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Abstract

Aeroengine performance is determined by temperature and pressure profiles along various axial stations within an
engine. Given limited sensor measurements, we require a statistically principled approach for inferring these
profiles. In this paper we detail a Bayesian methodology for interpolating the spatial temperature or pressure
profile at axial stations within an aeroengine. The profile at any given axial station is represented as a spatial
Gaussian random field on an annulus, with circumferential variations modelled using a Fourier basis and radial
variations modelled with a squared exponential kernel. This Gaussian random field is extended to ingest data from
multiple axial measurement planes, with the aim of transferring information across the planes. To facilitate this
type of transfer learning, a novel planar covariance kernel is proposed. In the scenario where frequencies
comprising the temperature field are unknown, we utilise a sparsity-promoting prior on the frequencies to
encourage sparse representations. This easily extends to cases with multiple engine planes whilst accommodating
frequency variations between the planes. The main quantity of interest, the spatial area average is readily obtained
in closed form. We term this the Bayesian area average and demonstrate how this metric offers far more
representative averages than a sector area average—a widely used area averaging approach. Furthermore, the
Bayesian area average naturally decomposes the posterior uncertainty into terms characterising insufficient
sampling and sensor measurement error respectively. This too provides a significant improvement over prior
standard deviation based uncertainty breakdowns.

Impact Statement

This article offers systematic improvements for the way sensor data is synthesized in aeroengines, with
applications to gas turbines, compressors, steam turbines, and other forms of turbomachinery. Specific contri-
butions of this article include:

• a more rigorous approach for calculating area averages in turbomachinery;
• metrics for spatial sampling and measurement imprecision uncertainty using the law of total covariance—

that is, are more sensors required or simply better sensor quality;
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• utilization of sparsity promoting priors for estimating circumferential distributions of aerothermal quan-
tities, and

• a framework to transfer information across numerous measurement planes.

1. Introduction

Temperature and pressure measurements are vital in both the prognostics of existing in-flight engines
and the understanding of new engine architectures and component designs. There are two reasons for
this. First, over many running cycles, an engine will undergo a certain level of degradation. This
typically manifests as an increase in blade tip and seal clearances (Seshadri et al., 2014); an accumu-
lation of dirt and other contaminants within the gas path, and blade surface damage owing to oxidation,
sulfidation, and the impact of foreign objects (Aust and Pons, 2019). These factors increase the amount
of work the compressor has to do to achieve a certain pressure rise and the amount of work the turbine
has to do to deliver the power required. The consequence of this increased workload is higher
temperatures in both the compressor and turbine sections, measured via temperature probes; the
pressure rise is measured via pressure probes. One of these measurements, the engine gas temperature
(EGT)1 forms an important metric for forecasting the remaining useful life of an engine (Marinai, 2004;
Bonnet, 2007). It can be found on the engine performance panel in aircraft cockpit displays, as shown in
Figure 1. Note that this 1D value, among others, is a reported average across a 2D nonuniform spatial
field.

The second reason why temperature and pressure measurements are so critical is because they are used
to compute subsystem (e.g., low-, intermediate-, and high-pressure compressor, and turbine components)
efficiencies. This is done by defining a control volume around the subsystem of interest and ascertaining
what the average stagnation flow properties are at the inlet and exit, whilst accounting forwork being done
both into and out of the system. At each measurement plane, circumferentially positioned rakes—with
radially varied probes on each rake—are used to measure pressure and temperature values (see Figures 2
and 3). These measurements are aggregated through 1D area- or mass-averages of the circumferentially

Figure 1. Cockpit display of a twin-engine aircraft with a close-up (inset) of the engine performance
parameters. The engine gas temperature (EGT) for both engines is shown within the blue boxes. Source:
Flightradar24 (2021). Image reproduced with permission from FlightRadar24 under a Creative Com-

mons Attribution 4.0 license.

1 Also known as the turbine gas temperature (TGT).
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Figure 2. Characteristic temperature and pressure rakes at a few locations in an aeroengine. Source:
Rolls-Royce plc.

Figure 3.Close-up of an axial measurement plane in an engine. Each plane is fittedwith circumferentially
scattered rakes with radially placed probes. The circumferential variation in temperature (or pressure)
can be broken down into various modes, as shown. Engine cutaway image source: Rolls-Royce plc.
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and radially scattered measurements at a given axial plane. Identifying which subsystem needs to be
improved based on its efficiency rating, feeds into research and development programmes for current and
new engines. Furthermore, if the uncertainty in a given subsystem’s calculated efficiency is deemed too
large, then it is likely that a decision on adding more instrumentation or improving the precision of the
existing sensors will follow. As both (a) research and development programmes for improving the
performance of a given subsystem, and (b) the enhancement of the engine measurement apparatus, are
extremely expensive, it is imperative that the decisions made be based upon accurate and precise
temperature and pressure values.

1.1. 1D performance values

As in many other engineering disciplines, 1D metrics are often used for performance assessments in
turbomachinery. When provided with radial and circumferentially placed temperature or pressure
measurements, area-based averages are often the norm for arriving at 1D values. These are typically
estimated by assigning each sensor a weight based on the sector area it covers. This weight will depend on
the total number of sensors and the radial and circumferential spacing between them (Stoll et al., 1979;
Francis and Morse, 1989). This sector area-average is computed by taking the weighted sum of each
measurement and dividing it by the sum of the weights themselves. In practice, this recipe offers accurate
estimates if the spatial distribution of the measured quantity is uniform throughout the measurement
plane. For spatially nonuniform flows, the validity of this approach hinges on the circumferential
placement of the rakes and the harmonic content of the signal. Should all the rakes be placed so as to
capture the trough of the waveforms, then the sector area-average will likely underestimate the true area-
average. A similar argument holds if the rakes are placed so as to capture only the peaks of the
circumferential pattern (Seshadri et al., 2020b). It is therefore common to use empirical corrections to
account for the uncertainty in such measurements, however, these corrections may introduce biases. It
should be noted that in-flight engines may only be fitted with one or two rakes, which may warrant
additional corrections. This is different from test-bed (simulated altitude) which often has more rakes
along the same axial plane. Additionally, test-bed engines may also have more axial measurement
stations.

1.2. Limitations with computational fluid dynamics

A salient point to note here concerns the use and limitations (see Denton, 2010) of a strictly computational
approach to estimate engine pressures and temperatures. Today, aeroengine computational fluid dynamics
(CFD) flow-field approximations via Reynolds averaged Navier Stokes (RANS), large eddy simulations
(LES) (Gourdain et al., 2014), and in some cases, via direct numerical simulations (DNS) (Wheeler et al.,
2016) are being increasingly adopted to gain insight into both component- and subsystem-level design.
These CFD solvers with varying fidelities of underpinning equations and corresponding domain discret-
izations have found success—balancing simulation accuracy with simulation cost—in understanding the
flow-physics in the numerous subsystems of an aeroengine (see figure 11 in Tyacke et al., 2019).
However, in most cases, CFD-experimental validation is carried out using scaled experimental rigs
which typically isolate one subsystem or a few stages (rows of rotors and stators) in an engine. Although
there has been a tremendous body of work dedicated to incorporating real-engine effects through aleatory
(Seshadri et al., 2014, 2015; Montomoli, 2015) and epistemic uncertainty quantification (Emory et al.,
2016) studies, as a community, we are still far from being able to replicate the aerothermal environment in
engines: it is incredibly complex. For instance, the hub and casing are never perfectly circular owing to
variability in thermal and fatigue loads; engine structural components introduce asymmetries into the flow
that can propagate far downstream into themachine, leading to flow-field distortions; and the pressure and
temperature variations induced by bleeds and leakage flows are not circumferentially uniform. The
presence of these engine modes (also termed engine wave numbers) makes it challenging to use CFD in
isolation to calculate aeroengine performance.
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1.3. Coverage versus accuracy

Before we delve into the main ideas that underpin this article, it will be helpful to understand the
experimental coverage versus accuracy trade-off. Sensor placement in an engine is tedious: there are
stringent space constraints on the number of sensors, the dimensions of each sensor, and its ancillary
equipment, along with its axial, radial, and tangential location in the engine. However, engine measure-
ments offer the most accurate representation of engine flow physics. Scaled rigs, on the other hand, offer
far greater flexibility in sensor number, type, and placement, and consequently yield greatermeasurement
coverage. While they are unable to capture the engine modes—and thus are limited in their ability to
emulate the engine—they offer an incredibly rich repository of information on the blade-to-blademodes.
These modes include those associated with periodic viscous mixing (such as from blade tip vortices),
overturning boundary layers between two adjacent blades, and the periodic inviscid wakes (Sanders et al.,
2002; Mailach et al., 2008). Although present in the engine environment too, engines have insufficient
measurement coverage to capture these blade-to-blade modes. One can think of the spatial distribution of
pressure or temperature as being a superposition of such blade-to-blade modes (visible in rig experi-
ments), engine modes (visible in engine tests), and noise (see Figure 3). Succinctly stated, our best
window on flow into an aeroengine—and, in consequence, its composite temperatures and pressures—
stems from real engine measurements themselves. The challenge is that they are few and far between.

In summary, to compute important engine performance metrics such as component efficiencies,
pressure ratios, EGT, and thrust—all of which are 1D performance metrics—we need to spatially average
sparse pressure and temperature measurements that arise from engine tests. However, this averaging
needs to be done in a rigorous manner to account for possible nonuniformity in the flow, limited spatial
measurements, and uncertainty in each measurement itself.

1.4. State of the art

While publicly available work in the areas of measurement aeroengine metrology (Saravanmuttoo, 1990;
SAE International, 2017), averaging (Greitzer et al., 2004; Cumpsty and Horlock, 2006), and spatial field
approximation (Seshadri et al., 2020a,b) are prevalent, there is no unifying framework for these related
concerns. In other words, there is no established workflow that stems from measurements to spatial field
approximation to averaging, whilst rigorously accounting for all the sources of uncertainties. There are
isolated estimates of uncertainties tailored for specific cases. For instance, Bonham et al. (2017) state that,
for compressors, at least seven measurements are required in the radial direction, and at least five
measurements in the circumferential direction to resolve the flow. This is a heuristic, based on the
negligible change in isentropic efficiency if more measurements are taken. It should be noted that this
assessment is not based on a spatial model, but rather on experimental observations for a compressor with
an inlet stagnation temperature of 300 K and a polytropic efficiency of 85% at three different pressure
ratios. It is difficult to generalize this across all compressors.

In Seshadri et al. (2020a),b), the authors draw our attention to the lack of a comprehensive averaging
and uncertainty assessment strategy in literature—especially for spatially nonuniform flows. They
articulate the limitations of widely adopted existing experimental measurement, data processing, and
uncertainty guides, such as the International Organization for Standardization (ISO) guide of uncertainty
in measurements, the SAE (formerly the Society of Automotive Engineers) Aerospace Information
Report AIR1419C (SAE International, 2017), and the American Society of Mechanical Engineers
(ASME) performance test code (PTC) 19.1 (Dieck et al., 2005). A key point the authors argue is that
computing 1D metrics from experimental data should be directly based on some spatial representation of
the experimental data. To this end, they present a regularized linear least squares strategy for estimating
the spatial flow field from a grid of measurements formed by radial and circumferentially placed probes.
Their data-driven model represents the spatial flow-field in the circumferential direction via a Fourier
series expansion, while capturing flow in the radial direction using a high-degree polynomial. Although
an improvement in the state of the art (Lou and Key, 2021), their model does have limitations. For
instance, the placement of probesmay lead toRunge’s phenomenon (see Chapter 13 in Trefethen, 2013) in
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the radial direction, while the harmonic content is set by the Nyquist condition (see Chapter 4 in Strang,
2012) in the circumferential direction. Another hindrance, one not systemic to their work, but one
mentioned in several texts (see 8.1.4.4.3 in Saravanmuttoo, 1990 and in Pianko and Wazelt, 1983), is
the definition of the uncertainty associated with insufficient spatial sampling and that associated with the
imprecision of each sensor. This decomposition of the overall uncertainty is important as it informs
aeroengine manufacturers whether they needmoremeasurement sensors or whether they need to improve
the precision of existing sensor systems. At present, there are no rigorously derived metrics for this.

The “so what?” and overarching motivation for this article are succinctly summarized by the following
two facts. First, engine manufacturers spend millions of dollars toward incremental gains in efficiency.
This is because even a 1% increase in the efficiency of a subsystem can have a sizeable reduction in fuel
consumption. Second, existing methods for averaging and delivering uncertainty assessments are
provably inadequate and likely too conservative. For instance, for a modern turbine using existing
measurement practices leads to a 1.5–2.5 K uncertainty in stagnation temperature measurements. This
results in a 1% uncertainty in efficiency (see 2.2 in Seshadri et al., 2020a). More accurate approaches for
averaging and uncertainty quantification for temperature (and pressure) measurements will lead to more
accurate efficiency estimates.

1.5. Paper outline

In this article, we argue that an assessment of the area average and a decomposition of the overall
uncertainty is only possible with a priori knowledge of the spatial flow field. Thus, we frame part of our
scope as follows. Given an array of engine sensor measurements at single or multiple axial stations, our
goal is to formulate techniques to:

• construct a spatial model to approximate the flow-field at an axial station given the inherent
uncertainty in the measurements and certain physical assumptions (see Section 2.2);

• compute the area-average of the stagnation pressure and temperature based on this model
(Section 4.1);

• distinguish between uncertainty in the spatial model (and its averages) induced by sensor impre-
cision, and insufficient spatial sampling (Section 5);

• quantify the dominant circumferential harmonics leveraging some notion of sparsity (Section 3.2);
• developmethodologies that can transfer information from relatively more heavily instrumented test-
bed engines to very sparsely instrumented flight engines at the same plane; and

• foster the transfer of information between adjacent planes in an engine with the intention of reducing
uncertainty (see Section 2.2).

These latter two aims will be addressed using transfer learning—an emerging subdiscipline of machine
learning that seeks to transfer information between tasks, intelligently (Skolidis, 2012) especially when
one task is afforded more information than the other. In this article, we explore the topics of spatial field
estimation, area averaging, instrumentation sampling versus precision uncertainty estimation, and
transfer learning with Gaussian processes (GPs; Rasmussen and Williams, 2006).

2. GPAeroengine Model

GPs provide a powerful framework for nonparametric regression, where the regression function is
modeled as a random process, such that the distribution of the function evaluated at any finite set of
points is jointly Gaussian. GPs are characterized by a mean function and a two-point covariance function.
GPs have been widely used to model spatial and temporal varying data since their first application in
modeling ore reserves in mining (Krige, 1951), leading to a method for spatial interpolation known as
kriging in the geostatistics community (Stein, 2012; Cressie, 2015). The seminal work of Kennedy and
O’Hagan (2001) provides a mature Bayesian formulation which forms the underpinnings of the approach
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adopted in this article. Emulation methods based on GPs are now widespread and find uses in numerous
applications ranging from computer code calibration (Higdon et al., 2004) and uncertainty analysis
(Oakley and O’Hagan, 2002) to sensitivity analysis (Oakley and O’Hagan, 2004). Since then GP
regression has enjoyed a rich modern history within uncertainty quantification, with increasingly
sophisticated extensions beyond the classical formulation, including latent space models (Chen et al.,
2015), coregional models (Alvarez et al., 2012) convolutional processes (Higdon, 2002; Álvarez and
Lawrence, 2011), multi-task processes (Bonilla et al., 2008), and GPs with incorporated dimension
reduction (Liu and Guillas, 2017; Seshadri et al., 2019).

In a multi-task GP, one is given similar but distinct multiple input–output data sets—each referred to as
a task. Rather than train a single model for each task (single-task), the idea is to train a single model for all
the tasks simultaneously. The advantage is that by constructing the latter, information can be readily
shared across tasks in a meaningful manner, thereby aiding in improved inference. This implies, either
implicitly or explicitly, that there are features of the model that are either hierarchical or that define
common structure across the different tasks. As Skolidis (2012) remarks, multi-task GPs can be
advantageous when compared to single-task GPs when there is insufficient data to infer all the model’s
parameters. It is expected that multi-task GPs would exploit the common structure prevalent across all
tasks for improved parameter inference. Practically, one approach is to express the covariance function as
theKronecker product of a task-based covariance function and a data-based covariance function (see 54 in
Skolidis, 2012). While a Kronecker product-based definition of the multi-task kernel does have compu-
tational advantages, it restricts one to using the same set of radial and circumferential measurements at
each measurement plane.

We end this brief literature survey with a remark on subtlety between multi-task models and models
with transfer learning. All transfer learning models are inherently multi-task, however, not all multi-task
models are transfer learning models. The key distinction lies in whether any information is actually
transferred across the tasks, and whether that transfer leads to a more well-defined model.

2.1. Preliminaries and data

In this subsection, we present a GP aeroengine spatial model—designed to emulate the steady-state
temperature and pressure distributions at multiple axial planes. Given the complexity of the flow, our aim
is to capture the primary aerothermal features rather than resolve the flow field to minute detail. One can
think of the primary aerothermal features as being the engine modes in the circumferential direction. In
what followswe detail our GP regressionmodel; our notation closely follows theGP exposition of Rogers
and Girolami (see chapter 8 in Rogers and Girolami, 2016).

Let us assume that we have sensor measurement location and sensor reading pairs xi, f ið Þ for
i¼ 1,…, N, and M locations at which we would like to make reading predictions

X¼
x1
⋮
xN

2
64

3
75 f ¼

f 1
⋮
f N

2
64

3
75 and X∗ ¼

x∗1
⋮
x∗M

2
64

3
75 f∗ ¼

f ∗1
⋮
f ∗M

2
64

3
75, (1)

where the superscript ∗ð Þ denotes the latter. Here xi ∈ℝ3, thus X∈ℝN�3. Without loss in generality, we
assume that

PN
i f i ¼ 0, so that the components correspond to deviations around the mean; physically,

being either temperature or pressure measurements taken at the locations in X . Let the values in f be
characterized by a symmetric measurement covariance matrix Σ∈ℝN�N with diagonal measurement
variance terms σ2m, that is,Σ¼ σ2mI . In practice,Σ, or at least an upper bound onΣ, can be determined from
the instrumentation device used and the correlations between measurement uncertainties, which will be
set by an array of factors such as the instrumentation wiring, batch calibration procedure, data acquisition
system, and filtering methodologies. Thus, the true measurements t∈ℝN are corrupted by a zero-mean
Gaussian noise, f ¼ tþN 0, Σð Þ yielding the observed sensor values. This noise model, or likelihood,
induces a probability distribution ℙ f jt, Xð Þ¼N f , Σð Þ around the true measurements t.

Data-Centric Engineering e29-7

https://doi.org/10.1017/dce.2022.29 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.29


In the absence ofmeasurements, we assume that f is a Gaussian random fieldwith amean of 0 and has a
two-point covariance function k �, �ð Þ. The joint distribution of f , f∗ð Þ satisfies

f

f∗

� �
�N 0,

K ∘∘þΣ K ∘∗

KT
∘∗ K∗∗

� �� �
, (2)

where the Gram matrices are given by K ∘∘½ � i, jð Þ ¼ k xi, xj
� �

, K ∘∗½ � i, lð Þ ¼ k xi, x∗l
� �

, and K∗∗½ � l, mð Þ ¼
k x∗l , x

∗
m

� �
, for i,j¼ 1,…, N and l,m¼ 1,…,M. From (2), we can write the predictive posterior

distribution of f∗ given f as ℙ f∗jf , X∗, Xð Þ¼N μ∗, Ψ∗ð Þ where the conditional mean is given by

μ∗¼KT
∘∗ K ∘∘þΣð Þ�1f

¼KT
∘∗G

�1f ,
(3)

with G¼ K ∘∘þΣð Þ; the conditional covariance is
Ψ∗ ¼K∗∗�KT

∘∗G
�1K ∘∗: (4)

2.2. Defining the covariance kernels

As our interest lies in applying GP regression over P engine planes, our inputs
xi ∈ ri, θi, ρið Þ: ri ∈ 0, 1½ �, θi ∈ 0, 2π½ Þ, ρi ∈ 1,…, Pf gf g can be parameterized as

X ¼
r1 θ1 ρ1
⋮ ⋮ ⋮
rN θN ρN

2
64

3
75¼ r θ ρ½ �, and X∗ ¼

r1 θ1 ρ1
⋮ ⋮ ⋮
rM θM ρM

2
64

3
75¼ r∗ θ∗ ρ∗½ �: (5)

Inmost situations under consideration, we expect thatX ¼ ri, θj, ρl
� �

, ri ∈ r, θj ∈ θ, ρl ∈ ρ
� 	

where r is
a set of L radial locations, θ is a set of O circumferential locations and P is the number of measurement
planes, such that N ¼ L�O�P, assuming the measurements across the P planes are taken at the same
locations. We define the spatial kernel to be a product of a Fourier kernel kc in the circumferential
direction, a squared exponential kernel kr in the radial direction, and a planar kernel kp along the discreteP
different planes

k x, x0ð Þ¼ k r, θ, ρð Þ, r0, θ0ρ0ð Þð Þ
¼ kr r, r0ð Þ⊙ kc θ, θ0ð Þ⊙ kp ρ, ρ0ð Þ, (6)

where the symbol ⊙ indicates a Hadamard (element-wise) product.2

Along the radial direction, the kernel has the form

ks r, r
0ð Þ ¼ σ2f exp � 1

2l2
r� r0ð ÞT r�r0ð Þ

� �
, (7)

where σf is the signal variance and l is the length-scale—two hyperparameters that need to be compu-
tationally ascertained.

Our primary mechanism for facilitating transfer learning is via the planar kernel. For this kernel, we
define s∈ℤP

þ to be a similarity vector of length P comprised of strictly positive integers. Repetitions in s
are permitted and are used to indicate which planes are similar. For instance, if we set s¼ 1,1,2ð Þ, this
indicates that the first two planes are similar. We will use the notation s ρð Þ to select the similarity value
corresponding to a specific plane ρ. The number of unique integers in smay be thought of as the number of
independent planes; let this be given by Q, implying Q≤P.

Seeing as there are Q independent planes, we require a metric that serves to correlate the different
independent plane combinations. To this end, consider a symmetric matrix S ∈ℝQ�Q with a diagonal

2 For computational efficiency, the Kronecker product can also be used in cases where there are no missing entries, that is, sensor
values can be obtained from a grid of measurements.

e29-8 Pranay Seshadri et al.

https://doi.org/10.1017/dce.2022.29 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.29


formed of η values. The η values denote the correlation between planes that are similar, and by
construction it is a tunable hyperparameter. In practice, unless the planes are identical, their correlation
will be less than unity, that is, η< 1. Next, set W ¼Q Q�1ð Þ=2, corresponding to the number of upper
(or lower) triangular off-diagonal elements in a Q�Q matrix. As each off-diagonal entry represents a
pairwise correlation between two independent planes, it needs to be represented via another appropriate
hyperparameter. Let ξ¼ ξ1, …, ξWð Þ be this hyperparameter, yielding

S¼

η ξ1 … ξQ�1

ξ1 ⋱ … ⋮
⋮ … ⋱ ξW

ξQ�1 … ξW η

2
6664

3
7775: (8)

Then, the planar kernel us given by

kρ ρi, ρ
0
j


 �
¼

1 if ρi ¼ ρ0j

S½ �s ρið Þ,s ρ0jð Þ otherwise:

(
(9)

In summary, the planar kernel establishes the correlation between all the P measurement planes. It is
invariant to the radial and circumferential values and is only dependent upon the planes chosen. We
remark here that the type of transfer learning facilitated by (9) is inherently inductive as we are not reusing
parameters from a prior regression task—typically seen across many deep learning approaches.

Prior to defining the kernel along the circumferential direction, a few additional definitions are
necessary. Letω¼ ω1, …, ωKð Þ indicate theK wave numbers present along the circumferential direction
for a given plane. These can be a specific set, that is, ω¼ 1,4,6,10ð Þ, or can be all wave numbers up to a
particular cut-off, that is,ω¼ 1, 2, …, 25ð Þ.We define aFourier designmatrixF ∈ℝ 2Kþ1ð Þ�N , the entries
of which are given by

F ij θð Þ¼

1 if i¼ 1

sin ω i
2
πθj=180°


 �
if i> 1when i is even

cos ωi�1
2
πθj=180°


 �
if i> 1 when i is odd

8>>><
>>>:

: (10)

Note that the number of columns in F depends on the size of the inputs θ. To partially control the
amplitude and phase of the Fourier modes and the value of the mean term, we introduce a set of diagonal
matrices D¼ D1, …, DQð Þ. Each matrix has dimension ℝ 2Kþ1ð Þ� 2Kþ1ð Þ, with entries Di ¼
diag λ2i,1, …, λ2i,2Kþ1

� �
for i¼ 1,…,Q. Note, we use the word partially, as these hyperparameters are

not indicative of the amplitude or phase directly, as they depend on the measured data too. The
hyperparameters themselves are variances, denoted using the squared terms λ2i,j along the diagonal in
D. Furthermore, note that the matrices in Di, and thus number of tunable hyperparameters, scale as a
function of the number of independent planesQ and not by the total number of planes P. The kernel in the
circumferential direction may then be written as

kc θ, ρið Þ, θ0, ρ0j

 �
 �

¼F θð ÞT
ffiffiffiffiffiffiffiffiffiffiffiffi
Ds ρjð Þ

q ffiffiffiffiffiffiffiffiffiffiffiffi
Ds ρ0jð Þ

q
F θ0ð Þ, (11)

where the notationDs ρið Þ corresponds to the diagonal matrix index by s ρið Þ.We remark here that as written
in (11) the Fourier modes across all the P planes are fixed, though the amplitudes and phases can vary.

Having established the definition of the radial, planar and circumferential kernels, it is worthwhile
to take stock of our aim. We wish to represent the primary aerothermal attributes using radial,
circumferential and planar kernels. While the focus of this article is on engine and rig test data, a
few comments regarding transfer learning with engine measurements and high-fidelity CFD is in
order. Should temperature or pressure values across the annulus—or a part thereof—be available from
RANS, mean unsteady RANS, or even time-averaged LES, we can still use the radial and

Data-Centric Engineering e29-9

https://doi.org/10.1017/dce.2022.29 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.29


circumferential kernels on that data. Alternatively, as the spatial resolution of the CFD data will be far
greater than the experimental one, a standard Matern kernel function along both the radial and
circumferential directions kCFD x, xð Þmay also be used. For a single plane, we can then define additive
kernels of the form k x, x0ð Þ ¼ kc r, r0ð Þ⊙ kr r, r0ð Þþ kCFD x, x0ð Þ. This idea can in practice capture the
superposition is shown in Figure 3, where the CFD is used solely to resolve the higher frequency
blade-to-blade modes. In terms of extending the current framework to temporally (or unsteady)
problems, we note that this will require the development of a temporal kernel ktime t, t0ð Þ defined over
the times t.

3. Priors

Using the GP regression framework implies that our model prior is Gaussian ℙ tjXð Þ¼N 0, K ∘∘ð Þ. We
have already established that our likelihood function is alsoGaussian. The central objective of our effort is
to determine the posterior ℙ f jX, σ2f , l2, λ2i,1, …, λ2i,2Kþ1, η, ξ1, …, ξW


 �
.

In this section, we impose priors on the hyperparameters in (6). Priors for the squared exponential
kernel are given by

σf �N þ 0, 1ð Þ,
l�N þ 0, 1ð Þ, (12)

where N þ represents a half-Gaussian distribution. For the planar kernel, in this article we set
η�U 0:8,1:0½ �, where U represents a uniform distribution. This range is chosen to foster a strong positive
correlation between the two planes deemed similar. Note that this prior structure can be augmented to have
each diagonal term in (8) have its own prior—an idea we do not pursue in this article. Finally, we assign

ξ i �U �1, 1½ �, (13)

for i¼ 1,…,W . Priors for the Fourier kernel are detailed below.

3.1. Simple prior

There are likely to be instances where the harmonicsω are known, although this is typically the exception
and not the norm. In such cases, the Fourier priors for a given plane index i may be given by
λ2i,j �N þ 0, 1ð Þ, for j¼ 1,…, 2Kþ1.

3.2. Sparsity promoting prior

In the absence of further physical knowledge, we constrain the posterior by invoking an assumption of
sparsity, that is, the spatial measurements can be adequately explained by a small subset of the possible
harmonics. This is motivated by the expectation that a sparse number of Fourier modes contribute to the
spatial pattern in the circumferential direction. In adopting this assumption, we expect to reduce the
variance at the cost of a possible misfit. Here, we engage the use of sparsity promoting priors, which
mimic the shrinkage behavior of the least absolute shrinkage and selection operator (LASSO) (Tibshirani,
1996; Bühlmann and Van De Geer, 2011) in the fully Bayesian context.

A well-known shrinkage prior for regression models is the spike-and-slab prior (Ishwaran and Rao,
2005), which involves discrete binary variables indicating whether or not a particular frequency is
employed in the regression. While this choice of prior would result in a truly sparse regression model,
where Fourier modes are selected or deselected discretely, sampling methods for such models tend to
demonstrate extremely poor mixing. This motivates the use of continuous shrinkage priors, such as the
horseshoe (Carvalho et al., 2009) and regularized horseshoe (Piironen and Vehtari, 2017) prior. In both of
these a global scale parameter τ is introduced for promoting sparsity; large values of τ will lead to diffuse
priors and permit a small amount of shrinkage, while small values of τ will shrink all of the hyperpara-
meters toward 0. The regularized horseshoe is given by
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c � IG
γ
2
;
γs2

2

� �
,

~λi, j � Cþ 0, 1ð Þ,

λ2i, j ¼
c~λ2i, j

cþ τ2~λ2i, j
, for j ¼ 1,…, 2K þ 1, and i ¼ 1, …, Q,

(14)

where Cþ denotes a half-Cauchy distribution; IG denotes an inverse gamma distribution, and where the
constants

τ¼ βσm
1�βð Þ ffiffiffiffi

N
p , γ¼ 30 and s¼ 1:0: (15)

Hyperparameters ~λi,j are assigned half-Cauchy distributions that have thick tails so they may allow a
fraction of the Fourier λi,j hyperparameters to avoid the shrinkage, while the remainder are assigned very
small values. These hyperparameters indirectly control the amplitude and phase of the Fourier series
representation, as mentioned before.

The scale parameter c is set to have an inverse gamma distribution—characterized by a light
left tail and a heavy right tail—designed to prevent probability mass from aggregating close to
0 (Piironen and Vehtari, 2017). This parameter is used when a priori information on the scale of the
hyperparameters is not known; it addresses a known limitation in the horseshoe prior where
hyperparameters whose values exceed τ would not be regularized. Through its relationship with
~λi, j, it offers a numerical way to avoid shrinking the standard deviation of the Fourier modes that are
far from 0. Constants γ and s are used to adjust the mean and the variance of the inverse gamma scale
parameter c, while constant β controls the extent of sparsity; large values of β imply that more
harmonics will participate in the Fourier expansion, while smaller values of β would offer a more
parsimonious representation.

There is one additional remark regarding the hierarchical nature of the priors above. If two
measurement planes are similar as classified by s, then they have the same set of Fourier hyperpara-
meters. Note that having the same Fourier hyperparameters does not imply that the planes have the
same circumferential amplitudes and phases.While we assume that all planes share the base harmonics
ω, the model above has sufficient flexibility to have multiple planes with distinct dominant harmonics
—provided the overall extent of sparsity remains approximately similar. This property is useful in an
aeroengine as dominant harmonics upstream may not be dominant downstream, owing to changes in
vane counts, flow diffusion, the introduction of cooling flows, struts, and bleeds, among other
componentry.

4. Posterior Inference

We generate approximate samples from the posterior distribution jointly on f∗ and the hyperparameters
using Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Horowitz, 1991). In this work, we
specifically use the No-U-Turn (NUTS) sampler of Hoffman and Gelman (2014), which is a widely
adopted extension of HMC. The main advantage of this approach is that it mitigates the sensitivity of
sampler performance on the HMC step size and the number of leapfrog steps.

4.1. Predictive posterior inference for the area average

The analytical area-weighted average of a spatially varying temperature or pressure function y xð Þ at an
isolated measurement plane indexed by l⊂ 1, P½ �, where r∈ 0, 1½ � and θ∈ 0, 2π½ Þ, is given by
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μarea,l ¼ νl

Z 1

0

Z 2π

0
T r, θð Þh rð Þdr dθ, (16)

where T represents the spatially varying temperature or pressure at a given axial measurement plane, and

νl ¼ router,l� rinner,l

π r2outer,l� r2inner,l


 � and hl rð Þ¼ r router,l� rinner,lð Þþ rinner,l, (17)

where rinner,l is the inner radius and router,l the outer radius for plane l. For the joint distribution
(2) constructed across P axial planes, one can express the area average as

f Xð ÞZ
f zð Þh zð Þdz � ν

2
4

3
5�N 0,

K ∘∘þΣ
Z

K X , zð Þ⊙ h zð Þdz � νZ
K z, Xð Þ⊙ h zð Þdz � ν νT

Z Z
K z, zð Þ⊙h2 zð Þdzdz � ν

� �
2
664

3
775

0
BB@

1
CCA, (18)

where ν¼ ν1, …, νPð Þ, h¼ h1,…, hPð Þ and z∈ r, θð Þ : r∈ 0, 1½ �, θ∈ 0, 2π½ Þ, ρ∈ 1,…, Pf gf g.
Through this construction, we can define the area-average spatial quantity as multivariate Gaussian
distribution with mean

μarea f½ � ¼ ν
Z

K z, Xð Þ⊙ h zð Þdz
� �

G�1f , (19)

where μarea ∈ℝP. The posterior here is obtained by averaging over the hyperparameters; the covariance is
given by

Σ2
area f½ � ¼ νT

Z Z
K z, zð Þ⊙ h2 zð Þdzdz � ν

� �
�

Z
K z, Xð Þ⊙ h zð Þdz � ν

� �
�G�1�Z

K X , zð Þh zð Þdz � ν
� �

:

(20)

We remark that although the integral of the harmonic terms is 0, the hyperparameters associated with
those terms do not drop out and thus do contribute to the overall variance.

5. Decomposition of Uncertainty

To motivate this section, we consider the following questions:

• Can we ascertain whether the addition of instrumentation will alter the area-average of a single
measurement plane (and its uncertainty)?

• How do we determine whether we require more sensors of the present variety, or higher precision
sensors at present measurement locations at a given plane?

• In the case of the former, can we determine where these additional sensors should be placed?

As instrumentation costs in aeroengines are expensive, statistically justified reductions in instrumentation
can lead to substantial savings per engine test. Thus, the answers to the questions above are important. At
the same time, greater accuracy in both the spatial pattern and its area-average can offer improved
aerothermal inference. To aid our mathematical exposition, for the remainder of the methodology
section of this article, we restrict our analysis to a single measurement plane. In other words, P¼ 1 and
thus the planar kernel does not play a role in the Gaussian random field.
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5.1. Spatial field covariance decomposition

To offer practical solutions to aid our inquiry, we utilize the law of total covariancewhich breaks down the
total covariance into its composite components cov E f∗jf , Xð Þ½ � andE cov f∗jf , X½ �ð Þ. These are given by

cov E f∗jf , Xð Þ½ � ¼KT
∘∗K

�1
∘∘ ΨfK

�1
∘∘ K ∘∗ (21)

and

E cov f∗jf , X½ �ð Þ¼K∗∗�KT
∘∗K

�1
∘∘ K ∘∗, (22)

where

Ψf ¼ K�1
∘∘ þΣ�1

� ��1
; (23)

once again we are marginalizing over the hyperparameters. We term the uncertainty in (21) the impact of
measurement imprecision, that is, the contribution owing to measurement imprecision. Increasing the
precision of each sensor should abate this uncertainty. The remaining component of the covariance is
given in (22), which we define as spatial sampling uncertainty, that is, the contribution owing to limited
spatial sensor coverage (see Pianko andWazelt, 1983). Note that this term does not have anymeasurement
noise associated with it. Adding more sensors, particularly in regions where this uncertainty is high,
should diminish the contribution of this uncertainty.

5.2. Decomposition of area average uncertainty

Extracting 1D metrics that split the contribution of the total area-average variance into its composite
spatial sampling σ2area,s and impact of measurement imprecision σ2area,m is a direct corollary of the law of
total covariance, that is,

σ2area,s ¼ ν2l

Z Z
K z, zð Þh2l zð Þdzdz

� �
� νl

Z
K z, Xð Þh zð Þdz

� �
�K�1

∘∘

� νl

Z
K X , zð Þhl zð Þdz

� � (24)

and

σ2area,m ¼ νl

Z
K z, Xð Þhl zð Þdz

� �
�K�1

∘∘ ΨfK
�1
∘∘ � νl

Z
K X , zð Þhl zð Þdz

� �
, (25)

where νl and hl were defined previously in (17). We remark here that whole-engine performance analysis
tools usually require an estimate of sampling and measurement uncertainty—with the latter often being
further decomposed into contributions from static calibration, the data acquisition system, and additional
factors. Sampling uncertainty has been historically defined by the sample variance (see 8.1.4.4.3 in
Saravanmuttoo, 1990). We argue that our metric offers a more principled and practical assessment.

Guidelines on whether engine manufacturers need to (a) add more instrumentation, or (b) increase the
precision of existing measurement infrastructure can then follow, facilitating a much-needed step-change
from prior efforts (Pianko and Wazelt, 1983; Saravanmuttoo, 1990).

6. Isolated Plane Studies with the Simple Prior

To set the stage for an exposition of our formulations and algorithms, we design the spatial temperature
distribution shown in Figure 4. This field comprises of five circumferentially varying harmonics ω¼
1,4,7,12,14ð Þ that have different amplitudes and phases going from the hub to the casing. This synthetic
data was generated by radially interpolating four distinct circumferentially varying Fourier series’
expansions—all with the same harmonics ω. This interpolation was done using a cubic polynomial to
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extrapolate the field across the annulus. A small zero-mean Gaussian noise with a standard deviation of
0.1 Kelvin (K) is added to the spatial field. The computed area average mean of the field is 750.94 K.

6.1. Spatial field estimation

Consider a six-rake arrangement given by instrumentation placed as per Table 1, representative of certain
planes in an engine. Note that rake arrangements in engines are driven by structural, logistical (access),
and flexibility constraints, and thus, it is not uncommon for them to be periodically positioned. As will be
demonstrated, the rake arrangements have an impact on the spatial random field and the area average.

We set our simple priors (nonsparsity promoting) as per (12); harmonics to ω¼ 1,4,7,12,14ð Þ, and
extract training data from the circumferential and radial locations provided in Table 1. Traceplots for the
NUTS sampler for hyperparameters λ0, λ1, σf and l are shown in Figure 5 for the chosen rake placement.
Note that these plots exclude the first few burn-in samples and are the outcome of four parallel chains. The
visible stationarity in these traces, along with their low autocorrelation values give us confidence in the
convergence of NUTS for this problem. The Gelman-Rubin statistic for all hyperparameters above was
found to be 1.00; the Geweke z-scores were found to be well within the two standard deviation limit.
Figure 6a plots themean of the resulting spatial distribution (ensemble averaged), while Figure 6b plots its
standard deviation. In comparing Figure 6a with Figure 4, we note that in addition to adequately
approximating the radial variation (cooler hub and warmer casing), our methods are able to delineate
the relatively hotter left half-annulus and its three hot spots at 150°, 180°, and 210°. This is especially
surprising given the fact that we have 5 spatial harmonics and only 6 and 7 rakes, and not the 11 needed as
per the Nyquist bound. A circumferential slice of these plots is shown in Figure 6c at a radial height of

(a)

Figure 4. Ground truth spatial distribution of temperature.

Table 1. Summary of sampling locations for the default test case.

Property name Symbol Value(s)

Rake arrangement θ 12°, 55°, 97°, 170°, 215°, 305°ð Þ
Probe locations (non-dimensional) r 0:07,0:2,0:35,0:5,0:66,0:8,0:95ð Þ
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0.5mm; a radial slice is shown in Figure 6d at a circumferential location of 0.21 radians. Here, we note that
the true spatial variation (shown as a green line) lies within the standard deviation intervals in the
circumferential direction, demonstrating that our approach is able to provide sufficiently accurate
uncertainty estimates in this case.

For completeness, we plot the decomposition of the uncertainty in Figure 7, where the contribution of
impact of measurement imprecision is, on average, an order of magnitude lower than that of spatial
sampling. When inspecting these plots one can state that reductions in the overall uncertainty can be
obtained by adding additional rakes at 215° and 300° (see Figure 7b).

6.2. Spatial field uncertainty variations

To assist in our understanding of the spatial uncertainty decompositions above, we carry out a study
varying the number of rakes and their spatial locations. Figure 8 plots the two components of uncertainty
for 1, 2, and 3 rakes, while Figure 9 plots them for 9, 10, and 11 rakes. There are several interesting
observations to report.

First, the impact of measurement uncertainty deviates from the location of the sensor with the
accumulation of more rakes. For instance, in the case with one rake in Figure 8a, light blue and red
contours can be found near each sensor measurement. However, as we addmore rakes, there seems to be a
phase shift that is introduced to this pattern. This is because the measurement uncertainty will not
necessarily lie around the rakes themselves—especially if knowledge about a sensors’measurement can
be obtained from other rakes—but rather be in regions that are most sensitive to that particular sensor’s
value. Furthermore, in the case with an isolated rake, the impact of measurement imprecision locally will

(a) (b)

(c) (d)

Figure 5. Trace plots for theMCMC chain for some of the hyperparameters (a) λ0; (b) λ1; (c) σf ; and (d) l.
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be very close to the σm value assigned as the measurement noise. However, with the addition of more
instrumentation, the impact of measurement imprecision will increase, as observed in Figure 8g–i, before
decreasing again once the spatial pattern is fully known (see Figure 9g–i).

Second, when the number of rakes is equal to 11, the spatial sampling uncertainty in the circumferential
direction will not vary, and thus the only source of spatial sampling uncertainty will be due to having only
seven radial measurements. The former is due to the fact that with five harmonics, we have 11 circum-
ferential unknowns. This is clearly seen in Figure 9f. It should be noted that the position of the rakes can
abate the uncertainties observed. This raises a very important point concerning experimental design, and
how within a Bayesian framework, sampling uncertainty can be significantly reduced when the rakes are
accordingly positioned.

6.3. Bayesian area average

Bayesian area average estimates are obtained by integrating the spatial approximation (as per (18)) at each
iteration of the previously presented MCMC chain—ignoring the burn-in samples—and averaging over
sample realizations. The deficiency of the sector area-average compared to the Bayesian area average is
apparent when one studies its convergence.

(a) (b)

(c) (d)

Figure 6. Spatial distributions for (a) the mean and (b) the standard deviation, generated using an
ensemble average of the iterates in the MCMC chain (accepted samples with burn-in removed plus

thinning, across four chains), and a circumferential slice at (c) mid-span and a radial slice at (d) 12.03°.
Green circular markers are the true values for this synthetic case.
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To do this, we sample our true spatial distribution at 40 different randomized circumferential
locations for different numbers of rakes, while maintaining the number of radial probes and their
locations. The circumferential locations are varied by randomly selecting rake positions between
0° and 355° inclusive, in increments of 5°. Figure 10a plots the resulting sector area-average. The
yellow line represents the true area-average and the shaded gray intervals around it reflect
the measurement noise. It is clear that the addition of rakes does not necessarily result in any
convergence of the area-average temperature. Furthermore, the reported area-average is extremely
sensitive to the placement of the rakes; in some cases, a�2K variation is observed. In Figure 10b we
plot the reported mean for each randomized trial using our Bayesian framework. Not only is the
scatter less, but, in fact, after 10 rakes we see that reported area-averages lie within�2σm, where σm is
the measurement noise.

At this stage, it is worth reemphasizing how this translates to efficiency. Following the analysis of
Seshadri et al. (2020a), the impact of this uncertainty can be propagated through to subsystem efficiencies.
Consider an engine representative low-pressure isentropic turbine. Working with the average uncertainty
in temperature for a given number of rakes—obtained from Figure 10a,b—the average uncertainty in
efficiency can be computed. Table 2 contrasts these uncertainties for the sector weighted area average and
proposed Bayesian area average. It is clear that the latter metric offers more representative efficiency
estimates. Beyond efficiency, we reiterate that temperature measurements themselves form the backbone
of EGT (see Figure 1), which feeds into remaining useful life estimates. Large uncertainties in EGTwill
likely impact maintenance and overhaul decisions.

This makes a compelling case for replacing the practice for computing area-averages in turbomachin-
ery via sector weights with the proposed Bayesian treatment. As a side note, the idea of computing a
Bayesian area average across an annulus has motivated the development of a more physically represen-
tative Bayesian mass average (see Seshadri et al., 2022).

Next, we study the decomposition of the area-average variance in these randomized experiments and
plot their spatial sampling and impact of measurement imprecision components (see (24) and (25)) in
Figure 11. As before, the measurement noise is demarcated as a solid yellow line. There are interesting
observations to make regarding these results.

First, the impact ofmeasurement uncertainty increases withmore instrumentation, till themodel is able
to adequately capture all the Fourier harmonics (after 11 rakes); we made an analogous finding when
studying the spatial decomposition plots. This intuitively makes sense, as the more instrumentation we

(a) (b)

Figure 7. Decomposition of the standard deviations in the temperature: (a) impact of measurement
imprecision, and (b) spatial sampling.
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add, the greater the impact of measurement uncertainty. It is also worth noting that numerous rake
arrangements can be found that curtail this source of uncertainty, many far below the threshold associated
with the measurement noise.

Second, across the 40 rake configurations tested, spatial sampling uncertainty contributions were
found to be very similar when using only two to three rakes. The variability in spatial sampling uncertainty
decreases significantly when the number of rakes is sufficient to capture the circumferential harmonics.
Thereafter, it is relatively constant, as observed by the collapsing of the red circles in Figure 11.

7. Transfer Learning Results with the Sparsity Promoting Prior

In this results section, we present the results of our inductive transfer learning framework with sparsity-
promoting priors.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Decomposition of the standard deviations in the temperature for different number of rakes
where the top row shows the measurement locations, the middle row illustrates the spatial sampling
uncertainty, and the bottom row shows the impact of measurement imprecision. Results are shown for

(a,d,g) one rake; (b,e,h) two rakes; and (c,f,i) three rakes.
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7.1. Transfer learning by splitting instrumentation

In this first case study, we consider traverse temperature measurements taken from a research turbine
rig. Figure 12a shows the traverse locations at a temperature station, while Figure 12b shows the
resulting steady-state temperature field. A fast Fourier transform was carried out on the temperature
field at the hub, mid-span, and tip along the circumferential direction; the resulting amplitudes are
captured in Figure 12c–e. It is clear that wave numbers 1, 12, and 24 are dominant. Additionally, we note
that the signal is generally sparse, and thus utilization of the aforementioned sparsity-promoting priors
seems like a sensible decision.

Let us assume that we can sample this spatial field using only 4 circumferential rakes, each fitted with
6 probes. Assume further that we are permitted to do this twice, with different circumferential rake
placements. In both cases the rakes are clocked with respect to the upstream components, that is, they are
aligned to be at the same pitchwise location, so as not to capture any upstream wakes.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Decomposition of the standard deviations in the temperature for different number of rakes
where the top row shows the measurement locations, the middle row illustrates the spatial sampling
uncertainty, and the bottom row shows the impact of measurement imprecision. Results are shown for

(a,d,g) 9 rakes; (b,e,h) 10 rakes; and (c,f,i) 11 rakes.
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Table 2. Sample back-of-the-envelope uncertainty calculations for a representative isentropic turbine
based on assuming both inlet and exit planes have the same uncertainty in stagnation temperature;

stagnation pressures are assumed constant.

No. of rakes

Sector area-weighted average Bayesian average

Temperature (K) Efficiency (%) Temperature (K) Efficiency (%)

2 �1:53 �0:62 �1:52 �0:61
5 �1:51 �0:61 �0:81 �0:32
10 �1:74 �0:69 �0:21 �0:08
12 �1:63 �0:65 �0:04 �0:01

Note: All reported values are standard deviations based on Figure 10a,b.

(a) (b)

Figure 10.Convergence of (a) the sector weighted area-average and (b) the Bayesian area-average (only
mean reported) for 40 randomized arrangements of rake positions.

Figure 11. Decomposition of area-average spatial sampling and impact of measurement imprecision
area-average values for 40 randomized arrangements of rake positions.
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Running the isolated plane model—that is, with no planar kernel—with sparsity promoting priors
with ω¼ 1, 2, …, 15ð Þ for the first of the chosen rake arrangements, we obtain annular mean and
standard deviation plots as shown in Figure 13a,b. While the posterior Gaussian random field does
interpolate the measurements, by inspection it is readily apparent that the spatial pattern in Figure 13a
does not match the truth in Figure 12b. Results run for the second rake arrangement are shown in
Figure 13c,d.

To ascertain if the transfer learning approach works, we pass these two rake arrangements as two
separate measurement planes in the multi-plane model. As these measurements are from the same

(a) (b)

(c) (d)

(e)

Figure 12. Experimental data from an exit station in a high-pressure turbine test rig: (a) traverse
locations; (b) true temperature; Fourier amplitudes at the (c) hub, (d) mid-span, and (e) tip.
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physical measurement station, they are both assigned the same value in the similarity vector, that is,
s¼ 1, 1ð Þ. Once again, we resort to sparsity-promoting priors for inference. The results are shown in
Figure 14. Beyond the greater resemblance to the truth in Figure 12b, a slight reduction in the spatial
uncertainty is also observed. It is clear that themodel has successfully transferred information across the
two measurement planes to arrive at a more representative estimate of the temperature distribution. At
the same time, the model still has sufficient flexibility to offer slightly different temperature distribu-
tions for each plane individually; as we will see in the next case study, this is an extremely useful
characteristic.

Circumferential plots of the single and the multi-plane yielded posterior distributions are contrasted in
Figure 15 at the mid-span location; single plane results are shown in (a,c,e), while the multi-plane
(inductive transfer learning) results are shown in (b,d,f). Subfigures (e) and (f) show the Fourier series
amplitudes at the first plane only—these are very similar for the second plane. While it is apparent that in
both cases the true pattern (shown with green circular markers) is well-captured within two standard
deviations, in (b) and (d) the uncertainty is significantly reduced partly owing to the improved prediction
of the mean. This comparison is important to emphasize, as it demonstrates the accuracy of the model’s
predictions.

(a) (b)

(c) (d)

Figure 13. Single plane calculations for the first rake arrangement (top row) and the second rake
arrangement (bottom row). Posterior annular mean in (a,c); standard deviation in (b,d).
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7.2. Transfer learning with two adjacent planes from the same research engine

Next, we consider two temperature measurement planes located axially adjacent to each other in a
research aeroengine. The first plane comprises 7 rakes each fitted with 7 radial temperature probes. The
second plane comprises 24 thermocouples all placed at mid-span. As there are no rotating components
between these two measurement stations, and owing to the fact that the flow is predominantly axial, it is
hypothesized that they should have very similar temperature behavior.

The results of evaluating each measurement plane in isolation are captured in Figure 16 with
circumferential distributions at mid-span for each plane. For these results, the sparsity priors were
used with wave numbers ω¼ 1, 2, …, 9ð Þ. This choice was set by the fact that the inclusion of
wave numbers above 9 in the first plane leads to aliasing as the minimum angular distance between
probes is 36°.

It is clear that owing to the number of measurements in the second plane, there is little uncertainty in
the overall circumferential distribution. The same cannot be said for the upstream stator plane in (a).
Thus, the goal here is to explore whether the transfer learning enabled multi-plane model can (a) reduce

(a) (b)

(c) (d)

Figure 14. Multi-plane calculations for the first rake arrangement (top row) and the second rake
arrangement (bottom row). Posterior annular mean in (a,c); standard deviation in (b,d).
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the circumferential uncertainty in the first plane, whilst (b) reducing the radial uncertainty in the second
plane.

As before, for the transfer learning model we set s¼ 1, 1ð Þ. Note that this explicitly assumes that both
planes have the same set of wave numbers, although their precise amplitudes and phases may moderately
differ, as stated before.

(a) (b)

(c) (d)

(e) (f)

Figure 15. Comparison between the (a,c,e) single plane model and (b,d,f ) the multi-plane transfer
learning model at the mid-span location. Note that the amplitudes in (e) and (f ) are only shown for the

first planes (a) and (b). Green circular markers are the true values from the rig; blue markers
represent a subset of four rakes.
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Figure 17 shows the results of the proposed model. It is clear that there is a reduction in the uncertainties
in the radial direction in the burner plane, corresponding to the rake locations in the stator plane. There is also
a significant reduction in the circumferential direction at mid-span region in the stator plane. Additionally,
note how the radial distribution of temperature in the second plane resembles that seen on the first plane.

(a) (b)

(c) (d)

(e) (f)

Figure 16. Single model results for the first plane in (a,c,e) and the second plane in (b,d,f); here each
plane was run individually.
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7.3. Transfer learning across a fleet

One criticism of the work thus far is the reliance on s. Whilst in many cases, it is easy to establish whether
two sets of measurements are similar, there may be equally many instances where such connections are
difficult to draw. Ideally in such scenarios, it will be useful if the model itself can shed some light on the
relative similarity between measurement planes, by virtue of radial and circumferential characteristics.

(a) (b)

(c) (d)

(e) (f)

Figure 17. Multi-plane model results for the first plane in (a,c,e) and the second plane in (b,d,f).
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In this last example, we study the results of the multi-plane model on eight planes. The data chosen for
this study corresponds to the temperature measurements taken from the same measurement at approxi-
mately the same throttle setting for eight different research engines. Planes E1–E3 belong to the same
family, and planes E4, E5, and E7 belong to another family. Plane E8 is similar to E1–E3, but does have a
different blade numbers. Additionally, planes E6 and E7 are more closely related to E4 and E5 than to
planes E1–E3.

Rather than encode all these relationships in s, we intentionally capture only the first few and set
s¼ 1,1,1,2,2,3,4,5ð Þ. From the resulting posterior distributions of η and ξ1,…, ξW and their placement in
S, we can construct the correlation matrix shown in Figure 18 by taking the mean of all the relevant
hyperparameters ξ. Subfigure (a) plots themean of the correlation parameters, whilst (b) plots the standard
deviation—bearing in mind that each iterate of the MCMC chain will yield a correlation matrix of this
form. To reiterate, these correlation values stem from the constants in (9).

From this correlation plot, we observe that many of the relationships previously mentioned but not
captured in s are apparent. For instance, E6 is observed to be more closely related to E4 and E5
respectively, compared to E1 (and by extension E2 and E3) with a value of 0.27. The model also rated
E8’s similarity to E1 at 0.72, which seems reasonable given that both have a dominant mode four pattern.
This value is higher than the correlation between E1, E2, and E3 and any of the other engines, which also
aligns with our expectations. For completeness, we include the posterior mean distributions in Figure 19,
where qualitatively one can observe a difference between engines that have a four-lobe versus a six-lobe
pattern.

8. Running Times and Code

All the results shown in this section and the next one were generated from a 2.6 GHzMacBook Pro with a
dual core Intel i7 chip and with 64 GB of random access memory (RAM). All run time estimates provided
are based on this machine configuration.

The underpinning GP framework was coded in python 3.8 using numpy (Harris et al., 2020), scipy
(Virtanen et al., 2020), and pymc3 (Salvatier et al., 2016). The eight-plane transfer learning model took
approximately 5 hr, while the two-plane transfer learning results took roughly 10 min. Both models
assumed sparse priors. Single plane sparse MCMC results took under 5 min, while single plane simple
prior (nonsparse) results took less than a minute. For all theMCMC results, we ran four chains in parallel.

(a) (b)

Figure 18. A planar correlation plot for the posterior distributions of the parameters in S: (a) mean;
(b) standard deviation of MCMC samples (with burn-in removed).
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9. Conclusions

Understanding the spatial annular pattern born from engine measurements provides valuable aerothermal
insight. This article presents a transfer learning model suited for engine temperature and pressure
measurements. It represents a step-up from prior averaging, uncertainty assessment, and spatial extrapo-
lation works. Central to our contribution is the ability to transfer information across planes with a planar
kernel and a user-defined input on the similarity between the different measurement planes. Beyond the
results presented in this article, the proposed model has been extensively tested on measurement planes
with 1–2 rakes of instrumentation when paired with planes with 6–7 rakes of instrumentation—with the
goal of improving the spatial prediction even with 1–2 rakes. Across all cases, the multi-plane model
yielded improved predictions. With respect to the proposed transfer learning model, future work could
leverage Dirichlet prior models to learn S from data directly as part of the inference process.

Given the utility of the proposed model to test and measurement, future engine design, and engine
health monitoring programmes, we anticipate many forthcoming advances within this modeling para-
digm, especially for prognostic and diagnostic efforts.
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