such a £, in relation to a 
given JLL, the annular region is such that all field vectors point inwards of R(IJL). 

Lipschutz condition on the system (5) is satisfied. Once an initial point for an 
integral curve of the system is chosen in R(^) or on the boundary of R(ii) the 
solution curve stays inside of R(^). Also from the first of equations in the 
system (5) namely d£/dr = p, we know that all solution curves make a complete 
clockwise circuit around JR(JLL). Thus a mapping of a segment S, (which is 
Q0R0, the intersection of the negative £ axis with R(IJL) Fig. [1]), of R(^) on 
itself is established. This mapping is well-defined and continuous because of 
continuous dependence of solutions on initial conditions. Hence from 
Brouwer's Fixed Point Theorem, this mapping has a fixed point. Hence there 
exists a point on S, such that an integral curve starting at such a point comes 
back to the same point after making a complete circuit of R(ix) in the 
clockwise sense. Hence we have the existence of a closed solution curve C^ in 
every annular domain -R(JUL) in the phase plane implying a periodic solution of 
the system (5). This same result can be established by using Poincaré-
Bendixson Theorem for the closed compact annular region JR(JUL) containing no 
singular points of the system (5). Also all solution curves, which have once 
entered JR(/LX) stay in there, as at all boundary points, the field vector points 
inwards of R(n). Thus a closed solution curve or a limit cycle Q results. The 
uniqueness of the limit cycle C^ for a value of jx, is guaranteed because of 
Poincare's Orbital stability condition being satisfied, for 

p ( f A ) = td+^)d T = - c f 2 F ' ( p ) d T 

The value of the above integral turns out to be - ( 2 In 3)JLL2+ terms which are of 
a lower order as JLL -» o°. Hence P(JLL) is negative as JLL —» o°, and Poincare's 
stability condition is satisfied. Then proof by contradiction is utilized to 
demonstrate that a unique limit cycle Q exists in every annular domain R(IJL). 

This i?(jLt) of course shrinks down on the curve called G» in Fig. 3 because 
8 -> 0 like 1/JLL2/3 when JLL -* ». Thus the limit of the limit cycles C^ is Co. 
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A'(/> -J ; 

Figure 3. The limit of the limit cycles C^ 

3. Forced vibrations in R(IJL). The equation (2) is transformed into the 
system 

(6) 

with 
-F(p) = p, |p|=£l 

= ± 2 - p , | P | > 1 

The proof for the existence of a forced vibration in R(^JL) having the same 
period as the excitation / is taken up. Here / is assumed to be of no larger 
order than 0(ju,1/3_r), 0 < r < ^ with JUL^O°. This restriction on / comes about 
because of the width 8 of R(n) satisfying the condition 6>2/JUL2 / 3 uniformly 
over i^(jLt). The R((JL) we have constructed is a slight modification (and is a 
definite improvement) of the construction used by Stoker in his book 'Non 
Linear Vibrations' [6] or his recent paper [5] for the van der Pol equation. Our 
R+(IL), the outer boundary of JR(JUL) cuts the characteristic tj = -F(p) by a 
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vertical segment, so that we experience no problem, when the existence of 
forced vibrations in the annular region i^(jtx), is shown. We are able to say, 
safely, that at all points of R(JLL), the field vector points inwards of R(IJL) as long 
as / is of no larger order than 0(|ml/3~r)> 0 < r < \ . It is possible to say again that 
Brouwer's Fixed Point Theorem for the mapping of a segment on itself applies. 
Hence there exists a closed solution curve which begins at £* on S (Fig. 1) and 
comes back to £* after making a complete clockwise circuit of JR(JUL). It is 
imperative to point out that unlike the case of free vibrations, a periodic forced 
vibration could be seen to exist only if the time required to make a circuit 
around the ring starting from a point £* on S and returning to it, happened to 
be the same as the period in r of /, the forcing function. The parameter T in (1) 
and later in (2) was introduced to bring this about by a procedure that makes 
use of the Brouwer's Fixed Point Theorem for a mapping of the two dimen
sional closed rectangle (Fig. 4) given by | x < ^ < ^ 2 and T^<T<T+ on itself. 
This method has been used by Stoker [5] for the corresponding van der Pol 
case. Here ^ 2 is the segment S already described. 

A point (£, T) is chosen in the rectangle and a mapping (£ \ T1) is defined by 
choosing a point £ on S as initial point to define a trajectory of (6), when a 
specific value T is fixed in (6). The trajectory so defined cuts the segment S at a 
point Ç1 after one circuit around the ring in a finite time T = T1. Since T_ and 
T+ are the bounds for all times for all integral curves (£ \ T1) then lies in the 
rectangle ^ < £ < £ 2 , T _ < T < T + . This continuous mapping of (£, T) to (£ \ T1) 
has a fixed point (£*, T*). By inserting T* for T in equation (2) and then in (6) 
and integrating (6) with £* as initial point an integral curve results, which starts 

T 
i 

T 
'oo 

\ 

1 

w 

n 

T-

5 

— -

0 
\a 

• • 9 

Figure 4. Mapping in a (£, T) plane 
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at £ = |* , T = 0 and returns to that point in time T*. But T* is now the period 
of / in the differential equation (2) or the system (6). Thus existence of a 
periodic solution with the period of the forcing term is proved provided / is of 
order no larger than 0(p,1/3_r), 0 < r < i 

4. Asymptotic treatment of the non-homogeneous case. We take / to be 
A cos(27rf/p,T*) in (2). This / is certainly of the class of functions / of no larger 
order than 0(p,1/3~r), 0 < r < | . Thus we already know that a periodic solution in 
R(IJL) exists for (2) with the period of the forcing term / = A cos(27rt/pT*). We 
aim at finding the proper initial conditions, and the proper period pT* of the 
forcing term. 

A change of variables with x = p,£, t = JILT, X = £' = p leads us to solving, 

(7) 0 + f , 2 [ F ( p ) ] + f ^ = A f x c o s ^ 

with 

-F(p) = p, | p | < l 

= ± 2 - p , | p | > l 

in the regions \p\ < 1 and \p\ > 1 for a periodic solution such that T = 0, £ = 1 + £0, 
p = l at Pi and T = T*, g = H-£0 , p = l at Px after one circuit (Fig. 5). The 
general solutions of (7) in the four different regions are: 

f(1) = c1ex,T+c2cX2T + cos <o(p/r + a ) 
(8) Dp, 

for - 1 < f < 1 from Px to P2 (Fig. 5) 

A 
f(2) = - 2 + c3e~XlT+c4e"X2T + — c o s <o(p,r-a) 

(9) Dim 

for £' < - 1 from P2 to P3 (Fig. 5) 

(10) Dp. Vf* 

for - 1 < £' < 1 from P3 to P4 (Fig. 5) 

g(4) = 2 + - X l T + - , 2 T + ^ C O S w ( a ) 

(11) Dp, 

for I ' ^ | from P4 to Px (Fig. 5). 
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Figure 5. The patched up solution curve (£ ( T ) P ( T ) ) 
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D T*D0 V 
(17) s i n a o ) = ^ f = ^ r + 0 ( - ^ 

(18) 
x 2 ! 1 2 5 14 / 1 \ 

/Lt jLt /U. jU. \fi, / 

(19) A2 = l+±
2 + —4 + —6 + —8 + o(-\) 
JUL /Ut JUL jLX VjUL / 

and Ci, c2, ci, c2, c3, c4, c5, c6, are arbitrary constants. 
Considering the continuity of the solution curve at P l 5 P2, P3, P4, we get the 

following seventeen equations: 
At PX,T = 0 (Fig. 5) 

A 
(20) l + £0 = c1 + c2 + -r--cos coa 

DjUL 

(21) 1 = c1À1 + c2À2 — —— sincoa 

(22) 1 + £0 = 2 + c5 + c6 4- — - cos coa 

A O J 

(23) 1 = —c5À! —c6À2 + —-sincoa 

A t P 2 , (Fig. 5) T = T19 

(24) ^ ( 1 )(T1) - de x ' T ' + c 2 6 ^ + - ^ - cos œ^^ + a) 
DjUL 

AM 

I ' ( 1 ) (TI ) = - 1 = c ^ e ^ + c2A2cA^ —— sin co^Tx + a) 

^(2)(T1) = - 2 + C3C-À^ + c 4c- x^+--cosco( |ULT 1-a) 
(26) Dix 

= f(1)(T1) 

£' (2Vi) = - 1 = -c3A i e-x .T . - c4A2e-x*T' - — sin a , ^ - a) 

At P3, (Fig. 5), T = T! + T2 

(28) ê<2)(T1 + T2) = - 2 + c3e"A'(T'+T2) + c4e-^<T'+T^ + —-cosw(M,(T! + T 2 ) -a ) 
-LJ/U. 

| ' < 2 ) (T ! + T2) = - 1 = -c3A1c-x . (T '+^ )-c4A2e~^<T '+^ ) 

(29) Aa, . . . ^ . n 

— — sin WLMT! + T2) - a J 
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+ c^À2(Tl+T2) + —-coscoCjLL^ + O + a ] 
DjUL 

(31) =ciA1e
x»(T'+T^) + ciA2ex=(T '+T^-—sincot/uL^i + ^ + a ] 

At P4, T = T1 + T2 + T3 referring to Fig. 5 again, 

£ ( 3 )(TI + T2 + T3) = c\ e V - , ^ ^ + C ^ M T I + T 2 + ^ 

A 
(32) + — - cos COIXT, + T2 4- T3) + a] 

DjUL 

= ! < 4 ) ( T 4 ) 

1 = | ' < 3 ) (TI + T2 + T3) = ciA,ex'(T'+T*+T') + c£A2e
x*<T'+T*+T») 

Aw 
,.,,,, —^-sinwLfxlTj + Tz + Tjj + aJ 

= I ' ( 4 )(T4) 

Also, at P4 (Fig. 5), T = r4 where r4 is the time required to pass in the region 
p > l from the point P^l + Ço, 1) to P4(£(4)(r4), 1). Thus, 

(34) ^(4)(T4) = 2 + c s e^ ' T - + c6e-"A^ + -^-cosco(iaT4-a) 
Du 

e4\u) = 1 = -c5X,e^^-c6k2e^ 

(35) Aw . . 
—7T" sin O)(JUIT4 —a) 

Lastly, 

(36) ^ = ^ + 7 2 + 7 3 - 7 4 

We solve the above seventeen equations (out of which only fourteen are 
independent), with the aim of obtaining T*, the period of the solution in the 
form 

where we wish the square bracket to contain all of terms, (which arise from the 
free vibration) that dominate the leading term involving A, that is one of 
highest order involving JLL. The quantity B is to be a numerical constant. We 
also wish to approximate £0 to fix the initial conditions for the solution curve. 
The asymptotic treatment of the corresponding homogeneous case (3) in Dr. 
Stoker's Non-Linear Vibrations [6] provided a guide as to what must be kept 
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while making approximations. At each step, in the very involved computations 
in solving what are mostly transcendental equations, a term due to the free 
vibration, plus the order of the next term due to the free vibration was noted, 
besides keeping the leading term involving A and the order of the next term 
involving A. The details of the calculations can be found in the author's [1]. 

We find that the starting point for the solution curve turns out to be 

T=O- ^ i + ^f i + o (? )} + A [r°©] a n d p = L 

This is evidently within the annular region R(^) of basic width 8 of 0(1/JLL2/3). 

Lastly we find, 

T* = 21n3 + 8 7 r 2 A 

3]UL 7T2 + l n 2 3 

Thus the period JULT* in t for the forced oscillation has the same leading term 
(2 In 3)jut as in the case of the free vibration found in Stoker's [6]. 
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