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Abstract

In this paper we prove a new version of the Cowling-Price theorem for Fourier transforms on R". Using
this we formulate and prove an uncertainty principle for operators. This leads to an analogue of the
Cowling-Price theorem for nilpotent Lie groups. We also prove an exact analogue of the Cowling-Price
theorem for the Heisenberg group.
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1. Introduction

Consider functions / on K" that satisfy estimates of the form

for some a, b > 0 where / is the Fourier transform of / defined by

(1.1) /(£) = (27r)-"/2 I f(x)e-"*dx.
Jtt"

A classical theorem of Hardy [6] proved way back in 1933 states that for nontrivial
/ , the product ab is at most 1/4 and the maximum value is attained precisely when
f{x) = ce~aM\ Since ab > 1/4 implies / = 0, the result of Hardy is an example of
an uncertainty principle for the Fourier transform. The case ab = 1/4 is considered a
characterisation of the Gaussian.
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In 1983, Cowling and Price [5] obtained a generalization of Hardy's theorem. Let
us define </>„(*) = e~aM\ Then we have the following result.

THEOREM 1.1 (Cowling-Price). For 1 < p , q < oo, let / 0 " 1 6 Lp(Rn) and
f(p;x e Lq(R"). Then f = 0 whenever ab > 1/4.

The case p = q = oo in the above theorem is Hardy's theorem with ab > 1/4. The
above result is true even if ab = 1 / 4 under the added assumption that min(p, q) < oo.
A further generalization of the Cowling-Price theorem for the case ab = 1/4 has been
recently obtained by Bonami et al. [4].

Analogues of Hardy and Cowling-Price theorems have received considerable atten-
tion during the last decade, see the monograph [15] and the references there. In this
paper, we are mainly concerned with the Cowling-Price theorem for the group Fourier
transform on nilpotent Lie groups. Such a theorem can be proved for the simplest
case of the Heisenberg group.

Let H" be the (2n + 1)-dimensional Heisenberg group and let f(X), X e R \ {0}
be the group Fourier transform of a function / on Hn. The role of the Gaussian <pa

will be played by the heat kernel qa{z,t) associated with the sublaplacian on H". Let
H(X) = - A + X2\x\2 be the scaled Hermite operator. Then we have the following
result.

THEOREM 1.2. Let f be a function on H" that satisfies fq~x e Lp(Hn), l<p<oo
and let f(X)ebHa) be a bounded operator in L2(Rn) for every X G R \ {0}. Then
/ = 0 whenever a < b.

The case p = oo is Hardy's theorem for the Heisenberg group, which can be found
in [14]. We are interested in finding an analogue of the above result for stratified
nilpotent groups. An examination of the proof of the above theorem, given in Section 3,
reveals that we need explicit formula for the heat kernel and good estimates. Due to
the lack of such information in the general case, we look for alternative versions of
the Cowling-Price theorem.

Returning to the Euclidean case, consider the Gaussian ct>a(x) for which <pa = C(f>b

with b = I/4a. In view of the Plancherel theorem, we have

\\da<ta\\l = / \x°4>a(x)\2dx = 2nY[ t^e-^dt,
JR- j=l Jo

which gives the estimate

(1.2) l|3°>fl|l2 = <
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If a function / satisfies | / (x) | < C<pa (x), then the derivatives of / satisfy the estimates

(1.3) | | 3 a / l l 2 | |

Replacing the pointwise estimate |/(;c)| < C<pa(x) by the slightly weaker estimates
(1.3), we arrive at the following uncertainty principle.

THEOREM 1.3. Let f be afunction on W such that | / (£) | < Ce~m\ andfor every
a e N", we have \\daf\\2

2 < Ca\(2a)'w. Then / = 0 whenever ab > 1/4. When
ab = 1/4, /(£) = <p(£)e~b^\2, where 0 is an entire function on C, but its restriction
on R" is a bounded function.

We remark that Theorem 1.3 (case ab > 1/4) is equivalent to Theorem 1.1 (case
p = 2, q = oo). Thus Theorem 1.3 is another version of the Cowling-Price theorem.
Stated in this form it has natural extension to the case of nilpotent Lie groups.

The group Fourier transform on a nilpotent Lie group G is operator valued. Given
an irreducible unitary representation n of G and a function / on G, the operator
f(n) = n{f) is realised on L2{W) for a suitable n. In order to formulate an analogue
of Theorem 1.3, we need such a result for operators.

Given a bounded linear operator T on L2(R"), we define certain noncommutative
derivations of T by

(1.4) 8JT = [AJ,T], SjT = [T,A*],

where [T, S] = TS- ST is the commutator and Aj = d/d^j + £,-, A* = -d/d$j + £,-
are the annihilation and creation operators. The above derivations were introduced by
Mauceri [8] and the second author has used them on several occasions, see [12, 15].
For multiindices a, fi, we define SaT and SPT iteratively. Let H = - A + |JC |2 be the
Hermite operator on K" which generates the semigroup e~'H, t > 0. We denote by
yq (q > 0) the set of all linear operators T on L2(Rn) such that tr(\T\q) < oo. For
a > 1, yq endowed with the norm | |r | | , := (tr(|r|9))1/9 is a complete subalgebra
of the set of all bounded operators on L2(K"). In particular, for q = 2, y2 is
the Hilbert space of Hilbert-Schmidt operators on L2(W) equipped with the inner
product (T, S) = ti(TS*). Let ||r||Hs be the norm of T in this Hilbert space. With
these notations we are ready to state our operator analogue of Theorem 1.3.

THEOREM 1.4. Let T e y2 satisfy the estimates

T*T < ce-2bH, | ^

for some a,b > Ofor alia, ft e Nn. Then T = 0 whenever a < 2 tanh 2b.
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This theorem is an uncertainty principle for the Weyl transform for the following
reason. As is well known every T e S?i is of the form W(f) for some / e L2(Cn);
that is to say

(1.5) r = W(/)= / f(z)n(z)dz,
J~L

where n(z) = nx (z, 0), 7ti being the Schrodinger representation of H" with parameter
X = 1. The following analogue of Cowling-Price theorem can be proved for the Weyl
transform.

THEOREM 1.5. Suppose f on C" satisfies fea^ e LP{V) and W(f)ehH e yq,
where 1 < p, q < oo. Then / = 0 whenever a tanh b > 1/4 and min(p, q) < oo. If
p = q = oo, then f = Ofor a tanh b > 1/4 and f(z) = Ce^1? for a tanh b = 1/4.

As an immediate corollary of Theorem 1.4, we obtain the following theorem for
nilpotent Lie groups.

THEOREM 1.6. Let G be a connected, simply connected nilpotent Lie group and
let A. be a cross section for the generic coadjoint orbits parametrising the elements
of G which are relevant for the Plancherel theorem. For each X e A, let nk be the
associated element ofG. Let f e L1 D L2(G) satisfy the following conditions:

(i) n^fYndf) < Ce-w,
(ii) WS'S"(n^fyTtdf))lls < C(a + p)\a(X)M+M,

where a(k), b{k) > 0. Then f = 0 whenever a (X) < 2lznh2b(k)forallX e A.

For the case of the Heisenberg group, it can be easily checked using the explicit
formula for the heat kernel that |/A(z)| < Cq^(z) leads to the estimates

(1.6) W&'ifWnmls < C(o

Thus condition (ii) in Theorem 1.6 is a suitable alternative, which compensates for the
absence of a good formula for the heat kernel. In the case of the Heisenberg group,
we can replace condition (i) by f(X)*f(X) < Ce-2*"^. Note that e-bHW = qb{X)
and so, it is a natural candidate for measuring the decay of f(X). As H(X) is unitarily
equivalent to \X\H, condition (i) is natural. The same comment applies to the case
of all step two groups, as the scaled Hermite operator is related to the sublaplacian
even in that case. In the case of general nilpotent groups, there is no canonical way
of measuring the decay of nk(f). We have used e~bwH to measure the decay of the
Fourier transform, since we do not have any other choice.

We conclude this section with the following remarks. Different versions of Hardy
and Cowling-Price theorems for nilpotent Lie groups have been proved in [1, 2, 3, 7]
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and [10]. In each paper, the conditions are in terms of the Hilbert-Schmidt norm of
Xk(f)> and a s s u c n we in some sense results for the central variable. This remark
is easily justified if one considers functions of the form f(z, t) = g(z)h(t) on the
Heisenberg group. The right analogue of Hardy's theorem for H" was proved in [14].
In this paper we try to formulate such an analogue of the Cowling-Price theorem.

2. Cowling-Price on W revisited

As we mentioned in the introduction, we show that Theorem 1.3 (case ab > 1/4)
and Theorem 1.1 (case p = 2, q — oo) are equivalent. However, we first give an
independent proof of Theorem 1.3. We start with the following lemma, which allows
us to find pointwise estimates on 9" / when we have estimates on ||3a/||2-

LEMMA 2.1. Suppose we have ||3a/||2 < Ca\(2a)~]al for every a € N". Then we
alsohave \daf($)\2 < Cf["=|(aj; + n)\{2a)~w for every a 6 N".

PROOF. In view of the Sobolev embedding theorem,

1015"

which gives the estimate

\P\Sn \fi\<n
n

<C ]"[(«; + «)!(2a)-|a|. •

In view of Lemma 2.1, we only need to prove the following version of Theorem 1.3.

THEOREM 2.2. The conclusions of Theorem 1.3 are valid if we replace the estimates
on ||3"/||2fcy |3"/(*)l2 < C UU^i+n)\(2a)-^for every a e N".

As an application of the above theorem we have the following corollary.

COROLLARY 2.3. Let f be a smooth function such that

WftP < Ca\(2a)'M,

where 1 < p < oo. Then f = Oforab > 1/4.
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PROOF. Choose t > 0 such that a > a — t > 1/46. Consider the function
F,(x) = f* p,(x), where p,(x) = (4nt)-n/2

e-
M2/*'. Now,

\d°F,(x)\2 < \\pt\\
2

p,\\d
af\\2

p <

\F,(x)\ < Ce-b/(4l"+l)M\

Therefore, F,(x) = 0 when ab/(4bt + 1) > 1/4. Hence / = 0 for ab > 1/4. •

We now complete the proof of Theorem 2.2. We first consider the case ab > 1/4.
We make use of the following lemma.

LEMMA 2.4. Let F{%)bea smooth function on W that satisfies

for all a € N". Then F extends to C" as an entire function which satisfies
2 for every b > l/4a.

PROOF. Forb > 1 /4a,

a!

M

This shows that F can be extended as an entire function on C" and it satisfies

Coming to the proof of the case ab > 1/4, choose b' such that b > V > l/4a.
By Lemma 2.4, we have | / ( f )| < Ceb'™2. Since | / (£) | < Ce~ml and V < b, we
appeal to the following lemma to conclude that / = 0. •

LEMMA 2.5. Let F(£) be an entire function on C" that satisfies

\F(£)\ < Cea™2, |F(f )| < Ce-ml

fori, € C and$ e U.n. Then F = 0 whenever a < b and F(£) = Ce'^fora = b.
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We consider the equality case. It is enough to prove it when n = 1. Indeed,
if we have the result in the one dimensional case then, by considering the function

= /(£ ' , £„), £' = (£,, . . . £„_[), which satisfies the estimates

+ n)\(la)-k,
we obtain

However, the function C(f', £„) satisfies the same estimates as / on R"~l. By induction
we obtain /(£) = <p($)e~m2 with cf> bounded. For the one-dimensional case using
Lemma 2.4, / can be extended to C as an entire function of order at most 2. Since /
cannot decay on IR faster than its order, its order is 2. Since we have the estimate

l/(£)l < Ceb'm2 for all V > l/4a,

its type is l/4a. Now we apply the following result of Pfannschmidt [9] to the entire
function /(£).

THEOREM 2.6. Let F be an entire function of one variable f of order p (p integer)
and type b. Let

log IF(reie)I
h(9) = limsup-Z±-± -, 0€[O,oo)

be its indicator and assume that h(2nj/p) < —b, j = 0, 1, 2 , . . . , p — 1. Then
F(t;) = P(^)e~b^, where P(£) is an entire function at most of minimal type of
order p.

The following remark is in order. In Theorem 1.3, with ab = 1/4, we concluded
that /(£) = (p(%)e~m\ It would be nice to say something about / itself. As 0(£) is
an entire function, we have

\a\<N

where |$N(£)| < c(l + 1̂ 1)̂ . This shows, in view of the inversion formula

(2.1) f(x) = an)-"'2 f J ' U ^
that / can be written as

where / „ ( £ ) = <j>N
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Finally, it is easy to prove the equivalence between Theorem 1.3 (case ab > 1/4)
and Theorem 1.1 (case p — 2,q = oo). Assuming Theorem 1.1, consider Theorem 1.3
with ab > 1/4. Choose a' < a, but satisfying a'b > 1/4 and consider f<f>a..
Expanding the Gaussian, we have

L \f(x)<j>Ax)\2.dx
R R = U

3 / \f(x)\2x^dx\{2a')k.

Under the hypothesis on ||3°/||2, we get

—I < 00.

Hence we can apply Theorem 1.1 to conclude that / = 0.
The above calculation shows that /</>"' e L2 implies the estimates

for every a G N", and therefore Theorem 1.3 implies Theorem 1.1 (p = 2, q = oo).
We also have the following implication: Theorem 2.2 implies Theorem 1.1 (p = 2,

q = oo). In view of

(2.2) aa/(£) = (27r)-"/2(-O|a| [ e-ix^f(x)xadx,

and by the Cauchy-Schwarz inequality, the assumption f<p~x e L2 gives

|3a/(£) |2 < C\\f<j>-aX\\xa4>a\\\ < Ca\(2ayM.

Hence the hypothesis of Theorem 2.2 is satisfied. •

3. An uncertainty principle for operators

In this section we prove Theorem 1.4 and Theorem 1.5. In order to prove these
results we need to use several properties of the Weyl transform and special Hermite
functions. We recall the relevant results, referring to [13, 11] for details.

The Weyl transform is closely related to the Fourier transform on the Heisenberg
group Hn. Let nk be the Schrodinger representations on H" with parameter A e R\0.
Explicitly nk(z, t) : L2(K") -* L2(R") is the unitary operator given by

(3.1) nk(z, r)0(?) = e'V^+^/2)</>(£ + y),
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where <p e L2(l"), £ € K" and z = (x + iy). We define nk(z) = nk(z, 0), so that
nk(z,t) = eik'nk(z). For / e L^C), its Weyl transform Wk(f) is the bounded
operator on L2(R") given by

-I,(3-2) Wk(f)4>= / f{z)ndz)<pdz.

Je-

ll is clear that \\Wk(f)\\ < | | / | | , . For / e Z,1 n L2(C), Wx(/) is Hilbert-Schmidt

and we have the Plancherel theorem

(3-3) \\Wdf)\\2
HS = Qity\k\- f \f(z)\2dz.

Jc

Thus Wx is an isometric isomorphism between L2{V) and y2- For / 6 Ll(Hn), set

f(z)= f eik'f(z,t)dt
J-oo

to be the inverse Fourier transform of / in the /-variable. Then from the definition
of /(A) it follows that /(A.) = Wk(f

x). For X = 1, we define W(z) = nx(z) and

Given f e Ll D L2(C"), we define the fbMner-Wey/ transform of / as the operator
valued function / (« , u) on K2" given by

(3.4) / (« , u) = W(M + iu)W(/)W(ii + iv)*.

As W(z) is a projective representation of C , it is easily seen that

(3.5) f(u, v) = I ei{xv-yu)f{x + iy)W(x + iy)dxdy.

A simple calculation, using the definition, shows that SjW(f) = W(Mjf) and
SjW(f) = W(Mjf), where Mjf(z) = Zjf(z) and Mjf(z) = Zjf{z). By itera-
tion we get 8aW(f) = W(zaf) and 8pW(f) = W(zpf). Taking derivatives in u, v
and using these relations, we get

8)'(8 - «)" W(/)W(« + iv)*.

This identity shows that ||3u
a9f/(«, u)||2s < C(a + P)laM+w whenever we have

P°^W( / ) | | 2
S < C(a + ^)!a|a|+l^1. The special Hermite functions <J>MU are defined

as follows. Let <J>M(;c), x 6 K" be the Hermite functions on K". Then we define
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These functions form an orthonormal basis for L2(C") and they are expressible in
terms of Laguerre functions. For our purposes, we only require the formula

/ 1/2

(3.6) /2 ( ^ J
1 \ 1/2 /

We refer to [11] for these and more on special Hermite functions.
With these preparations we embark on a proof of Theorem 1.4. For T e y2, we

define f ( u , v) = W(u + i v ) T W ( u + iv)*, s o tha t f ( u , v) = / ( « , v ) i f T = W(f).
Let F be the function on K2" defined by

(3.7) F(ii,w)

We claim that F{u, v) satisfies the following two properties:

(i) F(u, v) extends to C2" as an entire function, which satisfies the estimate
|F(?)| < Ceai|Imf|2 for some a, < (1 - e-4h)/2.

(ii) F(u, v) < Ce-«-"4t>(i"i2+""1)/2.

Assuming this claim for a moment, we appeal to the following lemma.

LEMMA 3.1. Let F'(£) be an entire function on C that satisfies | F(f) | < Ceal Im<|2,
? € C " and |F(£)| < C(l + |^|2)me-w|2, ^ € R". TAe« F = 0

The lemma shows that F = 0 whenever at < (1 — e~4b)/2. Since a < 2tanh2&
we have coth2b < 2/a and so we can choose b\ and b2 such that coth2fo < 4b{ <
4b2 < 2/a. This gives b2 < I/2a and 1 + 4b{ > 1 + coth2b = 2/(1 - e"4*) or
2/(1 + 4bi) < (1 - e"4*). In our claim we can take a, = 1/(1 + 4b,) so that F = 0.

Let 5 = T*T. Then it follows that S(w, v) = f(«, u)*f (M, U). If 5 = W(/),
/ e L2(C"), then we have

(3.8) F(u, v) = (W(u + iv)W(f)W(u + iv)*d>0, 4>0)

= f ei(xv-yu)f{x,y)e-^+^)l'dxdy.

Hence F(u, v) = 0 implies / (x , y) = 0, proving the theorem as 5 = T*T = W(f) = 0.
It remains to prove the claim with ax = 1/(1 + 4b\), where b\ is chosen as above.

As we indicated earlier, the estimates on i5a<5̂ S give the estimates

for all a, p e N" and hence \\da
utfF{u, v)\\\ < C(a + /?)!a|a|+l/i| for all a, p e N"

Since 5 = W(f), using the Plancherel theorem we have the estimates

\xayfif(x, y)\2 dx dy < C(a + P)\a{M+m.
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We claim that /Ri, \f(x, ;y)| VM | x | 2 + w 2 ) dxdy < oo for any b2 < l/2a. To see this
consider the series

k(\x\27 7 / \f(x,y)\2(2b2)
k(\x

which converges as long as b2 < I/2a as in Section 2.
Now consider F(u,v) given by

F(u,v)=

By Holder's inequality

(u, v)\2 < C

which gives the estimate 13" 3fF(M, v)\2 < C(a+py.(2(b2 + \/4))~w+m. Appealing
to Lemma 2.4 we see that F(u,v) extends to an entire function of type a2 where
a2 = 1/(1 + 4*2). Since a2 < au we get |F(£)| < Ce"'™2 which proves claim (i).

The second claim is proved using the bound T*T < Ce~2bH. We have

F(u, v) = (W(u + iv)T*TW(u + iv)*<t>0, *o)

< C (W(u

We now expand W(u + iv)*<&0 = W(u — iv)$0 in terms of <J>M. This yields

W(u + iw)**0 = (2n)n/2

Since e~2bH<bi, = e~2*(2|Ml+n)ci>M, we have, using Parseval's formula for Hermite
expansions, F(u, v) < C ^ e~2*(2|Ml+n)|<J>0,M(M—iu)|2. Now using the explicit formula
for 4>o,̂  we get

F(u,v)<C. . ^

which gives F(u, v) < Ce-(l-e~ib)iM2+Ml)/2 as desired. This completes the proof of
Theorem 1.4. •

Let / be a function in L2(C) that is invariant under the action on T". Then / is
calledpolyradial and its expansion is given by f(z) = X^( / , ^^^^(z)- Let d be
a function on M. For each j e N, we define the difference operators At and AJ by
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For multi-indices a, ft e N, we define

A" = (At)0" (A+r • • • (An
+r, At = (Apft (A J)A • • • (AJ)*.

With these notations we prove the following corollary of Theorem 1.4, which can be
considered as the Cowling-Price theorem for the Laguerre expansion of polyradial
functions.

COROLLARY 3.2. Let f be a polyradial function which is in L2(C"), C(fi) =

(/, ^m)andd(n) = |C(/x)|2, /x e N". IfC(n) satisfy the following conditions:

(i) \C(ji)\ <

(ii)

where a, b > 0, then / = 0 whenever a < 2 tanh 2b.

PROOF. Since / is polyradial, W(f)<f> = £ M ( / , * w ) ( 0 , <I>M)tI>M. Using the for-
mulae

it is easy to see that

Then, using the above conditions, we get

W(f)*W(f) < Ce-2"", \\SaSfi(W(f)*W(f)) fHS < C(a + P)

So by Theorem 1.4, W(f) = 0 for a < 2 tanh 2b and hence / = 0. •

4. Cowling-Price theorem for Heisenberg groups

In this section we prove Theorem 1.2, which is an analogue of the Cowling-Price
theorem for the Heisenberg group H". Before going to the proof of Theorem 1.2, let
us prove the following theorem which can be considered as the Cowling-Price theorem
for Weyl transforms. Theorem 1.5 will be proved as a special case A. = 1.

THEOREM 4.1. Let feaMl e Lp(!C")andWk(f)e
bHM e yq, where 1 < p,q < oo.

Then / = 0 almost everywhere whenever (a tanhfeX)/A. > 1/4 and min(p, q) < oo.
If p = q = oo, then f = 0 for (atanhbk)/k > 1/4 and f(z) = Ce~a^ for
(atarihbk)/k = 1/4.
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PROOF. Let T" denote the subgroup of the unitary group U (n) consisting of diagonal
matrices. Then each element of T" can be written in the form ew = (e'e',..., eWn)
so that T" can be identified with the n-torus. The action of the n-torus on C is given
by e'9.z = (e'e'zi,eWlZ2, • • •, eWnzn). Let m be an n-tuple of integers. We say g is
m-homogeneous if g(e'9.z) — e'meg(z) for all 9. It is easy to see that when g is m-
homogeneous and h is fc-homogeneous, then (g, h) = 0 unless m = k. Since fe"M

is in Lp(C), it follows that fmea^ e Lp(€n), where fm(z) = /T, f {eiB.z)e~imB dB.
Hence

Wk(fm)= I f f(eie.z)7vx(z)e-imededz

= f f f(ew.z)nx(e-ie.z)e-imededz

= [ Meywk(f)ixk(O)e-ime do,

where fj^xW) is a unitary operator on L2(K") such that

We refer to [13] for several properties of fi>,(9). Using the above expression for

Wk(fJ, we getWk(fJ, we get

< f

Now E% = span{<!>^ : \a\ = k] is invariant under the action of iik(9). Therefore,

for all 9 € T". As ̂ (9) is a unitary operator,

for all 9 e T". Since every member of yq is bounded and Wx{f)ebHm e yq, there
exists C > 0 such that || Wx(/)<t>^||2 < Ce-fc(2|o|+n)W for all a e N". Now using these
estimates on Wx(f) and applying the Cauchy-Schwarz inequality we get
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for all 4>£ with \a\ = k. So, for all a with |a| = k,

b(2k+n)M

<Cnf\ ((2a,-
i=i

Let J ^ / stand for the symplectic Fourier transform of a function / in C" defined by

/
c

&x is related to the ordinary Fourier transform by &\f(z) = f(—ikz/2). As fm is
m-homogeneous and 4>a/j is (/J — a)-homogeneous expanding fm, we get

fm(z) =

A s ^ < I ) X — f—lV m | <I) x

For a proof of this we refer to [ 13]. The functions 4>̂  a+m are expressible as products of
one-dimensional Laguerre functions, and so without loss of generality we can assume
that n = 1 and m is an integer. Explicit formula for 0>k

 k+m is given as follows

k \^tk,k+m(Vkz) for X > 0,
k'k+miZ) " I | A | ' / 2 O ( ^ X U ) for X < 0,

where

and </>" (z) are the Laguerre functions on C" defined by
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Therefore,

* = 0

oo

for some positive integer / > 0 (see [15, page 93]).
Using the relation &\fm{z) = fm(-ikz/2), we have

\fm(z)\ < C,

So by the Cowling-Price theorem for Fourier transforms we conclude the following:

Case 1. If p < oo, q < oo, then for (a tanh fcA)/A. > 1/4, /m = 0 for all w and hence
/ = 0 almost everywhere.

Case 2. If p = oo, q < oo, then for (atanhbk)/k > 1/4, /m = 0 and for
(atznhbk)/X = 1/4, /m(z) = Cme~fl|z|2 for all m. Since /m is m-homogeneous,
Cm = 0, except m = 0 and hence /(z) = /0(z) = Ce'ml which yields WU/) =
Qe-bHm However, almost everywhere, this is not compatible with the condition
Wk(f)e

bHiX) € yq and hence / = 0.

Case 3. If p = q — oo, then fm = 0 for all m whenever (a tanhfcA)/X > 1/4, and

for (a tanh bk)/k = 1/4, arguing as before, /(z) = /0(z) = Ce"o|z|2. D

The special Hermite operator Lx is defined by the relation

V* = eik'Lxf(z),
where .£? is the sublaplacian on the Heisenberg group. This operator plays an important
role in harmonic analysis and we refer to [15, 11] for details.

COROLLARY 4.2. If f(qx
a)~

x e L'(C") a«rf Wx(/)e*W(X) e ^ , 1 < p,q < oo,
w/iere ̂  is the heat kernel corresponding to the special Hermite operator, then / = 0
almost everywhere whenever a < b and min(/>, q) <oo. If p = q = oo, f/ien / = 0
fora <b and /(z) = C(A)?a

x(z)/or a = 6.

PROOF. The explicit formula for the heat kernel q\ corresponding to the special
Hermite operator is qk

a(z) = (47r)-"(A/siruiXa)"e-*(cothaX)|z|2/4. Since a < b and
tanh(-) is an increasing function, tanha|X| < tanhZ>|X|. So we get the desired result
applying Theorem 4.1. •

https://doi.org/10.1017/S1446788700017444 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017444


26 S. Parui and S. Thangavelu [16]

To prove Theorem 1.2, let g(z, t) = q~l(z, t)f(z, t). Then g e Lp(Hn). Using
the estimate \qa(z, t)\ < Ca~"~le~A(Ml+m/a for some C, A > 0 and the condition
g e LP(H"), it is easy to see that

J — OO

iU/x(z) = / eiUqa{z,t)g{z,t)dt
J — OO

can be extended as a holomorphic function in the strip |3A.| < A /a of the complex
plane.
For p = oo,

\fHz)\ < \\g(z, Olloc r \q(z,t)\dt < \\g(z, Ollooe"1^*1.

For 1 < /? < 2,

Or00 , \1/p (r°° \

\qa(z,O\p dt) / \g{z,t)\pdt
) \J-OO J

Of°

Up

( P" \ '/P / /-00 \ 1/P

<(4TT)-

0/-O

When2 < p < oo, 1 < p' < 2, we write l/p' = v / l+( l — v)/2forsomeO < v < 1.
Since \\qa(z, -)lli < e-1/4fl|z|2 and ||^a(z, -)||2 < e"'^|z |2, applying Holder's inequality
with the pair of conjugate exponents l/(vp') and 2/(1 — v)p', we get

00 \qa{.Z,t)\"'dt = r \qa(z,t)r'\qa(z,t)\(1-v)p'dt
—OO J— 00

which gives \\qa(-, t)\\p, < e~Ml/4a. Therefore, fk
e^'Aa e LP(C) for 1 < p < oo.

Also we have that Wx(/
x)efrW(A-) = f(k)ebH(X) is a bounded operator on L2(W) for

every A. 6 K \ 0.
Since a < b, we can choose 5 > 0 such that a(ebS + e~M) < 26. Now, for

0 < k < 8,

e e 2bk 2bk
tanhiA. = — — > — — > — — > aX.

bk _|_ g—bX gbk _i_ g—bX gbS i g—bS
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Using Theorem 4.1, we conclude that fk = 0 for 0 < X < S. Hence fk = 0 for all A.
as fk can be extended to a holomorphic function in the strip |3A| < A/a. So / = 0
almost everywhere.

REMARK 4.3. We can assume f(X)ebH(k) e yq, 1 < q < oo in Theorem 1.2 as
every member in yq is also a bounded operator.
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