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Abstract

How do people make decisions between an immediate but small reward and a delayed but large one? The outcome of such
decisions indicates that people discount rewards by their delay and hence these outcomes are well described by discounting
functions. However, to understand irregular decisions and dysfunctional behavior one needs models which describe how the
process of making the decision unfolds dynamically over time: how do we reach a decision and how do sequential decisions
influence one another? Here, we present an attractor model that integrates into and extends discounting functions through
a description of the dynamics leading to a final choice outcome within a trial and across trials. To validate this model, we
derive qualitative predictions for the intra-trial dynamics of single decisions and for the inter-trial dynamics of sequences
of decisions that are unique to this type of model. We test these predictions in four experiments based on a dynamic delay
discounting computer game where we study the intra-trial dynamics of single decisions via mouse tracking and the inter-
trial dynamics of sequences of decisions via sequentially manipulated options. We discuss how integrating decision process
dynamics within and across trials can increase our understanding of the processes underlying delay discounting decisions and,
hence, complement our knowledge about decision outcomes.

Keywords: decision making, delay discounting, process dynamics, attractor dynamics, mouse tracking, hysteresis, neural
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1 Introduction

Many everyday choices involve options that pose a conflict
between immediate, but small gains, and delayed, but larger
or more beneficial gains. This conflict occurs on many time
scales. For example, you might wonder whether to enjoy
spending your money now or saving it for a pension. Or you
might be seduced to take the hearty burger — which is imme-
diately very tasty - instead of the light salad — which might
be better for your figure in the long-term. In such intertem-
poral choices (for a review, see Frederick, Loewenstein &
O’Donoghue, 2002), humans discount the offered gain by
the delay of delivery. This delay discounting is well de-
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scribed by utility discounting models which assume that the
greater the delay in delivery of a reward, the more the utility
of a reward is discounted. Hence, these discounting models
represent the subjective value of a reward as a function of its
delay (see Doyle, 2013 for an overview). While these mod-
els offer a good description of the average outcome of the
decision process — the final choice — they mostly leave open
how the decision process itself unfolds in time. Dissecting
this process, however, is necessary in order to fully under-
stand the way decisions are made as well as the sources of
failures and deviations from the average discounting model
(Lempert & Phelps, 2016). To fill this gap, recent devel-
opments aim to uncover the process dynamics leading to a
final decision in delay discounting (Dai & Busemeyer, 2014;
Rodriguez, Turner & McClure, 2014).

Here, we will combine the static description of decisions
offered by delay discounting models with the process dy-
namics as described by attractor models. Such attractor
models have been used successfully to study perceptual de-
cisions (see Tuller, Case, Ding & Kelso, 1994 for the model
also sketched out here), and recently also higher level de-
cisions, e.g., risky decisions (van Rooij, Favela, Malone
& Richardson, 2013) or the development of preferences
(O’Hora, Dale, Piiroinen & Connolly, 2013). Applying an
attractor model to delay discounting decisions enriches the
mere uncovering of discounting curves by adding a level of
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description for the processes leading to a final choice and,
thus, allowing for intuitive, heuristic theorizing about this
process and possible failures resulting from it. With its sim-
ple mathematics and metaphorical heuristic power, an at-
tractor model offers a bridge between the simple yet static
models of intertemporal decisions incorporated by discount-
ing curves and other more dynamic yet also more complex
models of decision processes, e.g., neural network models.
In the remainder of this paper, we will first derive our attrac-
tor model of decision making in delay discounting. Based
on this model, we will then derive qualitative predictions
about the dynamics of the decision process within single
choices as well as across sequences of choices, and about
the resulting deviations in the final decision. Finally, we
will test these predictions with a newly developed discount-
ing paradigm in four behavioral experiments.

1.1 Deriving an attractor model of decision
making in delay discounting

Discounting models are based on the common ground of
a psychometric perspective (Takahashi et al., 2008) that
follows psychophysical reasoning (Fechner, 1860): Their
common aim is to derive the best function that describes
choice outcomes. Such a function provides a clear decision
criterion determining an individual’s choice of the sooner-
smaller (SS) option over the later-larger (LL) option and
vice versa for a given combination of times and values.
The function does this by specifying indifference points on
a graph of subjective value as a function of delay, that is,
points at which the LL option has the same subjective value
as the SS option. A decision involving combinations of
values and delays that lie far away from these indifference
points should be relatively easy (i.e., induce low levels of
decision conflict) because the two options are very different
with regard to their subjective value. In contrast, a decision
involving combinations of values and delays that lie close
to indifference will be relatively difficult (i.e., induce more
conflict).

In this regard, high-conflict decisions are comparable to
perceptual decisions when observing ambiguous figures like
the Necker Cube. The Necker Cube offers two equal per-
ceptual perspectives — an upwards and a downwards one —
between which an observer’s perception alternates contin-
uously. Similar to the visual system choosing between the
two possible perspectives on the ambiguous Necker Cube,
an intertemporal decision can be interpreted as an ambigu-
ous state where the cognitive system chooses one of two
conflicting delayed options. In the perceptual decision mak-
ing literature, attractor models have proven themselves as a
useful tool to understand the processes underlying choice
variability in the perception of ambiguous stimuli (Hock,
Schoner & Giese, 2003; Noest, Ee, Nijs & Wezel, 2007).
This is because attractor models provide a high-level, ab-
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stract description of the otherwise complex, non-linear dy-
namics lying at the core of the different classes of more
complex models (Onnis & Spivey, 2012) that have been
used in the past to study ambiguous perception such interac-
tive activation and competition networks (Rumelhart & Mc-
Clelland, 1986) or parallel constraint satisfaction networks
(Feldman, 1981). Because attractor models provide a sim-
ple yet elegant mathematical description of the dynamics of
a perceptual decision process, they are also well-suited to
reason about and to model value-based decision processes.
Value-based decisions have also been studied based on net-
work models, e.g., parallel constraint satisfaction networks
(Glockner & Betsch, 2008; Glockner, Hilbig & Jekel, 2014),
suggesting that the attractor model could again provide a
parsimonious high-level description of the underlying deci-
sion processes. In order to test this assumption for delay
discounting decisions, in the following we will first apply
such an attractor model' (Tuller et al., 1994) to delay dis-
counting from which we will then derive and test empirical
hypotheses about observable behavior.

In such an attractor model, the two options are repre-
sented by two attractors, that is, two valleys in a potential-
or energy-landscape (Figure 1). The deeper a point in such
an energy landscape, the more stable is the respective poten-
tial state of the system and the higher is the certainty that the
system makes its decision. In comparison to the stable end-
states representing the two options, the starting state of the
system is unstable and lies in the middle between the two
valleys. In this indecisive state, no decision has been made
by the system and both choices are still possible. To make
this abstract description more concrete, we can apply this
attractor-model to the activation of neural representations of
the SS and the LL option. The two attractor-states reflect the
exclusive activation of the SS or the LL representation, indi-
cating complete certainty of the system that this option is the
one to choose. The states in between these stable attractors,
e.g., the start state, reflect varying amounts of concurrent ac-
tivation in which the system has not settled into a decision
yet (see the appendix for a formal implementation of such a
neural system).

In an attractor-model, the depth of the attractors and
hence the stability of its end-states varies with the properties
of the system’s environment. In our case, the crucial envi-
ronmental properties are the value and the delay of the two
options which — in combination — determine each option’s

IThe model shown in the figures of the introduction is based on the
work of Tuller and colleagues (1994). The potential well is defined as
V(z) = kx — % + %, with V representing the energy function of the
system, x representing the current state of the system and k representing
the control parameter, namely relative attractiveness.

The underlying differential equation can be derived as d = 7‘“/(*)

To avoid confusion with the k-value derived from hyperbolical models
in intertemporal choice studies, we will call the control parameter k of the
potential well model c in the remainder of the article.
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Figure 1: Sketch of the attractor model for decisions with two possible choices representing a sooner smaller (SS) and
a later larger (LL) option. The potential-landscape defines a one-dimensional state-space of the system representing all
potential states of decisiveness for/against a certain option. The depth of the potential wells (as shown in the five insets
on the left) defines the stability/attractiveness of each of these states. The relative depth of the well is represented by the
control parameter c. This parameter depends on the relative difference in subjective value (attractiveness) of the options
for a subject and hence configures the system for each potential combination of SS and LL options (as indicated by the
continuous variation of ¢ on the right): An increase in attractiveness for the SS option (e.g., because the SS option’s
value becomes higher while both options’ delays are held constant) results in a negative control parameter which, in turn,
increases the depth of the attractor representing the SS option. In contrast, an increase in attractiveness for the LL option
(e.g., because the LL option’s delay is reduced while both option’s values are held constant) results in a positive control
parameter which, in turn, increases the depth for the attractor representing the LL option. Hence, the control parameter c
is primarily dependent on the values and delays of the presented options, but also on a subject’s tendency to discount, as
indicated in Figure 2. Within this potential landscape, the current system state (marked by a red dot) tends to move to the
bottom of the potential wells and travels through all intermediate states on its way to a stable final choice. The deeper a
potential well of an option (compared to the alternative), the more probable, direct, and quicker is the movement of the
current system state into this potential well.
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relative attractiveness?, that is, its subjective (discounted)
value. The difference in relative attractiveness between the
SS and LL option (which elegantly combines all choice-
relevant environmental information about the options’ val-
ues and delays) is represented by the control parameter,
which we will call c. In the example of neural represen-
tations for the SS and the LL option, c reflects the relative
difference in the input to the neural representations. Accord-
ingly, the special case where ¢ = 0 (Figure 1 middle panel)

2Note that the attractor model stays indifferent to the way relative attrac-
tiveness is derived from the presented properties of both options. Many ex-
isting discounting models implicitly assume an alternative-wise approach,
e.g., the original discounting model (Samuelson, 1937) and the hyperbolic
model (Mazur, 1987), while more recent approaches consider attribute-
wise comparisons (Scholten & Read, 2010).
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represents a decision where both options receive an identical
input and are thus equally attractive. In such high conflict
situations, a neutral starting state would keep the system in-
different until slight differences in input (or random noise)
tips the system to one side or the other, resulting in a more
or less arbitrary decision. For ¢ < 0, the SS option is more
attractive, for example, because the SS option’s reward is
almost as large as the LL option’s (Figure 1, left panel). In
contrast, for ¢ > 0, the LL option is more attractive, for
example, because the LL option’s delay is almost as low as
the SS option’s (Figure 1, right panel). Low conflict deci-
sion situations with large differences in relative attractive-
ness and values of ¢ < 0 and ¢ > 0 result in unambiguous
decision situations with no decision conflict at all.

The connecting element between our attractor model and
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Figure 2: Illustrative delay discounting curve (in blue) and the respective underlying attractor layouts (grey-scaled with
darker shades of grey representing deeper attractors) of subjects in a previous experiment by Scherbaum, Dshemuchadse,
Leiberg & Goschke (2013). Blue circles mark indifference points, that is, the subjective value of an immediate SS option
that has the same subjective value as an LL option that is delayed by a given interval. (Only the time intervals 1, 4, and 7
are depicted here.) For a time interval of 4, for example, the indifference point indicates that an SS option has to yield a
valuegs = 0.6 x valuery in order to be (subjectively) equally attractive as the discounted LL option. The range of attractor
configurations defined by the control parameter c (the grey scaled insets, see also Figure 1) is aligned so that the attractor
layout for two equally attractive options (control parameter ¢ = 0) is located at the indifference point. For combinations of
options lying above the indifference point (e.g., interval 4 and valuegs = 0.8 x valuey | ,) c is smaller than O and the SS option
is more attractive than the LL option. For combinations of options below the indifference point (e.g., interval 4 and valuesg

= 0.4 x valuey 1 ,) cis larger than 0 and the SS option is less attractive than the LL option.
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discounting curves is the attractor layout where ¢ = 0 (Fig-
ure 2). At this point, both the attractors representing the
SS and the LL option are equally deep and, hence, equally
attractive — a state to which we refer as the indifference
point (Figures 1 and 2). By determining the precise loca-
tion of these indifference points for the different attractor
landscapes resulting from changes in the environment (such
as the time interval between the two options in an intertem-
poral decision, see Figure 2), we arrive at the discounting
curve over all delays.

Importantly, indifference points vary between individuals
which means that people differ with regard to how much
they discount a given value due to the delay of its deliv-
ery. These individual differences are also reflected in the
attractor model. The precise configuration of the attrac-
tor landscape for a given combination of options depends
on a person’s individual level of discounting, because this
level of discounting defines the subjective values of the op-
tions. Hence, the attractor model is aligned at each interval
to a subject’s individual discounting curve and in that way
the control parameter c integrates the properties of the envi-
ronment (the options’ relative values) and individual differ-
ences (the subjective value of the options’ discounted val-
ues as determined by the discounting curve). The attractor
model thus integrates the amount of discounting as indicated
by discounting functions and the overall process description
of a choice, as indicated by a given attractor configuration
which defines how the system’s current state develops over
time until a final choice is made.
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The temporal extension that the attractor model offers
also provides a means to study the temporal dynamics of
intertemporal decisions on two time-scales. One, already
mentioned, is an intra-trial time-scale that focuses on how
a final choice comes about over the course of one decision.
The other is the inter-trial time-scale that focuses on how
consecutive decisions may influence one another. Classic
discounting-curves are blind to both kinds of time-scales.
The former extension that pertains to the intra-trial dynam-
ics of decision making focuses on how the system state grad-
ually moves into one of the two attractors over the course of
a trial until it makes a final choice.

However, this more process-oriented perspective on in-
tertemporal decision making is not a new one. For example,
sequential sampling models (Dai & Busemeyer, 2014; Ro-
driguez et al., 2014) also describe how decisions come about
by describing how information about the offered options
accumulates gradually until one of them hits a threshold,
thus, eliciting a decision. The major step forward offered
by the attractor model over sequential sampling models is
the extension to the inter-trial time-scale: While sequential
sampling models focus on intra-trial dynamics exclusively,
the attractor model makes strong predictions about the inter-
trials dynamics occurring over the course of multiple deci-
sions. It inherently assumes that the attractors are formed
by the offered options and, hence, these attractors are not
present between trials. This leads the system state to stay in
the area where it ended up previously — in the vicinity of the
vanished attractor representing the recent choice — and to re-
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Figure 3: Inter-trial dynamics in the attractor model. Choosing SS in a first trial leads to a bias in a second trial due to slow

relaxation of the system state during the inter trial interval.
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lax only slowly to the neutral start state under no input. For
example, if the model choses the SS option in a first deci-
sion trial, it would remain in the vicinity of the SS attractor
in the inter trial interval. In a second decision trial, it would
hence start the decision with a bias to the SS decision, even
if this trial comprises of a more attractive LL option (Figure
3).

In sum, the attractor model implies that the previous sys-
tem state automatically carries over to the next trial, thus
making the system’s behavior in a given trial inherently de-
pendent on the history of its previous decisions (Scherbaum,
Dshemuchadse & Kalis, 2008; Townsend & Busemeyer,
1989).

In the following, we will use the attractor model to de-
rive predictions about intra-trial and inter-trial dynamics in
real decision-makers. The simplicity of the model allows us
to derive these predictions in a purely qualitative, argumen-
tative manner. However, Appendix I shows that the exact
same hypotheses can be derived by means of computational
simulation based on a competitive neural-network.

1.2 Predictions from the attractor model

The intra-trial process dynamics focus on the movement of
the system state into the attractor of the final choice. Here,
we derive two predictions about the decision process. The
first prediction concerns decisions in which both options are
equally attractive (i.e., high conflict decisions) compared to
decisions in which one option is clearly more attractive than
the other one (i.e., low conflict decisions): For high conflict
decisions, the system should settle only slowly into one of
the two equally deep attractors compared to a quicker move-
ment into the deeper attractor for low conflict decisions.
The second prediction concerns only low conflict deci-
sions: When the system chooses the more attractive option
— the deeper attractor — it should settle into this attractor
quickly, compared to choosing the less attractive option.
Note that choosing the less attractive option is possible if
the system already is in the vicinity of this option’s attrac-
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tor. This could happen because of previous choices of this
option leading the system to stay within the vicinity of an
option’s attractor (compare Figure 3). As explained above,
this is a typical phenomenon for inter-trial dynamics as ex-
plained in the following.

The inter-trial process dynamics focus on the stability of
choice patterns across consecutive decisions, and hence, on
staying within the vicinity of one attractor or switching from
one attractor to the other one as induced by changes of at-
tractiveness and stability. Here, we derive a third prediction
for decisions with either one or two potentially attractive op-
tions. For no conflict decisions with only one attractive op-
tion we expect the system to always choose the same option,
irrespective of previous decisions. In contrast, for high con-
flict decisions with two potentially attractive, but not neces-
sarily equal options we expect the system’s choice to depend
not only on the attractiveness of the currently presented op-
tions but also on contextual factors, that is, the system’s his-
tory of previous choices — a phenomenon that is also known
as path-dependence or order-effects.

For example, a choice of the SS option in one trial should
bias the starting state of the system for the subsequent trial
which can result in a renewed choice of the SS option — even
when its attractiveness has been slightly reduced (Noest et
al., 2007). In its most extreme form this phenomenon is also
known as hysteresis (Tuller et al., 1994): If a sequence of
choices starts with a very attractive SS option, this option
will be chosen initially; decreasing the attractiveness of the
SS option systematically (decreasing c) will only then lead
to a switch to the LL option when the SS option’s attractive-
ness approaches zero. This is because the system state stays
in the vicinity of the initially chosen SS option and leaves
this attractor only when it has vanished completely (Figure
4, blue arrows). In contrast, if a sequence of choices starts
with an attractive LL option and then the attractiveness of
the LL option is systematically decreased (increasing c), the
switch to the SS option happens only after the LL option’s
attractiveness has reached (almost) zero, because the system
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Figure 4: Changes in the attractor model as a function of
the control parameter c. Brightness reflects the attractor lay-
out as depicted in Figure 1 (black = deep attractor). Arrows
mark the final choice of the system; arrows’ directions indi-
cate the direction of change of c from two different starting
states. If a sequence of choices starts with an attractive SS
option (blue), the system will stay with the SS option despite
changes in ¢ making the SS option less and less attractive
from trial to trial. Only when the SS option becomes very
unattractive, the system switches to choose the LL option.
If the sequence starts with an attractive LL option (red), the
system stays with the LL option despite the changes in c. In
the area near ¢ = 0 (the indifference point with two equally
stable attractors), the system has two stable states: In this
range, whether the system chooses the SS or the LL option
depends on the parameter’s history. Hence, the switch point
between the two states depends on the state the system ini-
tially settled into. At ¢ < 0 and ¢ > 0, the weaker attractor
completely loses stability and hence, only one stable state
exists and the system reliably chooses only one option.

Attractors at
indifference point

S0+
Control parameter ¢

SS LL

stays in the vicinity of the attractor of the LL option until
it vanishes completely (Figure 4, red arrows). Simply put,
this means that the outcome of a given choice depends not
only on the current properties of the options but also on the
history of previous choices.

If we find such predicted behavior in real decision mak-
ers, it will stress why it is important to extend discounting
functions with a compatible process account: While dis-
counting functions readily describe the average outcome of
multiple decision processes, they do not take the system’s
choice history into account and, hence, cannot predict such
a pattern (but see Scholten & Read, 2006, 2010). While
an attractor delay discounting model parallels discounting
functions in the way that it also defines a clear decision cri-
terion, namely, through the layout of the attractor, it extends
them through the idea that the system’s actual behavior is
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produced by the interaction of this attractor layout with the
current state (and, hence, history and potentially other in-
fluences) of the system which can potentially lead to final
choices that deviate from the discounting model. In the
following, we will test the attractor model and the predic-
tions for the process dynamics of intertemporal choice de-
rived from it empirically. Note that, while we applied a
metaphorical approach to derive our predictions in the pre-
vious paragraphs, Appendix I describes a formalized deriva-
tion of these predictions from a computational model.

1.3 A dynamic investigation of delay dis-
counting

To validate the predictions of the attractor model, we needed
a delay discounting setup that could provide us with mark-
ers for the expected phenomena. Concerning the predictions
on the intra-trial process dynamics, a fruitful approach to
study the temporal dynamics of decision processes behav-
iorally is mouse tracking (Scherbaum, Dshemuchadse, Fis-
cher & Goschke, 2010; Freeman, Ambady, Rule & John-
son, 2008; Dale, Kehoe & Spivey, 2007; Kieslich & Hilbig,
2014; Koop & Johnson, 2011). In this methodology, sub-
jects make binary choices by moving a computer mouse
into the left or right corner of the computer screen instead
of pressing left or right buttons. Importantly, the movement
trajectories recorded with this method not only provide the
final outcomes but also capture features of the decision pro-
cess. In particular, for several cognitive tasks (Scherbaum
et al., 2010; Song & Nakayama, 2009; Spivey, Grosjean
& Knoblich, 2005) as well as for a standard intertemporal
choice task (Dshemuchadse, Scherbaum & Goschke, 2012),
strong competition between alternative responses produces
less direct movement trajectories. Hence, regarding predic-
tion 1 we expect more direct movements to the final choice
in low conflict decisions and less direct movements to the
final choice in high conflict decisions. Regarding prediction
2, we expect choices of the attractive option to be more di-
rect than choices of the unattractive option.

Concerning the prediction of hysteresis for the inter-trial
process dynamics, standard intertemporal choice tasks (for
example, as used in Soman et al., 2005) pose a problem,
since the options’ values and times are presented verbally
and explicitly on a screen. This makes sequential manipu-
lation of values or times simply too obvious (as indicated
by the results of Robles & Vargas, 2008). Hence, for our
investigation we use a recently developed, non-verbal de-
lay discounting task (Scherbaum et al., 2013). In this task,
subjects collect coins of different sizes with an avatar which
they move on a checkered playing field by clicking with the
computer mouse (Figure 5). The playing field stayed con-
stant across trials — except the options which changed from
trial to trial — and the avatar started each trial from the posi-
tion of the previously chosen option. The goal was to collect
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Figure 5: The dynamic delay discounting paradigm. Sub-
jects moved an avatar across a playing field by clicking with
the mouse into horizontally and vertically adjacent move-
ment fields (white border). They had to collect rewards (red
border), with one reward being near but small (small coin)
and one reward being far but large (large coin). The re-
maining time (‘“Zeit”) within one block and the collected
credits (“Gewinn”) were presented next to the playing field.
Zoomed Inset: Mouse movements were measured from the
position of the avatar to the first click into a movement field.
Movement deviations in the direction of the unchosen option
were used as a measure of the attractor layout underlying the
decision.

as much reward as possible in the allotted amount of time.
In each trial of the task, subjects have to choose between
two reward options of different magnitude (small vs. large)
at different distances (near vs. far fields). So unlike standard
intertemporal choice tasks, this paradigm allows us to ob-
serve intra-trial dynamics through mouse movements (Ex-
periment 1) and investigate inter-trial effects of hysteresis
by manipulating (without any notification) the distance be-
tween the two options for sequences of trials (Experiments
2-4).

2 Experiment 1

Experiment 1 aims to validate the predictions for low vs.
high conflict trials and for attractive vs. unattractive choices.
By investigating these two predictions of intra-trial dynam-
ics, it offers a fine-grained validation of the model. For Ex-
periment 1, we report newly analyzed data from a study
using the dynamic delay discounting paradigm described
above (Scherbaum et al., 2013).
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2.1 Methods
2.1.1 Subjects

25 students (15 female, mean age = 23.04 years) of the Tech-
nische Universitit Dresden took part in the experiment. All
subjects had normal or corrected to normal vision. They
gave informed consent to the study and received a 3 € show-
up fee and the money they collected within the experiment.

2.1.2 Apparatus and stimuli

The experiment was presented on a 17-inch screen (1280
x 1024 pixels, 75 Hz). As presentation software, we used
Psychophysics Toolbox 3 (Brainard, 1997; Pelli, 1997) in
Matlab 2006b (the Mathworks Inc.), running on a Windows
XP SP2 personal computer. Responses were carried out by
moving a high precision computer mouse (Logitech Laser
Mouse USB). Mouse movement trajectories were sampled
with a frequency of 92 Hz. Recording started at presentation
of the choice options and lasted until the first click into a
movement field (see procedure).

Subjects’ moved an avatar on a playing field divided into
20 x 20 fields (Figure 5). To move the avatar, subjects
clicked with the mouse in one of four horizontally or verti-
cally adjacent movement fields, as signaled by a white bor-
der surrounding the fields. On each trial two reward options
were presented as coins on fields marked with a red border:
One reward was near but small, the other reward was far but
large. The two options’ positions were always chosen so
that the first move into one direction decreased the distance
to one option but increased the distance to the other option.
This way, the first move of the avatar already represented
a clear preliminary decision for one option and against the
other option.

For both options, the size of the coin represented the re-
ward value and the horizontal and vertical distance of the re-
ward field to the field of the avatar represented the distance
of the option. Reward values ranged from one to ten credits
and distance ranged from two to fifteen fields. For better
comprehensiveness in the context of intertemporal choice,
we maintain in the following the standard description of the
time dimension using “soon”, “late”, “delay”, and “inter-
val”, although in our scenario time delay is represented by
spatial distance.

Next to the playing field (Figure 5) subjects could see the
remaining time within one block and the collected credits in
Euro (1 credit = 1/10 € cent).

2.1.3 Procedure

Subjects’ task was to collect as much reward as possible
within the allotted time limit. In each trial, they had to
choose between two reward options (one soon but small,
one late but large; see design). They collected the selected
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reward by moving their avatar with the mouse across the
playing field. Moving over longer distances took more time,
and thus was more costly with respect to the limited time.

A trial started with an inter trial interval (ITI) of 1.3 sec-
onds. Within this interval, the mouse cursor was locked in
the center of the field containing the avatar. After the ITI,
the two options were presented. As soon as the two options
appeared, subjects could click on the adjacent movement
fields to move their avatar towards the chosen option. When
the avatar reached one option, both options disappeared, the
value of the selected option was shown to the subject, and
the next trial started.

The experiment consisted of three blocks, with one block
lasting eight minutes. This amount of time allowed subjects
to work through the complete design matrix of trials (see
design) at least one time. Between blocks, subjects were
informed about the credits collected and were instructed to
rest briefly before the self-paced start of the next block.

Before the start of the experimental blocks, subjects
worked through a test block of one minute to get used to
the virtual environment and handling of the mouse.

2.1.4 Design

Reward values ranged from one to ten credits, with the re-
ward values of the two options in each trial adding up to
eleven credits to keep the overall value of each trial constant
(smaller/larger reward pairs were: 1/10, 2/9, 3/8, 4/7, 5/6).
Distances ranged from one to fourteen fields with the nearer
option being at a distance (Dy) of 1, 3, or 7 fields and the ad-
ditional interval to the farer option (D, - Dy) being 1, 2, 4,
or 7 fields. Reward values, smaller distance, and interval to
the larger distance were varied orthogonally with a random
order of trials. Importantly, the reward/distance combina-
tions were chosen such that consistently choosing only one
option, either the SS or the LL option, yielded worse results
than a dynamic strategy that optimizes each choice by the
current options’ value/time ratio.

The combination of 5 value combinations, 3 distance of
the SS options and 4 intervals between the SS and the LL
option yielded a complete sequence of 60 trials. We gen-
erated 8 such sequences, with a randomized order of trials
within each sequence. This resulted in 480 trials that sub-
jects could potentially complete in the whole experiment.
From pretests, we knew that subjects would run into the time
limit of the experiment (3 blocks, 8 minutes each) before
completing all potential trials.

2.1.5 Data preprocessing

Choice categorization. To distinguish low conflict deci-
sions from high conflict decisions (prediction 1) we catego-
rized trials as low vs. high conflict trials in three steps. First,
we determined the indifference point for each interval, that
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is, the subjective (discounted) value of a delayed option that
is equivalent to the value of a (hypothetical) immediate op-
tion. As an estimate of the indifference point, we determined
the point of inflection of a logistic function fitted to the indi-
vidual choices (SS vs. LL) as a function of increasing value
differences (Ballard & Knutson, 2009; Dshemuchadse et al.,
2012). Second, we took these indifference points and calcu-
lated the distance in subjective value of each specific trial
to this indifference point — that is, the difference between
the indifference point and the small/large reward ratio of the
trial. We then categorized all trials by performing a median
split on their distance relative to the indifference point: trials
with a low distance to a given subject’s indifference points
were categorized as high conflict and trials with a large dis-
tance to a given subject’s indifference point were catego-
rized as low conflict (Robles & Vargas, 2008; Scherbaum
et al.,, 2013). Hence, high conflict trials overall yielded a
low distance to the indifference point (M = 0.14, SD = 0.01)
whereas low conflict trials overall yielded a high distance to
the indifference point (M = 0.47, SD = 0.02).

To distinguish choices of the attractive option from
choices of the unattractive option (prediction 2), we calcu-
lated the ratio of costs (invested time) and benefits (received
credits) for both alternatives in each trial, choosing the SS
or the LL option (Scherbaum et al., 2013). We inferred costs
from the number of fields necessary to reach the option and
from the movement-speed of the respective subject. If sub-
jects chose the option with the better benefit/cost ratio, we
defined that trial as attractive-chosen; if subjects chose the
option with the worse benefit/cost ratio, we defined that trial
as unattractive-chosen.’

Mouse movements. Subjects’ movements were recorded
from the center of the avatar’s current field until the click
into the respective movement field. For analysis we fol-
lowed the procedure of the original study (Scherbaum et al.,
2013): Trajectories were time-normalized in length to 33
time slices per trial and aligned to common starting and end
positions such that an ideal movement would be a straight
line and less direct movements would show a deflection of
the trajectory from this straight line into the direction of the
alternative option. With regard to statistical testing, this al-
lows to analyze the mean deflection — the area under the
curve — in a trial as a marker for less direct movements

3Costs for each option were operationalized as the time needed to reach
the option (and not as the number of fields) for two reasons. First, in the ex-
periment we limited the amount of time and not the number of movements.
Hence, to identify options as attractive with respect to the limited resource,
i.e., the time, we reasoned that the time to reach an option would be the
more appropriate operationalization. Second, using time as a measure of
costs associated with an option results in more attractive-chosen trials than
simply using the distance in fields. This indicates that subjects did indeed
optimize their behavior with regard to time and not with regard to distance
in the task.
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Figure 6: Results of Experiment 1. Mouse movements from the starting position (center of the position of the avatar) to the
position of the first click (in the first movement field). A straight line along the Y-axis would indicate a direct movement
while deviations to the right indicate a deflection of the movement to the unchosen alternative option and hence conflict in
the decision process. Shaded areas represent standard errors. Left: Movements for low vs. high conflict decisions. Right:
Movements for low conflict decisions in which the attractive option was chosen or the unattractive option was chosen.
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(Dshemuchadse et al., 2012; Scherbaum et al., 2010; Spivey
et al., 2005).

2.2 Results

On average, subjects completed 351 out of the possible 480
trials (SE = 7). Hence, subjects completed each of the 60
possible combinations of delays and values about 6 times.
In the following, we will present the results of the reanaly-
sis of existing data with a focus on the dynamic predictions
derived from the attractor model. Analyses on choice be-
havior and discounting functions can be found in the report
of the original analyses (Scherbaum et al., 2013).

The first prediction derived from the model was that high
conflict trials in which the two options are equally attractive
should show more heavily deflected movements than low
conflict trials in which one of the options is clearly more
attractive. Accordingly, a one-sided #-test on mean devia-
tion for low conflict vs. high conflict trials revealed the ex-
pected larger deviations for high conflict trials (M = 1.89 px,
SE = 0.22 px) compared to low conflict trials (M = 1.43 px,
SE =0.19 px), 1(24) = 2.05, p = 0.025, d = 0.41 see Figure
6, left).

The second prediction derived from our attractor model
of delay discounting was that, in low conflict trials in
which one of the options is clearly more attractive than
the other one, choosing the unattractive option should show
more heavily deflected movements than choosing the attrac-
tive option. Accordingly, a one-sided #-test on mean de-
viation for low conflict attractive-chosen vs. unattractive-
chosen trials revealed the expected larger deviations for
unattractive-chosen trials (M =2.75 px, SE = 0.45 px) com-
pared to attractive-chosen trials (M = 1.43 px, SE = 0.19
pX), t(24) = 3.27, p = 0.002, d = 0.65, see Figure 6, right).
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2.3 Discussion

In Experiment 1, we reanalyzed data from a previous study
(Scherbaum et al., 2013) to validate our predictions from the
attractor model of delay discounting. Low conflict choices
showed more direct movements than high conflict choices
and choices of the attractive option showed more direct
movements than choices of the unattractive option. This in-
dicates that for intra-trial processes, the attractor model cor-
rectly describes the process dynamics. The next two experi-
ments will focus on the inter-trial dynamics and explore the
prediction of hysteresis by systematically varying the rel-
ative attractiveness of the two options across trials, which
would provide further evidence for the validity of the model.

3 Experiment 2

Experiment 1 corroborated the predictions of the model for
intra-trial dynamics. This leaves untested the decisive exten-
sion to inter-trial dynamics, for which the model predicted
hysteresis. Experiment 2, will test this prediction by slowly
varying the interval between the SS and the LL option. If
hysteresis was present, this should lead to subject’s choices
showing stronger discounting behavior for sequences with
a decreasing delay to the LL option in comparison to those
with an ascending delay.

3.1 Methods
3.1.1 Subjects

20 students (11 female, mean age = 24.4 years) of the Tech-
nische Universitdt Dresden took part in the experiment. All
subjects had normal or corrected to normal vision. They
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gave informed consent to the study and received a 3 € show-
up fee and the money they collected within the experiment.

3.1.2 Apparatus, Stimuli and Procedure

The setup followed the setup of Experiment 1. Subjects’
task was again to collect as much reward as possible within
the allotted amount of time. In each trial, they had to choose
between two reward options

3.1.3 Design

To study choice sequences, we consecutively increased or
decreased the delay of the LL option to the avatar while
keeping all other factors constant within the sequence.
Hence, we orthogonally varied the difference in delay be-
tween the SS and the LL option (D, — Ds = 1 to 12 fields,
manipulated sequentially), the direction of these sequences
(direction = ascending or descending), and the delay to the
SS option (Dg =2 or 3 fields). This resulted in four possible
sequences (direction x Dg) of 12 trials (Dy). Orthogonally
to these combinations, we varied the value V of the options,
(Vs=1,2,3,4, and 5 credits; V.. =10, 9, 8, 7, and 6 credits),
following the original experiment (Scherbaum et al., 2013).
Hence, a set of trials consisting of all combinations included
5 (values) x 2 (SS delay) x 2 (sequence direction) x 12 (delay
difference) = 240 trials. We created 2 such sets, with each
set’s order of sequences being randomized individually, re-
sulting in 480 trials. Similar to the original experiment, sub-
jects did not finish all of these trials due to the time limit,
but worked on each sequence of trials at least once.

3.2 Results

On average, subjects completed 379 out of 480 possible tri-
als (79 %, SD = 11.4 %), with the SS option being chosen
in 443 % (SD = 13.6 %) of these trials. We hence suc-
cessfully acquired each complete combination of trials (240
trials) at least once in each subjects’ dataset. As the order of
sequences was randomized across subjects, repeated trials
from partially completed sequences were also included into
the analyses.

We checked for the effects of the sequence manipulation
by performing an ANOVA on discounting curves with the
factors interval and direction (ascending/descending; see
Figure 7, top right). As expected, we found a main ef-
fect of the factor interval (F(11,209) = 102.87, P < 0.001,
n?= 0.84), indicating discounting, a main effect for the fac-
tor direction (F(1,19) = 18.34, P < 0.001,772: 0.49), in-
dicating hysteresis, and an interaction interval x direction
(F(11,209) = 5.06, P < 0.001, n?= 0.21), indicating differ-
ent amounts of hysteresis for different intervals. In line with
the model’s predictions, we found hysteresis in responses
for intermediate intervals and intermediate value differences
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(Figure 7, left), with stronger hysteresis for shorter inter-
vals. Importantly, our data showed that hysteresis is a gen-
eral effect that is not only driven by a minority of extreme
subjects: When checking individual subjects for hysteresis
(Figure 7, bottom right) we found that 16 out of 20 sub-
jects showed the hysteresis effect (i.e., a hyperbolic k-value
that was lower for ascending sequences than for descending
sequences), while only 4 subjects showed no or a slightly
reversed effect.

3.3 Discussion

As predicted by the model, we found hysteresis in Experi-
ment 2: When the delay between the two options increased
from trial to trial, subjects stuck to their choice of the LL
option. In contrast, when the delay between the two options
decreased from trial to trial subjects stuck to their choice
of the SS option. Hence, in for intermediate intervals, the
choice depended not only on the current values and delays
of the SS and the LL option but also on the history of previ-
ous choices. This lead to a shift of the discounting curve in-
dicating less discounting for increasing intervals compared
to stronger discounting for decreasing intervals. Concern-
ing their choice behavior within a sequence, subjects perse-
verated in their choices: They tended to stick to the option
chosen at the beginning of a sequence and had difficulties to
release it even when its objective attractiveness decreased.
This rather unintuitive finding validates the attractor model,
but stands in stark contrast to psychometric models of de-
lay discounting which assume that a system’s decision in a
given moment is exclusively determined by the two options*
values and their delay. The results of Experiment 2 imply
that a systems’ choice history is a third factor contributing
to the outcome of the decision process.

Experiment 2 also leaves a couple of questions unan-
swered. For example, while our ascending vs. descending
sequence of presentation manipulation did indeed shift dis-
counting curves, it did so only for the lower part of intervals.
This result might indicate that higher intervals exhibit only
a small area where two attractors are present at the same
time. Moreover, one might argue that the found persevera-
tive choice behavior may be related to a lack of precision in
the presentation of the options’ values: Whereas the varia-
tion in values were presented as relatively small differences
in the size of the coins, the variation in delays was repre-
sented by the readily observed distances of the options. To
rule out such an alternative explanation for the found hys-
teresis as a perceptual effect (Kelso, 1997; Tuller et al.,
1994) and to provide further evidence for its existence, we
performed Experiment 3 where we used a different format
of presenting the options’ values.
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Figure 7: Results of Experiment 2. Left: Median response patterns across intervals for different ratios of small and large
values. Hysteresis is most prominent for intermediate intervals and value ratios. Top right: Grand average discounting
curves indicating the subjective value of a delayed value as a function of interval/delay and order of presentation. Shaded
areas (left) and error bars (right) indicate standard errors. Bottom right: Discounting as indicated by hyperbolic k-values of
each subject for sequences with ascending and descending order of presentation.
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4 Experiment 3

Experiment 3 was identical to Experiment 2 except for the
way in which the options’ values were presented: Instead
of representing the value of each option implicitly by the
size of a coin, the value was now indicated explicitly by a
number printed on a coin with fixed size. We expected to
replicate Experiment 2. Hence, we hypothesized that sub-
jects would, again, show hysteresis, i.e., stronger discount-
ing behavior for sequences with a decreasing delay to the LL
option in comparison to sequences with an ascending delay.

4.1 Methods
4.1.1 Subjects

20 students (12 female, mean age = 25.0) of the Technische
Universitdt Dresden took part in the experiment. All sub-
jects had normal or corrected to normal vision. They gave
informed consent to the study. As in Experiment 1 and two,
they received a 3 € show-up fee and the money they col-
lected within the experiment.

4.1.2 Setup and Design

The setup and design were the same as in Experiment 2, with
one exception: Instead of representing the value of each op-
tion by the size of a coin, we used red numbers printed on a
coin of constant size to explicitly show the reward value of
the option (1 up to 10 credits).
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4.2 Results

On average, subjects completed 372 out of 480 possible tri-
als (77.4%, SD = 10%), with the SS option being chosen in
49.4% (SD = 12%) of these trials. Again, this meant that we
were successful in acquiring at least one complete sequence
of trials for each subject.

We checked for the effects of the sequence manipulation
by performing a repeated measures ANOVA on discount-
ing curves with the factors interval and direction (ascend-
ing/descending; see Figure 8, top right). As expected and
similar to Experiment 2, we found a main effect of the
factor interval (F(11,209) = 20.28, P < 0.001, n?= 0.52),
a main effect for the factor direction (F(1,19) = 163.01,
P < 0.001, 7)2: 0.9) and an interaction interval X direction
(F(11,209) = 7.28, P < 0.001, ?= 0.28). Checking individ-
ual subjects for hysteresis indicated that 18 out of 20 sub-
jects showed a hysteresis effect (i.e., a higher hyperbolic k-
value for ascending than for descending sequences), while
only 2 subjects showed a slightly reversed effect (Figure 8,
top right).

To check for differences between the graphical presen-
tation of rewards as coins of different size (Experiment 2)
and the presentation of rewards a numbers (Experiment 3),
we compared Experiments 2 and 3 statistically by perform-
ing an ANOVA with the within-subject factors interval (1-
4) and direction (ascending/descending) and the between-
subject factor presentation (size of coin vs. numerical). As
expected, we found a main effect of the factor interval
(F(11,418) =250.1, P < 0.001, n?= 0.87), a main effect for
the factor direction (F(1,38) = 37.61, P < 0.001, n?= 0.5)
and an interaction interval x direction (F(11,478) = 11.54,
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Figure 8: Results of Experiment 3. Left: Median response patterns across intervals for different ratios of small and large
values. Hysteresis is most prominent for intermediate intervals and value ratios. Right top: Grand average discounting
curves indicating the subjective value of a delayed value as a function of interval/delay and order of presentation. Shaded
areas (left) and error bars (right) indicate standard errors. Right bottom: Discounting as indicated by hyperbolic k-values of
each subject for ascending and descending order of presentation.
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P <0.001, 172: 0.23). There was no main effect of the fac-
tor presentation (F(1,38) = 2.34, P = 0.14, n?= 0.06) and no
significant interaction with this factor (all P > 0.18).

4.3 Discussion

Experiment 3 replicated Experiment 2 by finding the ex-
pected hysteresis effect for intermediate intervals and value
ratios. We found no relevant difference to Experiment 2,
where setup and design were similar except for the way in
which the values of the options were presented. The asym-
metry in the shifting of discounting curves was also present
in the second dataset, indicating that the highest intervals
lead only to small areas in which two attractors are present
at the same time.

While Experiments 2 and 3 both validated the inter-trial
process dynamics predicted by our attractor model of delay
discounting, they left one important question regarding one
of its core assumptions unanswered. In the attractor model,
the observed hysteresis effect results from the model’s per-
sistence at an abstract level of integration that represents
the options’ integrated attractiveness or their subjective util-
ity. However, one might argue that the exact same dynam-
ics could also result from persistence at earlier levels of the
decision process. For example, more complex models of in-
tertemporal choice (for example connectionist models of de-
lay discounting as described in Scherbaum, Dshemuchadse
& Goschke, 2012) not only contain levels that represent the
abstract attractiveness of the two options but also include
subordinate levels that represent preceding steps of informa-
tion processing, for example the perception and representa-
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tion of the delay and value features of each option. From
this point of view, it would be possible that the persisting
choice behavior we observed in experiments two and three
did not actually result from persistence at the superordinate
level of the SS vs. LL choice. Instead the same behavioral
pattern could also be caused by a persisting activation of the
previously chosen option’s features at a lower level of pro-
cessing (i.e., the representation of its value or delay). As this
would prime the perception of the features of the following
options towards the previously chosen ones, this mechanism
would also lead to a preference for the more similar option
and hence to persisting choice behavior. As our model ex-
plicitly predicts hysteresis to take place at the more abstract,
choice-based level of representation, this alternative expla-
nation needs to be excluded.

While we could exclude simple response priming, since
options were rearranged in every trial, we conducted Ex-
periment 4 to exclude feature priming at lower levels as an
alternative explanation.

S Experiment 4

Experiment 4 was designed to locate the level of the found
trial-by-trial persistence in choice behavior: A feature prim-
ing explanation which attributes choice persistence to the
mere priming of concrete values and delays at lower lev-
els of representation; and the more abstract explanation of
our attractor model which attributes choice persistence to a
prevailing tendency to choose the SS or the LL option on
an aggregate level representing the overall attractiveness of
both options. To this end, we implemented pairs of trials
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into our paradigm that consisted of a prime trial and a target
trial. Prime trials were designed such that they contained
one clearly attractive option, e.g., the SS option. In the sub-
sequent target trials, the features — value and distance - of
the previously primed option (i.e. SS), were applied to the
alternative option (i.e., LL). Hence, we transferred the fea-
tures of one option (SS) in prime trials to the opposite option
(i.e., LL) in the target trial. This feature repeating option
(i.e., LL) was then paired with a new alternative option (i.e.
SS; note that the opposite scheme was applied to trial pairs
where the prime was favoring LL choices).

From a feature priming account, one could expect a repet-
itive choice of the option exhibiting the previously chosen
features. Hence, in our paradigm feature priming predicts a
switch of the chosen option from trial to trial, i.e., from SS to
LL or from LL to SS, since features are transferred from one
option in the prime trial to the opposite option in the target
trial. In contrast, choice persistence at an integrated attrac-
tiveness level predicts that subjects stick to their choice of
the previously chosen option — even though this option’s fea-
tures would have changed. This would lead to a repetition
of the chosen option, i.e., SS to SS or LL to LL. Importantly,
the attractor model predicts that this effect would be present
for the whole range of controlparameter ¢ in which both op-
tions show some attractiveness — hence, two attractors exist.
Hence we also slightly varied the relative attractiveness of
the two options in the target trial.

An important prerequisite for this prime-target scheme
was to precisely manipulate subjects’ choices. Hence, we
first needed to estimate each subject’s overall level of dis-
counting to later fit the presented options to these individual
subjective values accordingly.

5.1 Methods
5.1.1 Subjects

33 students (26 female, mean age = 23.93) of the Technische
Universitidt Dresden took part in the experiment. All sub-
jects had normal or corrected to normal vision. They gave
informed consent to the study. As in Experiment 2, they
received a 3 € show-up fee and the money they collected
within the experiment. After checking our manipulation in
the prime trials, we had to exclude 6 subjects from subse-
quent analyses since they showed a reversed effect of the
bias manipulation during prime trials and, hence, lacked a
sufficient number of valid prime-target trial pairs for further
analysis. Hence, we performed all subsequent analyses on
27 subjects (observed effects did not change qualitatively
when the 6 additional subjects were included).

5.1.2 Setup and Design

The setup was similar to Experiment 3, with two modifica-
tions. First, the experiment now consisted of four blocks (8
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minutes each) where the first block served to estimate the in-
dividual rate of discounting of each subject. The subsequent
three blocks then implemented the paired trial scheme (i.e.,
combinations of prime and target trials) to test whether the
repetition bias observed in experiments two and three was
due to feature or to choice repetitions. Second, while each
option’s reward value was again depicted explicitly through
red numbers printed on coins of equal size, we now used a
credit system ranging from 10 to 99 credits instead of 1 to
10 credits in experiments two and three. This allowed us to
match the values presented in the prime trials as precisely as
possible to the individual subjective values of each subject
that were measured during the first block.

To estimate individual discounting in the first block, we
independently varied the delay of the SS option (Dg=2 or §
fields) and the difference in delay between the SS and the LL
option (Dy, - Dg = 3 or 6 fields). The value of the LL option
(VL =50 to 99 credits) was chosen randomly, the value of
the SS option was then derived systematically by setting it to
Vs =20, 50, 70, 80, 85, 89, 93, 97% of V|, (Dshemuchadse,
Scherbaum & Goschke, 2012). This resulted in 32 different
types of trials. Each trial could be repeated 6 times, leading
to a pool of 192 trials in the first block of the experiment.

In the subsequent three blocks, we used pairs of prime
and target trials where the features of the option chosen in a
given prime trial (i.e., its’ value and relative distance) were
transferred to the opposite option in the subsequent target
trial.

With regard to options’ delays, in prime trials, we varied
the delay of the SS option (Ds= 2 or 8 fields) and the dif-
ference in delay between the SS and the LL option (D; — Dy
= 3 or 6 fields). In target trials, we varied the delay of the
SS option (Dg =2, 5, or 8 fields) and the distance to the LL
option (D = 8 or 14 fields).

With regard to options’ values, we combined the individ-
ual discounting functions defining the subjective value SV
as measured in block 1 with an additional bias SV;,, = 0.15
or -0.15, in favor of the SS or the LL option. In prime tri-
als, this yielded values of the SS option (10 < Vg < 50) and
the LL option (40 < V; < 99), with Vg < V. In target tri-
als, the value of the favored option of the prime trial was
then used as the value of the opposite option and the value
of the remaining option was determined by SV, to favor
the SS (SVjius = 0.15) option, no option (SVj,s =0), or the
LL option (SVjies=- 0.15). This manipulation in the tar-
get trial served to create both, high conflict and less conflict
trials. Hence, it allows us to investigate that the priming ef-
fect/choice persistence not only affects indifferent/high con-
flict decisions, but also decisions with an expected choice
outcome.

This procedure resulted in 48 different combinations of
prime and target trials, with 10 possible repetitions leading
to a pool of 480 trials (see Appendix II and Table Al for
more details).
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Figure 9: Results of Experiment 4. Mean probability of
choosing the SS option as a function of priming in the previ-
ous trial and relative attractiveness/dominance in the current
trial. Dominance showed the expectable main effect, while
priming an option shows the effect as predicted by the attrac-
tor model. In primed SS trials the priming trial successfully
led to increased choices of the soon option. In primed LL
trials, the priming trial successfully led to increased choices
of the late option. Error bars denote standard errors.
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5.2 Results

On average, subjects completed 408 out of 480 possible
pairs of prime and target trials (85.05%, SD = 10.47%).

To check for the effects of priming on target trials, we
excluded all prime-target trial pairs where subjects did not
choose the option favored by the biasing manipulation.
For the remaining trials (65%), we checked whether sub-
jects stayed with the option chosen in the prime trial or
whether they stayed with the features chosen in the prime
trial and hence, switched options. To this end, we per-
formed an ANOVA with the factors Biasy . (SS vs LL)
and Biasa g (SS, none, LL) on the amount of choices of the
SS option in target trials (Figure 9). This yielded a signifi-
cant effect of Bias,im. (F(1,26) = 6.15, P < 0.05, n?=0.19)
and of Biasyeer (F(2,52) = 40.94, P < 0.001, n?= 0.61),
but no significant interaction (F(2,52) = 1.72, P = 0.19,
n?=0.06). After choosing SS in the prime trial, choosing the
SS option in the target trial was more likely (M = 48.59%,
SD = 3.11%) than after choosing the LL option in the prime
trial (M = 37.60%, SD = 0.34%). This result indicates that
the current choice was influenced by a persisting bias of the
previous choice on the option level and by the current at-
tractiveness of an option, and that feature priming did not
influence subjects’ choices.
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5.3 Discussion

Experiment 4 provides evidence that choice persistence can
be attributed to persistence on the level of the representa-
tion of choice options — and not to a mere persistence on
the level of the representation of option features. Instead,
current choices tend seem to be drawn towards the option
chosen previously (SS or LL), even if this option’s features
(i.e., its value and distance) have switched to the opposite
option (from SS to LL or vice versa). This finding supports
the assumption that our attractor model targets the correct
level of representation with attractors representing the SS
and the LL choice at an abstract, integrative level of repre-
sentation instead of in terms of their features at conceptually
lower levels of representation.

6 General discussion

In this article, we aimed to integrate a process-oriented at-
tractor model into the outcome-based, psychometric mod-
elling of delay discounting decisions. Through this inte-
gration, we opened up a window on the process dynamics
leading to a final choice and the dynamics across consecu-
tive choices. While these dynamics only recently came into
the focus of research, they nevertheless must be studied in
order to better understand both consistent decision making
as well as decision failures and deviations from the average
discounting model (Lempert & Phelps, 2016). We presented
the attractor model for delay discounting (Scherbaum et al.,
2008; see also Svyantek, Deshon & Siler, 1991; Townsend
& Busemeyer, 1989) that is based on models of percep-
tual decision making (Hock et al., 2003; Noest et al., 2007,
Tuller et al., 1994). From this model, we derived qualitative
predictions regarding both the intra-trial and the inter-trial
process dynamics underlying choice behavior and validated
these predictions in four experiments based on a delay dis-
counting game (Scherbaum et al., 2013): While Experiment
1 used mouse movement trajectories to provide evidence for
the validity of the model’s predictions regarding intra-trial
dynamics, experiments two and three demonstrated the im-
portance to consider inter-trial dynamics by detecting hys-
teresis in intertemporal choice, that is, a persisting influ-
ence of previous on current choices. Finally, Experiment
4 showed that the model’s level of abstraction — represent-
ing the SS and the LL option as attractors — matches the
phenomena of interest.

In the following, we will first evaluate the model and then
continue with an evaluation of the empirical findings.

6.1 The attractor model of delay discounting

The attractor model represents the two possible choices and
their attractiveness by two attractor basins of varying depth.
We show, that this approach is fully compatible with dis-
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counting functions: While the latter merely define the con-
figuration where the two options possess the same subjec-
tive value — as measured by equal final choice outcomes for
the SS and the LL option — the attractor model additionally
adds the stability of decision states — the depth of the attrac-
tors — and hence provides the dynamics leading to the fi-
nal choice outcomes. Thereby, it offers a heuristic intuition
about the process dynamics leading to a final choice (Du-
ran & Dale, 2014; Frank, Richardson, Lopresti-Goodman
& Turvey, 2009; van Rooij & Bongers, 2000; van Rooij et
al., 2013). The model’s simplicity and abstractness supports
theorizing without the demand of complex technical details
(Onnis & Spivey, 2012). Nevertheless, a formalized imple-
mentation of the model is possible, and in Appendix I, we
demonstrate that it leads to the exact same predictions as de-
scribed above. Moreover, the formalized implementation il-
lustrates not only that the attractor model is compatible with
discounting curves but also that it builds a bridge to more
complex models of decision making which are equivalent on
a conceptual level: The attractor dynamics can be seen as an
abstraction of the neural interaction dynamics within more
complex neural networks (Onnis & Spivey, 2012) which
have, in turn, been linked to the stability of firing patterns
of neural assemblies representing the various options and
their properties in the brain (Meyer-Lindenberg, Ziemann,
Hajak, Cohen & Berman, 2002; Scherbaum et al., 2008).
Specifically, the dynamics of the attractor model describe
the dynamics that arise from interactive activation and com-
petition networks (Rumelhart & McClelland, 1986) as they
are applied in judgement and decision making, especially in
the form of parallel constraint satisfaction networks mod-
els (Freeman & Ambady, 2011; Glockner & Betsch, 2008).
While the latter models allow for the description of the de-
cision process on a fine-grained level, the attractor model
provides a more abstract (and mathematically less complex)
description of the dynamics of these processes while still
allowing to predict and study phenomena like hysteresis
which are typically associated with more complex dynami-
cal system.

The simplicity of the attractor model is a feature that
is shared with other recent models of delay discounting,
i.e., drift diffusion models and linear ballistic accumula-
tor models (Dai & Busemeyer, 2014; Milosavljevic, Mal-
maud, Huth, Koch & Rangel, 2010; e.g., Ratcliff & Smith,
2004; Rodriguez et al., 2014). Concerning the intra-trial dy-
namics, the attractor model is comparable to these models
(Wang, 2008). However, it adds the non-linear dynamics
which lead to hysteresis, which diffusion and linear accu-
mulator models do not explain without additional assump-
tions. Therefore, the attractor model can be seen as an in-
strument to describe and integrate the behavioral dynamics
of decision making on both the intra-trial and the inter-trial
time-scale, thus, building a bridge between simple yet static
discounting curves and dynamic yet complex neural process
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models.

6.2 Mouse movement deflections in delay dis-
counting

The data on the intra-trial choice dynamics as measured by
mouse movements matched the predictions of the model.
First, we found greater mouse movement deflections in high
conflict compared to low conflict trials, which matches pre-
vious findings on process dynamics in intertemporal choice
(Dshemuchadse et al., 2012). Second, we found greater
mouse movement deflections for low conflict trials in which
the unattractive option was chosen compared to low con-
flict trials in which the attractive option was chosen. While
the choice of the unattractive option is an anomaly for
discounting-models, it is perfectly compatible when the at-
tractor dynamics are taken into account: a slight bias at the
start of trial suffices to lead the system state into the weaker
attractor. Such an initial bias could be induced by noise
or — as the other experiments suggest — by the choice in
the previous trial leading to choice perseveration (compare
Scherbaum et al., 2013).

6.3 Sequential effects in choices

Choice perseveration in sequences of decisions are best il-
lustrated in their strongest manifestation as hysteresis as ob-
served in Experiments 2 and 3. While perseverative choice
patterns have been observed previously in studies focusing
on value based decision making (Coulson & Nunn, 1999;
Svyantek et al., 1991) or social perspective taking (Duran &
Dale, 2014), to the best of our knowledge this is the first re-
port of hysteresis in delay discounting. It is likely that earlier
investigations have not observed this effect due to the classic
paradigm (for example as used by Scholten & Read, 2010)
employed in these studies where the explicit presentation of
options’ attributes makes sequential manipulations obvious.
In fact, this issue might even have led to opposite effects
(Robles & Vargas, 2008) similarly to what has been found
for perceptual decisions (so-called enhanced contrast due to
repeated exposure, see Tuller et al., 1994). In contrast to the
classic paradigm, our delay discounting game impeded the
detection of sequences as it not only varied the delay (i.e.,
distance) of two consecutive options but also their positions
on the x-y-plane. Importantly, we found hysteresis in two
experiments with different option presentations, attesting to
the robustness and validity of the finding.

This finding of hysteresis adds to the importance of com-
plementing the outcome-based, psychophysical approach to
delay discounting (Takahashi, Oono & Radford, 2008) with
a more process-oriented approach that not only focuses on
the outcome of the decision process but also takes into ac-
count how the process unfolds over time. Such a process-
oriented approach allows to integrate different features of
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the choice situation and contextual factors influencing the
final decision — which have led to disconcertion in the re-
search community (Lempert & Phelps, 2016) and a vast
multitude of different discounting models (Doyle, 2013) —
into a single theoretical framework (Scholten & Read, 2010;
Townsend & Busemeyer, 1995).

6.4 Limitations

6.4.1 Generalizability of the model and the evidence
from the discounting game

With regard to our experimental approach, the advantages
inherent to our discounting game come at the cost of the
question whether or not the attractor model and the evi-
dence for it presented here are generalizable to other, more
standard intertemporal choice tasks and to intertemporal
decisions in general. Classic intertemporal choice tasks
present subjects with a number of hypothetical or partly
factual intertemporal decisions between sooner/smaller and
later/larger options with values and delays presented in writ-
ing and with ranges varying from days (e.g., Kirby, Petry &
Bickel, 1999) to years (e.g., Read, Frederick, Orsel & Rah-
man, 2005). Our paradigm is very similar in that we ask
subjects to decide between nearer/smaller and farer/larger
options, with distances and values clearly visible to the sub-
ject and distances reflecting the time to reach the options and
hence representing the delays of the options. Three differ-
ences between the classical and our paradigm are apparent,
however. First, the values and times used in our paradigm
are on a smaller scale than in most delay discounting tasks.
Second, the values and times are presented implicitly (as the
size and distance of coins) while they are typically presented
explicitly (as amounts of money and delays in days, weeks
or months) in classic intertemporal choice tasks. Third, time
is limited in our paradigm and it hence poses an objective
constraint on how to spend time by reaching an option. This
is in contrast to classical intertemporal choices where the
value of time is per se a subjective factor.

In response to these concerns, we suggest that the
paradigm used in this set of studies is indeed a valid instru-
ment to study intertemporal decision making. First, with
regard to the small and accumulative amounts of money we
used as rewards in our task, the discounting game joins a
wide range of delay discounting paradigms employing var-
ious types of gains ranging from primary rewards such as
food or drinks (McClure, Ericson, Laibson, Loewenstein &
Cohen, 2007), one-out-of-many-choices-rewards (Ballard &
Knutson, 2009; McClure, Laibson, Loewenstein & Cohen,
2004), or hypothetical rewards (Green, Fristoe & Myerson,
1994; Robles & Vargas, 2008; Takahashi et al., 2008). In
this diverse collection, we see our approach as reasonable
in so far as it implements real rewards that the subject re-
ceives in total by the end of the experiment. The com-
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paratively small temporal frame the discounting game op-
erates on would indeed be problematic had this resulted in
our subjects not discounting at all. However, our original
study indicated that the discounting behavior observed in
the discounting game is similar to the behaviour observed
in more standard paradigms of delay discounting. For ex-
ample, we showed that subjects completing the delay dis-
counting computer game also weighed delays and reward at-
tributes for each option which was reflected in a bias towards
sooner/smaller choices (Scherbaum et al., 2013). This is
also reflected in the fact that disadvantageous choices of the
SS option show significantly lower distances between the
avatar and the SS option than advantageous ones. This find-
ing indicates that also in the discounting game subjects are
seduced by immediate or very short-term options (Kalen-
scher & Pennartz, 2008). Of course, it is out of question
that certain timescale-dependent effects (Soman et al., 2005)
might not be captured within the short temporal horizon of
the discounting, but such effects were not in the focus of
the current studies. Nevertheless, the general comparability
of the weighing of both, the small values and time intervals
in the discounting game and the larger values and intervals
in more classical tasks is also reflected in a high correlation
of r = 0.64 between the k-values measured in our discount-
ing game and a commonly used, paper pencil intertemporal
choice questionnaire (Kirby et al., 1999) that we observed
in our previous study (Scherbaum et al., 2013).

Second, concerning the format of presentation of options’
values and times in terms of sizes and distances, it is in-
deed well known that different formats of presentation can
influence the decision process, as is evident e.g., in the so
called date-delay effect (Read et al., 2005; Scherbaum et al.,
2012). However, we tried to rule out at least some of the
concerns resulting from this observation by comparing the
effects of presenting the two options’ values implicitly (as
the size of the coins) vs. explicitly (as written numbers on
same-sized coins). Having found no difference in discount-
ing behaviour and hysteresis between these two modes of
presentation makes us confident that these effects are robust
with respect to the mode of presentation.

Third, the limited time frame that we used may have
encouraged subjects to use certain strategies like always
choosing the SS option in order to make as many choices
as possible. As this kind of strategic behaviour would stop
subjects from making deliberate, considerate choices based
on the careful weighing of the two options’ values and de-
lays, this would render the decisions made in the discount-
ing game incomparable to classical intertemporal decisions.
Crucially, the choice patterns we observed stand against this
possibility. We designed the combination of options pre-
sented to our subjects during the discounting game in such
a way that persistently choosing one (e.g., the SS) option
led to suboptimal results whereas a mixed, trial-dependent
strategy resulted in the highest overall gain (for further de-
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tails, please see the methods section of experiment 1). As
the choice patterns we observed empirically closely resem-
bled this optimal behaviour, we can conclude that subjects
did not rigidly stick to one or the other option throughout
the experiment but that they carefully weighed both options’
values and delays on a trial-by-trial basis instead.

Over and above these rather technical points illustrating
the comparability of our dynamic and more classic measures
of intertemporal decision making, we have gathered recent
evidence that behaviour in the discounting game is linked
to a problematic behaviour in the real world that has been
consistently linked to impairments in delay discounting in
the past: drug abuse. In this study (Scherbaum, Haber, Mor-
ley, Underhill & Moustafa, under review) we had a group
of heroin addicts and a group of matched controls complete
the discounting game. Consistent with previous evidence
linking classic measures of intertemporal choice to addic-
tion (Kirby et al., 1999), we found increased discounting for
heroin addicts as compared to the control group, thus, pro-
viding further evidence for the validity of our paradigm.

All of these arguments combined make us confident that
the informative value of the work presented here — the at-
tractor model and the behavioural patterns we observed in
support of it — are not restricted to the novel paradigm we
employed, but that they are also valid and applicable to more
classical investigations of intertemporal choices. What is
more, the paradigm used here has a number of advantages
compared with more classical intertemporal choice tasks.
First, the it allows us to study phenomena that are difficult to
study in the classical paradigm: While the sequential manip-
ulation of delays that is necessary to study hysteresis is quite
easy to see through in classic versions of the intertemporal
choice paradigm, the possibility to rotate the options pre-
sented on a trial by trial basis makes these types of sequen-
tial manipulations much harder to detect in the discounting
game. Second, whereas classical tasks are based on hypo-
thetical choices or on partially realized choices (often, one
trial is selected by a lottery), every trial counts for our sub-
jects, thus, motivating them to stay focussed and on task
throughout the experimental session. Third and last, but not
least, the paradigm is built around an immersive, playful en-
vironment and subjects report that they were so engaged by
the game that they almost forgot about participating in an
experiment.

6.4.2 Level of generality of the attractor model

The attractor model builds a bridge from discounting func-
tions to more complex models of delay discounting, for
example accumulation models with different timescales
(Scherbaum et al., 2012), parallel constraint satisfaction net-
works (Glockner & Betsch, 2008), or decision field models
including several transformations (Dai & Busemeyer, 2014).
The compatibility of the attractor model with more complex
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implementations of the decision process is illustrated further
by the neural network implementation of the attractor model
in Appendix I. Importantly, this implementation describes
the decision dynamics on an aggregate level of detail. In par-
ticular, this model does not give any indication of a number
of details of the decision process that are a matter of debates
in the literature, for example, whether the attractiveness of
an option is derived by calculating the subjective value of
each option first and then performing alternative-wise com-
parisons of both options (Dai & Busemeyer, 2014; Mazur,
1987; Samuelson, 1937) or by attribute-wise comparisons of
both options’ delays and values (Scholten & Read, 2010).
However, elucidating these open questions is beyond the
scope of our attractor model. Instead, the value of the ab-
stract model presented here is that it provides an intuitive
and easy-to-work-with instrument for theorizing about the
intra- and inter-trial dynamics of the decision process. Of
course, the merit of a model at this level hinges on addi-
tional empirical tests of its validity of the sort we have re-
ported here.

6.5 Conclusion and prospects for research on
delay discounting and decision making

The model and paradigm presented here led us to predic-
tions and findings of behavioral patterns that could not be
expected from the discrete models and behavioral meth-
ods typically used in intertemporal choice research. In-
stead, the predictions we tested in this article are typical
patterns produced by dynamic systems which can be read-
ily described with attractor models. Hence, our applica-
tion of the attractor model to delay discounting (as initially
sketched in Scherbaum et al., 2008) corroborates other ap-
plications of dynamic systems theory to value-based deci-
sion making in general (Coulson & Nunn, 1999; Koop &
Johnson, 2011; McKinstry, Dale & Spivey, 2008; Oullier &
Kelso, 2006; Oullier, Kirman & Kelso, 2008; Roe, Buse-
meyer & Townsend, 2001; van Rooij & Bongers, 2000; van
Rooij et al., 2013; Svyantek et al., 1991; Townsend & Buse-
meyer, 1995). In their combination, this growing body of
work showcases that opening a window into the processes
dynamics underlying value-based decisions is an important
and fruitful endeavor. Therefore, the value of the dynamic
approach presented here goes far beyond our findings for
delay discounting and that it offers prospects for both the
theoretical discussion and the empirical investigation of de-
lay discounting and value-based decisions in general.

On a more abstract, theoretical level, our approach ex-
tends the focus of decision research from discounting curves
and decision outcomes to dynamic properties of the decision
process unfolding both within and across trials (as asked for
e.g., in Townsend & Busemeyer, 1995). Within trials, de-
viations from the ideal choice line are a sensitive measure
(Frisch, Dshemuchadse, Gorner, Goschke & Scherbaum,
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2015; Scherbaum, Gottschalk, Dshemuchadse & Fischer,
2015) that can provide information about the overall stabil-
ity of decision states. Similarly, the strength of the hystere-
sis effect is an indicator of the overall stability of the attrac-
tor layout. Considering these process dynamics could hence
provide explanations of dysfunctional behavior, e.g., too sta-
ble attractors in obsessive-compulsive disorders (Rolls, Loh
& Deco, 2008) or relatively flat and hence volatile attractor
layouts in impulsive decision makers (Kréplin et al., 2014,
2015; Wittmann & Paulus, 2007).

For empirical investigations, the presented paradigm of-
fers an immersive way to study behavioral choice patterns
both within trials (i.e., via mouse tracking) and across tri-
als (e.g., by allowing unobtrusive sequential manipulations).
Such measures could uncover differences between popula-
tions or conditions that might be occluded when only mea-
suring choice outcomes or focusing on the outcome of (aver-
aged) single choices without considering sequential effects
(see Spencer, Smith & Thelen, 2001 for a comparable ap-
proach to the study of development of spatial memory). For
example, changes in the hysteresis effect could be indica-
tive of developmental differences in the attractor layout of
younger and older populations (Li, Lindenberger & Sik-
strom, 2001) which would be occluded when only looking
at discounting curves without considering sequential effects.

In summary, the combination of an attractor model with
a dynamic behavioral paradigm integrates process dynam-
ics into discounting functions and thereby supports the un-
derstanding of decision failures and deviations from static
descriptions. The way how we make delay discounting de-
cisions necessarily tells more than the final result of this pro-
cess.
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Appendix I: Simulations of dynamics
in delay discounting based on a formal-
ized model

Architecture of the formalized model

The formalized model used for the simulations below built
on models which have been used to study the neural activa-
tion dynamics of perceptual decisions in the past (Hock et
al., 2003; Noest et al., 2007). It comprised of two neural
units with a non-linear activation function. These two units
inhibit each other (Figure Al, left) which opens a natural
mapping of these two units to the architecture of more com-
plex models, i.e., parallel constraint satisfaction networks
(e.g., Glockner & Betsch, 2008). The two units in the model
here could be seen as the two options in parallel constraint
satisfaction network that are fed by informative cues from
lower network levels. By interactive activation and compe-
tition both systems lead to a settled decision state in the end
of the decision process.

The activation of both units can be mapped as a two-
dimensional state space in which each units’ activation
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Figure Al: Left: The formalized version of the attractor model is based on the non-linear neural activation dynamics of two
competing neural units representing the two choice options. The input to the two units reflects the attractiveness of each
option. Right: The activation of the two units mapped onto a two-dimensional state space in which each unit’s activation
spans one dimension. Arrows in the vector field indicate the potential trajectories of this two-dimensional system under
equal input. The mutual inhibition results in two potential stable activation states (indicated by dots compared to arrows in
the vector-field). The dynamics of this two-dimensional system can be mapped to the one-dimensional model consisting of
two attractors that we explain in greater detail in the introduction.

Option 1
(e.g. SS option)

Option 2
(e.g. LL option)

spans one dimension. The mutual inhibition of the two units
results in two potential stable states of activation. These two
stable states can, in turn, be mapped to the attractor valleys
(Figure Al right) of the model sketched in the main part
of the text (Figure 1): In state one, unit one is active and
unit two is inhibited (representing e.g., a SS choice) while
in state two, unit two is active and unit one is inhibited (rep-
resenting e.g., a LL choice).

Similar to the depth of the attractors in the conceptual
model explained in the main part of the text, the input to the
units is defined by their attractiveness, i.e., their value/time
ratio as used in the advantageous choice model or more
complex metrics as the discounted value according to hy-
perbolic models (e.g., Green et al., 1994).

Mathematical model description

The dynamics of the model are defined by two coupled dif-
ferential equations (one for each neural unit) representing
non-linear neural activation dynamics (Hock et al., 2003;
Noest et al., 2007; see also Amari, 1977).

Tlgs = —uss +h +w, - o(uss) +w; - o(urr) + Iss

Turr = —urr + h+w, - o(upr) +w; - o(uss) + Inr

Here, 7 denotes the timescale (defining the step size of
the Euler solution), & denotes the resting level, w; the (in-
hibitory) coupling strength of the two equations, and w,
the recurrent feedback, Igg and Iy 7, the input representing
the attractiveness of the two options, and ¢ a sigmoid non-
linearity, mirroring non-linear neural population dynamics:

1

o(u) = At ey
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activation SS choice

activation LL choice

Table Al: Basic parameters of the model.

Parameter Value

T 10
h -5
w; -7
Wy 6
a 0
8 1

Hence, interactions between the two units happen only
to the extent that the activation u exceeds a soft threshold
(Cohen, Servan-Schreiber & McClelland, 1992; Erlhagen &
Schoner, 2002). Note that the S-parameter is also called the
gain-parameter, modulating the discreteness of neural acti-
vation states (for hypotheses concerning 5 and aging, see
e.g., Li et al., 2001). For a list of the chosen parameter val-
ues, see Table Al.

The two coupled differential equations constitute a neural
system with two units inhibiting each other so that only one
unit can win the competition and shape to the final choice.
This competition unfolds over time.

The dynamics of the system are modulated by a control-
parameter, c, representing the relative attractiveness of the
two options via the strength of the two Inputs Igg and I,
relative to a general input strength I = 6 (¢ < 0 favoring the
LL option and ¢ > 0 favoring the SS option): Iss = I + 5
and [ LL = I— %

Hence, the lower ¢, the lower the input to the SS option
and the higher the input to the LL option, leading to urr,
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Figure A2: Results of Simulation 1. The activation of the chosen option’s unit (Y-Axis) is plotted against the activation
of the unchosen option’s unit. Left: Activations for low vs. high conflict decisions. Right: Activations for low conflict
decisions in which the attractive option was chosen vs. the unattractive option was chosen.
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activation unchosen option

winning the competition over ugg. Hence, c determines the
final choice when both units are in the same starting state,
i.e., an activation Usg = ur;, = 0. In contrast, if the start-
ing state differs, i.e., ugs > 0 and ur;, =0, ugg might win
the competition due to its initial advantage.

The equation of motion that defines the dynamics of this
system used for simulation is derived by differentiation. We
simulated the behavior of the derived dynamical system by
numerical integration with each trial having a maximum
length of 200 time steps. Within each trial of 200 time steps,
the input for the choice options was switched on after 50
time steps. Results were obtained using Matlab 2010b run-
ning under Windows 7.

Simulation 1: Intra-trial dynamics of delay dis-
counting

The aim of Simulation 1 was to support the qualitative pre-
dictions of intra-trial dynamics with data from a formalized
model.

Methods

For reasons of comparability, we will use the same labels as
in Experiment 1, namely low vs. high conflict decisions and
attractive-chosen vs. unattractive-chosen decisions. Low
conflict decisions were operationalized by ¢ = 0.25, high
conflict ones by ¢ = 0.05.

Unattractive-chosen decisions were produced by preced-
ing the current trial with a previous trial where the current
unattractive option had previously been the attractive option
and hence been chosen. This lead to a bias in the start state
of the current trial, favouring the unattractive option. In par-
allel to this, an attractive-chosen decision was produced by
a bias of the start state into the other direction (notably, this
would not be necessary since the system tends to choose
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activation unchosen option

advantageously because of the deeper attractor/the stronger
activation of the advantageous unit).

With this setup, we simulated the activation trajectories of
the system from its start state (zero activation of both units)
to its end state (full activation of the chosen option’s unit).

We assume that the mouse movements measured in Ex-
periment 1 represent exactly this competition for activation
between the two units.

Results

As shown in Figure A2, Simulation 1 yielded modeled tra-
jectories mirroring the qualitative predictions.

The data indicate a relatively direct activation of the cho-
sen option’s unit for low conflict decisions compared to high
conflict decisions. For low conflict decisions, such a di-
rect activation was present for attractive-chosen compared
unattractive-chosen decisions.

Simulation 2: inter-trial dynamics of delay dis-
counting

We performed Simulation 2 to support the qualitative pre-
dictions about choice persistence in inter-trial behavior, that
is, hysteresis in choice sequences. We expected effects sim-
ilar to previous studies, e.g. on the perception of ambigu-
ous figures (Hock et al., 2003), ambiguous auditory patterns
(Tuller et al., 1994), or social perspective taking (Duran &
Dale, 2014).

Methods

In Simulation 2, one unit represented the SS and the other
unit the LL option. Again, we defined the control param-
eter ¢ such that ¢ = 0 represented options of equal attrac-
tiveness for a subject. Consequently, ¢ < 0 represented a
more attractive LL choice and ¢ > 0 represented a more
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Figure A3: Results of Simulation 2. Left: Choice patterns across intervals for different ratios of small and large values (as
used to determine discounting curves). Hysteresis is predicted for intermediate intervals and value ratios. Right: Discount-
ing function, indicating subjective value of an option at the respective interval.
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attractive SS choice. Since the parameter ¢ represented the
relative attractiveness of the two options, we reasoned that
c should vary, first across different intervals between the SS
and the LL option, and second, across different value differ-
ences between the small and the large option. We assumed
multi-stability of the system for intermediate intervals be-
tween options and mono-stability for extreme intervals be-
tween options. Hence, we overall varied ¢ within a large
parameter window of [-1.5, 1.5]. Since we aimed to de-
rive discounting curves from the models’ choices, we varied
intervals and differences independently (similar to the ex-
perimental designs). Hence, the variance in ¢ could be de-
composed into variance due to differences in intervals and
values: For intervals, we varied ¢ in 12 steps between [—
1,1] and for value differences, we varied ¢ from —0.5 to 0.5.
Hence, for every one of 5 value differences, we built as-
cending and descending sequences of 12 intervals between
the two options. Within one sequence, we simulated trials
continuously, so that activation from the previous trial could
carry over to the next trial. Similar to Simulation 1, this led
to incomplete relaxation to the starting state of the system
and hence, the repetition priming found in the original study.
To completely reset the system state between sequences, we
inserted empty trials allowing the model to completely relax
back to the neutral starting state. We expected Simulation 2
to yield different switch points between SS and LL choices
depending on previous choice history, i.e., hysteresis.
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Results

Simulation 2 predicts hysteresis effects for intermediate in-
tervals and value differences, as can be seen for responses
split up by the different interval conditions (Figure A3, left).
The effect is also visible in the discounting curves marking
the indifference points for each interval in ascending and
descending sequences of intervals (Figure A3, right).

Hence, the decision of the system for an option was de-
pendent on the history of previous decisions through the pa-
rameter range of the system.

Appendix II: Prime-Target manipula-
tion of Experiment 3

Experiment 4 consisted of four blocks: in the first block, we
estimated the individual discounting, resulting in individual
measures of each subjects’ subjective value SV across inter-
vals. The following three blocks then used the paired trial
scheme, with a prime and a target trial, to test at which level
of the processing hierarchy (feature vs. option level) choices
persist (see Table A2 for an overview of the prime target
scheme).
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Table A2. The prime target scheme for testing feature- and
option-level repetition priming. Individual subjective value
SV was estimated from the trial in the first block of the
experiment. (constant features shown in grey background,
switching features in white background).

Trial Bias Option Distance Value
Prime SS SS 8 8 VLx(V+0.15)
LL 11 14  random, with V. x (SV +
0.15) > 40 credits
Target SS SS 5 2 VL x (SV +0.15)
LL 8 8 previous Vg
none SS 5 2 VL x (SV)
LL 8 8  previous Vg
LL SS 5 2 VL x (SV - 0.15)
LL 8 8 previous Vg
Prime LL SS 2 2 random, with Vg / (SV -
0.15) < 50 credits
LL 5 8 Vsg/(SV-0.15)
Target SS  SS 5 &  previous Vi
LL 8 14  Vs/(SV+0.15)
none SS 5 8  previous Vi
LL 8 14 Vg/SV
LL SS 5 8 previous Vi
LL 8 14 Vg /(SV-0.15)
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For option delays, we used the following scheme:

In prime trials favoring the SS option, we set Dgto 8
fields; in prime trials favoring the LL option, we set Dg to
2 fields. In both cases, D; was derived by the interval be-
tween the SS and the LL option (Dy, - Dg = 3 or 6 fields).

In target trials following SS prime trials, Dy was trans-
ferred from the previous Dy (8 fields). Dg was then derived
from the same intervals as in the prime trial (D, - Dg =3 or
6 fields). Similarly, in target trials following LL prime tri-
als, Dg was transferred from the previous Dy (5 or 8 fields).
Again, Dg was then derived from the same intervals as in the
prime trial (D; — Dg = 3 or 6 fields).

For option values, we used a scheme depending on the
subjects’ subjective value: We combined the individual dis-
counting functions defining the subjective value SV as mea-
sured in block 1 with an additional bias SV ;,; =0.15 in favor
of the SS or the LL option.

In prime trials favoring the SS choice, we used a con-
strained random V; so that V; x (SV + SVy,,) > 40 cred-
its. Hence, Vg was guaranteed to stay above 40 credits, high
enough to become the LL in the following target trial. Sim-
ilarly, in prime trials favoring the LL choice, we used a
constrained random Vg with Vg, (SV — SVyi4s) < 50 cred-
its. Hence, V| was guaranteed to stay below 50 credits, low
enough to become the SS choice in the following target trial.

In target trials, the value of the favored option of the prime
trial was then used to determine the value of the opposite
option. However, we independently varied the SV, in the
target trial to favor either the SS (SVy;as = 0.15) option, no
option (SVbias = 0), or the LL option (SVpi,s =—0.15).
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