
Mathematical Structures in Computer Science (2021), 31, pp. 1034–1089
doi:10.1017/S0960129521000438

PAPER

Algebras of UTxO blockchains
Murdoch J. Gabbay∗

Heriot-Watt University, Edinburgh EH14 4AS, UK
∗Corresponding author. www.gabbay.org.uk

(Received 24 July 2020; revised 9 November 2021; accepted 9 November 2021; first published online 25 January 2022)

Abstract
We condense the theory of UTxO blockchains down to a simple and compact set of four type equa-
tions (Idealised EUTxO), and to an algebraic characterisation (abstract chunk systems), and exhibit an
adjoint pair of functors between them. This gives a novel account of the essential mathematical structures
underlying blockchain technology, such as Bitcoin.

Keywords: UTxO, blockchain, algebra, abstract chunk systems, nominal techniques

Contents
1. Introduction .1035

1.1. Map of the paper . 1036
2. Some Background .1037

2.1. What this paper is (not) about . 1037
2.2. Basic data structures . 1038
2.3. The permutation action . 1039

3. Idealised EUTxO: IEUTxO .1040
3.1. IEUTxO equations and solutions . 1040
3.2. Positions . 1043
3.3. Why we have α and β . 1044
3.4. Chunks and blockchains . 1045

3.4.1. Chunks . 1045
3.4.2. UTxOs, UTxIs . 1046
3.4.3. . . . and blockchains . 1047

3.5. Properties of chunks and blockchains . 1049
3.5.1. Algebraic and closure properties of chunks 1049
3.5.2. Some observations on observational equivalence 1050
3.5.3. Properties of UTxOs and UTxIs . 1050

3.6. An application: UTxO systems are ‘Church-Rosser’, in a suitable sense 1052
3.7. The category IEUTxO of IEUTxO models . 1053
3.8. Idealised UTxO . 1054

4. Abstract Chunk Systems: ACS .1055
4.1. Basic definitions . 1055
4.2. Monoid of chunks . 1056
4.3. Behaviour, positions and equivalence . 1058

4.3.1. Left and right behaviour . 1058
© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438
www.gabbay.org.uk
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129521000438&domain=pdf
https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1035

4.3.2. Positions . 1059
4.3.3. Observational equivalence . 1061

4.4. Oriented monoids . 1062
4.4.1. Definition and properties . 1062
4.4.2. A brief discussion . 1064

4.5. The category ACS of abstract chunk systems . 1065
4.6. Examples of abstract chunk systems . 1066

5. The Functor F : IEUTxO→ ACS .1067
5.1. Action on objects . 1067
5.2. Relation between the partial monoid ChunkT and the monoid of chunks F(T) . . . 1068
5.3. F(T) is oriented, so F(T) ∈ ACS . 1069
5.4. Action of F on arrows . 1070
5.5. Blocked channels . 1071

6. The Functor G : ACS→ IEUTxO .1072
6.1. A brief discussion: why represent? . 1072
6.2. Action on objects . 1073
6.3. ν is injective . 1075
6.4. Action on arrows . 1075

7. An Adjunction between F : IEUTxO→ ACS and G : ACS→ IEUTxO1076
7.1. The counit map εX : FG(X)→ X exists and is a surjection 1076
7.2. The unit map ηT :T→GF(T) exists and is an isomorphism 1077
7.3. F is left adjoint to G . 1078

8. Conclusions .1080
8.1. Observational equivalence . 1081
8.2. Garbage collection . 1081
8.3. Tests . 1082
8.4. Connections with nominal techniques . 1083
8.5. Concrete formalisation . 1084
8.6. Future work . 1085
8.7. Final words . 1085

1. Introduction
Blockchain is a young field – young enough that no consensus has yet developed as to its
underlying mathematical structures. There are many blockchain implementations, but what
(mathematically) are they implementations of ?

Two major blockchain architectures exist:

• UTxO-based blockchains (like Bitcoin) and
• accounts-based blockchains (like Ethereum).

We consider UTxO style blockchains in this paper, and specifically the Extended UTxO
style model (Chakravarty et al., 2020), which as the name suggests extends the UTxO struc-
ture (how, is described in Remark 3.8.1) of Bitcoin, which is still the canonical blockchain
application.

So our question becomes: what, mathematically speaking, is an EUTxO blockchain?
In the literature, Figure 3 of Chakravarty et al. (2020) exhibits Extended UTxO as an inductive

data type, designed with implementation and formal verification in mind. Most blockchains exist
only in code, so to have an inductive specification to work from in a published academic paper is
a luxury for which we can be grateful.

However, this does not answer our question.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1036 M. J. Gabbay

Figure 1. Type equations of Idealised EUTxO.

It would be like answering “What are numbers?” with the inductive definition N= 1+N: this
an important structure (and to be fair, it yields an important inductive principle) but this does not
tell us that N is a ring; or about primes and the fundamental theorem of arithmetic; or that N is
embedded in Q and R; or even about binary representations. In short, Figure 3 of Chakravarty
et al. (2020) gives us the raw data structure of one particular blockchain implementation, which is
certainly important, but this is not amathematics of blockchains.

As we shall see, there is more to be said here.

1.1 Map of the paper
A map of this paper, and our answer, is as follows:

(1) In Section 3, we present Idealised EUTxO (Definition 3.1.1), which is four type equations
(Figure 1).
This captures the essence of Chakravarty et al. (2020, Figure 3), but far more succinctly –
four lines vs. one full page.1
So, EUTxO is a solution to the IEUTxO equations in Figure 1.

(2) The approach to blockchain in this paper is novel – we concentrate not on blockchains but
on blockchain segments, which we call chunks (Definition 3.4.1).
Chunks have many properties that blockchains do not have: if you cut a blockchain into
pieces you get chunks, not blockchains; and chunks have more structure, for example they
form a partially ordered partial monoid (Theorem 3.5.4) which communicate across chan-
nels (much like theπ-calculusMilner 1999) and they display resource separation properties
reminiscent of known systems such as separation logic (Remark 3.5.13).
A blockchain is the special case of a chunk with no active input channels (Definition 3.4.10).
So, EUTxO is a system of chunks (a partially-ordered partial monoid with channels).

(3) IEUTxO models form a category (Definition 3.7.1).
So now, EUTxO is the category of partially ordered partial monoid solutions to the IEUTxO
models and arrows between them.

(4) Our answers are still quite concrete, in the sense that objects are solutions to type equations.
To go further, we use algebra.
We introduce abstract chunk systems (Definition 4.5.1), which are oriented atomic monoids
of chunks (Definitions 4.4.1, 4.2.5, and 4.2.1). These too form a category (Definition 4.5.2),
with objects and arrows.
Thus, we extract relevant properties of what makes solutions to the IEUTxO equations
in Figure 1 interesting, as explicit and testable algebraic properties (see the discussion in
Subsection 8.3).
Several design choices exist in this space: we discuss some of them in Remarks 6.4.4
and 7.1.5 and Proposition 7.3.6.
So now EUTxO is a bundle of abstract algebraic, testable properties, which exists in a clean
design space which could be explored in future work.

(5) Finally, we pull this all together by constructing functors between the categories of IEUTxO
models and of abstract chunk systems (Definitions 5.1.1 and 6.2.1), and we exhibit a cycle
of categorical embeddings between them (Theorem 7.3.4).

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1037

So finally, EUTxO becomes a pair of categories – one of concrete solutions to some type
equations, and this embedded in a category of abstract algebras – related by adjoint func-
tors mapping between them; or if the reader prefers, it becomes a loop of embeddings
(illustrated in Remark 7.3.5), cycling between the concrete and abstract algebras.

There are many definitions and results in this paper, and this leads to a broader point of it: that
the mathematics we observe is possible. There is a mathematics of blockchain here which we have
not seen commented on before.

This may help make blockchain more accessible and interesting to a mathematical audi-
ence and improve communication – since there is no more effective language for handling
complexity than mathematics. Furthermore, as we argue in Subsections 4.4.2 and 8.3, our anal-
ysis of blockchain structure in this paper is not just of interest to mathematicians – it may also be
of practical interest to programmers – by suggesting ways to structure and transform code, and
establishing properties for unit tests, property-based testing and formal verification of correctness
– and to designers of new UTxO-based systems, wishing to attain good design and security by
working from a (relatively compact) mathematical reference model.

More exposition and discussion is in the body of the paper and in Section 8, including
discussions of future work.2

2. Some Background
2.1 What this paper is (not) about
We are parametric across possible data.

Blockchains are best-known as stores of value but it is widely appreciated in the industry that
a blockchain is just a particular kind of distributed database and that the data stored on it, and
consistency conditions imposed on its transactions, can vary with the application.

This paper (in common with many real-life blockchain implementations) is parametric in the
type of data stored on it. Specifically, we include as a parameter an uninterpreted type β of ‘data’
in our ‘Idealised IEUTxO’, as a user-determined black box, and we admit a choice of admissible
transactions and validators (this is the subset inclusions in the last two lines of Figure 1).3

We do not consider networks or security.
Real blockchains rightly work hard to be efficient and secure. In the real world, we hash

data, network latency matters, as do good cryptography, incentives, permissions, user training,
passwords, privacy, and more.

Again, we are parametric in these concerns. We include an uninterpreted type α of ‘keys’, but
do not force any particular cryptographic content on them.4

We do have validators, but we elide their computational content.
The UTxOmodel of adding a block to a chain is that the chain has ‘unspent outputs’ – meaning

output ports that have not yet engaged in interaction – and at each unspent output o is located at
some data d and a validator v.

A validator is a machine that takes data-key pairs as input and decides whether they are ‘good’
or ‘bad’. Good data-key pairs let the user interact with the blockchain; bad ones get rejected. In
more detail, to append a block to the blockchain, we

• find a validator v on an unspent output o with data d and
• present it with a suitable key k such v considers (d, k) to be ‘good’;

the output is now considered ‘spent’ and our block is attached to the chain.5
This is much like putting a key into a lock to open a door, except that appending a block is

irreversible: an output, once spent, cannot be unspent.6 The idea is that our newly attached block
may introduce fresh outputs with validators which we designed and to which we have the keys;7
these are new ‘unspent’ outputs on the chain.8

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1038 M. J. Gabbay

We do model validators in this paper, but mathematically – meaning that a validator is not
a code-script (as it would be in real life). Instead, we identify a validator directly with the set of
data-key pairs that it accepts.9

Remark 2.1.1. In summary: Idealised (E)UTxO is a mathematical model of the structural act of
UTxO block combination and validation and Abstract chunk systems are an algebraic rendering of
the same idea.

This basic idea of block combination and validation might not seem like much.10 However,
this is the fundamental operation of the UTxO architecture, and we shall find many interesting
and unexpected observations to make about it.

So if there is one question that this paper addresses, it is this:What does it mean, mathematically,
when we append a transaction to a UTxO blockchain?

Our answer occupies the rest of this paper.
In the rest of this Section, we will set up some basic mathematical machinery. The reader is

welcome to skip or skim it and refer back to it as required.

2.2 Basic data structures
Definition 2.2.1.

(1) Fix a countably infinite set A= {a, b, c, p, . . . } of atoms.
(2) A permutation is a bijection on A; write π , π ′ ∈ Perm for permutations.

Remark 2.2.2. Following the ideas in Gabbay (2020a), Gabbay and Pitts (2001) atoms will be the
atoms of ZFA of Zermelo-Fraenkel set theory with Atoms11 – this is a fancy way to say that A is a
type of atomic identifiers.

We will use atoms to locate inputs and outputs on a blockchain. More on this in Subsection 2.3.

Notation 2.2.3.

(1) Write N= {0, 1, 2, . . . }.
(2) If X is a set, write fin(X) for the finite power set of X, and fin!(X) for the pointed finite power

set. In symbols:

fin!(X)= {(X, x) ∈ fin(X)× X | x ∈ X}.
Above, (X, x) is a pair, and fin(X)× X is a Cartesian product.

(3) If X and Y are sets, we use a convenient shorthand in Figure 1 by writing

(fin(X), Y)! as shorthand for (fin(X)!, Y).

That is, we take (-)! to act on a pair functorially, on the first component. We do this in
Figure 1 when we write Transaction! in the definition of Validator.

(4) If X is a set then write [X] for the set of (possibly empty) finite lists of elements from X. We
write • for list concatenation, so l • l′ is l followed by l′.
More generally, we will write • for any monoid composition; list concatenation is one
instance. It will always be clear what is intended.

(5) If X is a set then order l, l′ ∈ [X] by the sublist inclusion relation, where l≤ l′ when l can be
obtained from l′ by deleting (but not rearranging) some of its elements.

(6) If X is a set and x ∈ X then we may call the one-element list [x] ∈ [X] a singleton.
(7) If V ∈ X→ Bool and x ∈ X then we may write V(x) or V x for V x= True.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1039

2.3 The permutation action
Remark 2.3.1. We spend this Subsection introducing permutations and their action on elements.
We will need this most visibly in two places:

(1) To state the key Definition 4.3.6.
(2) To prove Lemma 5.2.1, and thus Proposition 5.2.2.

Because we assume atoms and are working in a ZFA universe, everything has a standard permuta-
tion action.We describe it in Definition 2.3.3. Programmers can think of the permutation action as
a generic definition in the ZFA universe (given below in this Remark), which is sufficiently generic
that it exists for all the data types considered in this paper. By this perspective, Definition 2.3.3
specifies how this generic action interacts with the specific type-formers of interest for this paper.

Definition 2.3.2. For reference, we write out the ZFA generic definition, which is by ε-induction
on the sets universe:

π ·a= π(a) a ∈A

π ·X = {π ·x | x ∈ X} X a set.

More information on this sets inductive definition is in Gabbay (2001, 2020a). Definition 2.3.3
can be usefully viewed as a collection of concrete instances of Definition 2.3.2 for the data types of
interest in this paper:

Definition 2.3.3. Permutations π act concretely as follows:

(1) If π ∈ Perm and a ∈A then π acts on a as a function:
π ·a= π(a).

(2) If π ∈ Perm and X is any set then π acts pointwise on X as follows:
π ·X = {π ·x | x ∈ X}.

Note as a corollary of this that x ∈ X ⇐⇒ π ·x ∈ π ·X.
(3) If π ∈ Perm and (x1, . . . , xn) is a tuple then π acts pointwise on (x1, . . . , xn) as follows:

π ·(x1, . . . , xn)= (π ·x1, . . . , π ·xn).
Note therefore that π ·((x1, . . . , xn)!!i)= π ·xi, where 1≤ i≤ n and !! indicates lookup.

(4) If π ∈ Perm and i ∈N then π ·i= i.
(5) If π ∈ Perm and (X, x) is a pointed set (Notation 2.2.3(2)) then π acts pointwise on (X, x)

as follows:
π ·(X, x)= (π ·X, π ·x).

(This is indeed just a special case of the previous case, for tuples.)
(6) If π ∈ Perm and f is a function, then π has the conjugation action on f as follows:

(π ·f)(x)= π ·(f (π -1·x)).
Note therefore that π ·(f (x))= (π ·f)(π ·x), and π ·f maps π ·x to π ·(f (x)).

(7) In particular, π acts as the above on the inputs, outputs, sets of inputs, sets of outputs,
transactions, and validators from Figure 1.

(8) If π ∈ Perm and R is a relation, then π acts pointwise such that
π ·R= {(π ·x, π ·y) | (x, y) ∈ R}

so that
x π ·R y⇐⇒ π -1·x R π -1·y.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1040 M. J. Gabbay

We use Definition 2.3.4 in Definition 4.3.6, but it is a useful concept so we include it here:

Definition 2.3.4. If a ∈A then write fix(a) for the set of permutations π ∈ Perm such that π(a)=
a. In symbols:

fix(a)= {π ∈ Perm | π(a)= a}.

Definition 2.3.5. Call an element equivariant when π ·x= x for every π ∈ Perm. Concretely:

(1) A is equivariant, and no individual atom a ∈A is equivariant.
(2) A set X is equivariant when

∀π∈Perm.(x ∈ X ⇐⇒ π ·x ∈ X).
In words: A set is equivariant precisely when it is closed in the orbits of its elements under the
permutation action.

(3) (x1, . . . , xn) is equivariant precisely when xi is equivariant for every 1≤ i≤ n.
(4) N is equivariant, and every i ∈N is equivariant.
(5) A pointed set (X, x) is equivariant precisely when X and x are equivariant.
(6) A function f is equivariant when π ·(f (x))= f (π ·x) for every x and every π .
(7) A relation R is equivariant when

∀π∈Perm.∀x, y.(x R y⇐⇒ π ·x R π ·y).

3. Idealised EUTxO: IEUTxO
3.1 IEUTxO equations and solutions
Definition 3.1.1. Let idealised EUTxO be the type equations in Figure 1 (Transaction! is from
Notation 2.2.3(3)).

Definition 3.1.2. Let a solution ormodel of the IEUTxO type equations in Figure 1 be a tuple
T= (α, β , Transaction, Validator, ν : Validator ↪→ pow(β × Transaction!))

where

(1) α is an uninterpreted12 equivariant (Definition 2.3.5(2)) set of keys,
(2) β is an uninterpreted equivariant set of data,
(3) Validator is an equivariant set of validators.
(4) Transaction is an equivariant subset of fin(A× α)× fin(A× β × Validator), and we

disallow the empty transaction, having no inputs or outputs.
(5) ν is an equivariant injective function (Definition 2.3.5(6)) from Validator to pow(β ×

Transaction!).

Some notation will be helpful:

Notation 3.1.3. If tx= (I,O) ∈ Transaction and i ∈ I then write tx@i ∈ Transaction! for the
input-in-context ((I, i),O) obtained by pointing I at i ∈ I (Notation 2.2.3). In symbols:

if tx= (I,O) ∈ Translation and i ∈ I then tx@i= ((I, i),O) ∈ Transaction!

Example 3.1.4. In Figures 2 and 3, we take a short diagrammatic tour of Definition 3.1.2, before
continuing with the technical development. Since we have yet to build our machinery, this dis-
cussion is informal and intuitive. We include precise forward pointers to later definitions where
appropriate; additional diagrams will be discussed in detail in Example 3.4.11.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1041

Figure 2. A pair of transactions tx and ty.

Figure 3. A pair of transactions tx and ty, successfully validated and combined.

tx ∈ Transaction in Figure 2 is a pair of a set of three inputs, and a set of two outputs:

tx =
(
{(a, x1), (b, x2), (c, x3)} , {(d, y1, v1), (e, y2, v2)}

)
.

Above:

• a, b, c, d and e are atoms in A. They serve as unique labels for the inputs and outputs.
Note that every input and output in tx has a distinct label. This is not directly enforced in the
raw data type in Figure 1, but it will follow as a consequence of well-formedness conditions
which we introduce later, in Definition 3.4.1.
Since each input is labelled with a unique atom, and similarly for each output, we may treat
atoms as positions, locations or channels. Thus for example, the input (a, x1) is labelled with a
and so we can think intuitively that it is located at position a; or waiting to communicate its
data x1 on channel a.

• x1 and x2 are elements of α. This is just an uninterpreted data type, but a good intuition is
that these are cryptographic keys.

• y1 and y2 are elements of β . This is just an uninterpreted data type: the intuition is that y1
and y2 are fragments of state data.
Note that state data are stored per-output and not per-transaction. We suppose for concrete-
ness that β =N, so state data can be summed (as we do in the output f of ty; more in this
shortly).
Note that Transaction is a subset of fin(Input)× fin(Output) in Figure 2; which subset, is
a parameter of the model selected. So for example, we could enforce that all state data on
all inputs and outputs should be equal, and this would in effect ensure that state data are a
per-transaction quantity. This may or may not be what we want: the definition allows us to
choose.

• v1 and v2 are validators. Their role is, intuitively, to decide which transactions tx will interact
with (precise definition in Definition 3.4.1(4)).

ty ∈ Transaction is another transaction, with two inputs and one output. Note that its inputs are
located at d and e, meaning that the inputs of ty point to the outputs of tx (Definition 3.2.6). Note
also that it performs an addition, in the sense that the state data of its single output are the sum of
the state data on its two inputs.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1042 M. J. Gabbay

If in addition the following validation conditions are satisfied (@ from Notation 3.1.3)

• (y1, ty@(d, x4)) ∈ ν(v1)
(in words: validator v1 in state y1 validates the pointed transaction ty@(d, x4))), and

• (y2, ty@(e, x5)) ∈ ν(v2)
(in words: validator v2 in state y2 validates the pointed transaction ty@(e, x5))

then the two-element sequence [tx, ty] is considered to be a valid combination. In the terminology,
we define later, this is called a chunk (Definition 3.4.1).

Supposing this is so. Then, we can join the two transactions as illustrated in Figure 3, using blue
circles to indicate successful validations. Congratulations: we have performed our first blockchain
concatenation.

Note that both validations must succeed for the combination [tx, ty] to be considered a valid
chunk. More diagrams and discussion follow in Example 3.4.11. We now return to the definitions.

Notation 3.1.5. Sets that do not include atoms – including N, inductive types built using N, and
function types built using N – are automatically equivariant. Thus, if the reader unfamiliar with
nominal techniques and ZFAwonders whether particular choices they need for α, β and Validator
are equivariant – then the answer is ‘yes’.

We may elide equivariance conditions Definition 3.1.2 henceforth. Any such type-like defini-
tion will be equivariant – that is closed under taking orbits of the permutation action – unless
stated otherwise.

Remark 3.1.6. Equivariance comes from the underlying ZFA universe. Notation 3.1.5 can be
viewed as an assertion that the definition exists in the category of equivariant ZFA sets and
equivariant functions between them (or if the reader prefers: sets with a permutation action, and
equivariant functions between them).

This paper will be light on sets and categorical foundations: we use just enough so that readers
from various backgrounds get a hook on the ideas that speaks to them, and so it is always clear
what is meant and how it could be made fully formal.

Note that just because a set is equivariant does not mean all its elements must be; for instance,
A is equivariant (and consists of a single permutation orbit), but none of its elements a ∈A are
equivariant.

Remark 3.1.7. Compare Figure 1 with Chakravarty et al. (2020, Figure 3):13 α here corresponds
to redeemer there, β here corresponds to datum there (though α here lives on inputs and β lives on
outputs, whereas there both redeemer and datum live on inputs); the by-hash referencing there
is replaced here with a nominal treatment using atoms; and validators exist on the output here
and on the input there. There is less to this latter difference (validator moving from input in
Chakravarty et al. 2020 to output here) than meets the eye: what is key is the interaction between
an output and a later input, so it a matter of perspective and our convenience whether we view the
output as validating the input, or vice versa, or indeed both.

Remark 3.1.8. Definition 3.1.2(4) uses a subset inclusion, whereas Definition 3.1.2(5) uses an
injection ν. Why?

First, in practice we would expect ν(v) to be a computable subset of β × Transaction!, since
we have implementations in mind (though nothing in the mathematics to follow will depend on
this).

Also, sets are well-founded, so a pure subset inclusion solution to Figure 1, for both clauses,
would be difficult; we use ν to break the downward chain of sets inclusions.14 Yet just as we may
write

N⊆Q⊆R,
https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1043

Figure 4. Positions of (Definition 3.2.3).

eliding (or neglecting to consider) that their realisationsmay differ (finite cardinals vs. equivalence
classes of pairs vs. Dedekind cuts), so – since ν is an injection – it may be convenient to treat
Validator as a literal subset of pow(β × Transaction!).15 This is standard, provided we clearly
state what is intended and are confident that we could unroll the injections if required.

Thus, Definition 3.1.9 rephrases Definition 3.1.2, with a focus on extensional sets behaviour
rather than on internal structure (and for reference, see Definition 6.2.1 for an example of where
the internal structure is required):

Definition 3.1.9. An IEUTxO model T from Definition 3.1.2 can be presented modulo
Remark 3.1.8 as a tuple

T= (αT, βT, TransactionT, ValidatorT)
of sets that solves the equations in Figure 1. We may drop the T subscripts where these are clear
from the context.

3.2 Positions
Remark 3.2.1. The positions of a transaction are intuitively the interfaces or channels along which
it may connect with other transactions to form a chunk (see next subsection). The notion of
connection is called pointing to (Definition 3.2.6).

In Figure 3, the positions of tx and ty are {a, b, c, d, e} and {d, e, f }, respectively, and input d of
ty points to output d of tx. Also, tx is earlier than ty, and ty is later than tx.

Notation 3.2.2.

(1) If tx ∈ Transaction appears in txs ∈ [Transaction], then write tx ∈ txs.
(2) If tx, tx′ ∈ txs and tx appears before tx′ in txs, then call tx earlier than tx′ and tx′ later than

tx (in txs).
(3) If tx= (I,O) ∈ Transaction and o ∈Output, say o appears in tx and write o ∈ tx when o ∈

O; similarly for an input i ∈ Input.
We may silently extend this notation to larger data structures, writing for example i ∈ txs
when i ∈ tx ∈ txs for some tx.

Definition 3.2.3. Suppose T is an IEUTxO model. We define positions of written pos as in
Figure 4 (see also Definition 3.4.5).

Remark 3.2.4. Intuitively, pos(x) collects the positions mentioned explicitly on the inputs or out-
puts of a structure. Note that validators may also act depending on positions of their inputs, but
this information is not detected by pos. For instance, consider a (arguably odd, but imaginable)
output o having the form

o= (b, 0, {i ∈ Input | pos(i)= {a}}).
So this output is at position b, β =N and o carries data 0, and o has a validator that validates an
input precisely when it is at position a. Then pos(o)= {b}.16

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1044 M. J. Gabbay

Lemma 3.2.5. Suppose T is an IEUTxO model and txs ∈ [Transaction]. Then
pos(txs)=∅ implies txs= [].

Proof. Recall from Definition 3.1.2(4) that the empty transaction is disallowed. Now examining
Figure 4, we see that the only way txs can mention no positions at all is by having no transactions
and so being empty.

Definition 3.2.6. (1) Suppose i ∈ Input and o ∈Output. Then say that i points to o and write
i �→ o when they share a position:

i �→ o when pos(i)= pos(o).
(The use of ‘point’ here is unrelated to the ‘pointed sets’ from Notation 2.2.3.)

(2) Recall the notation tx@i from Notation 3.1.3. Suppose that:

i= (p, k) ∈ Input
i ∈ tx ∈ Transaction and
o= (p, d,V) ∈Output.

Then write
validates(o, tx@i) when (d, tx@i) ∈V (1)

and say that the output o validates the input-in-context tx@i.

3.3 Why we have α and β

We are now ready to more rigorously explain the roles of α and β in Figure 1. We touched on
this already in Subsection 2.1 (α is ‘keys’; β is ‘data’), but now we can be more specific in our
discussion:

• α is intuitively a data type for keys.
If i= (a, k), then k is supposed to be a cryptographic secret that we need to attach to a suitable
unspent output (e.g. a solution to a cryptographic puzzle posted by its validator).

• β is intuitively a data type of abstract data.
If o= (p, d,V) then d stores some kind of state (for instance, an account balance).

We should note:

(1) Nothing mathematical enforces this usage. α and β are abstract type parameters, to
instantiate as we please.

(2) β is redundant and can be isomorphically removed.
We briefly sketch a suitable isomorphism:We setOutput=A× Validator and Validator⊆
pow(Transaction!) in Figure 1. α is replaced by α × β , and information that was stored as
d ∈ β on an output would instead be stored in the validator of that output, which would be
set to accept only inputs with β-component d.

(3) If we only care about countable data types and computable data (a reasonable simpli-
fication), then everything could be Gödel encoded into N. So we could then just fix
α =N.

But there is a design tension here: we want something that is compact, but also implementable (e.g.
as proof-of-concept reference code; see Remark 3.3.1). Having explicit types of keys α and data β

is useful for clarity, so even though α and β introduce (a little) redundancy, the cost is minimal
and the practical returns worthwhile.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1045

Furthermore, in the real world validators are generated by code. This validator code is typi-
cally given state data which is carried on the same output as the validator is stored, to help the
validator decide whether to validate prospective input. So when we write Validator⊆ pow(β ×
Transaction!), this effectively makes the validator into a function over local state data and a
transaction input.

We see this happen concretely in equation (1) in Definition 3.2.6: we have o= (p, d,V) and we
pass the state data d of o to V the validator of o –

(d, tx@i) ∈V
– even though this is mathematically redundant, since d and V are both in o so the d could in
principle be curried into the V . We retain β and set Validator⊆ pow(β × Transaction!) rather
than just Validator⊆ pow(Transaction!), to reflect this practical architecture.

Remark 3.3.1. The discussion above is more than hypothetical and corresponds to the experience
of creating executable Haskell code. The IEUTxO type equations in this paper have been realised
as a Haskell implementation; a reference system has been implemented following it; and some of
the results of this paper converted into QuickCheck properties. The package is on Hackage and
GitHub Gabbay (2020b).17

3.4 Chunks and blockchains
3.4.1 Chunks
Definition 3.4.1 (chunks) is a central concept in this paper, so we will summarise it twice: once
now and again after the definition: A list of transactions is a chunk when all input positions are
distinct, all output positions are distinct, and all inputs point to at most one earlier validating
output. Examples are illustrated in Example 3.4.11 (along with examples of blockchains). In formal
detail:

Definition 3.4.1. Suppose T= (α, β , Transaction, Validator) is an IEUTxO model. Call a
transaction-list txs ∈ [Transactions] a chunk when:

(1) Distinct outputs appearing in txs have distinct positions.
(2) Distinct inputs appearing in txs have distinct positions.

It may be that the position of an input i ∈ tx ∈ txs equals that of some output o ∈ tx′ ∈ txs,
or using the notation of Definition 3.2.6(1): i �→ o. If so, by condition 1 there is at most one
such. We write the unique output pointed to by i

txs(i) ∈Output
where it exists, so o= txs(i) ∈ tx′ ∈ txs.

(3) For every input i ∈ tx ∈ txs, if the output txs(i) is defined then that output must occur in a
transaction tx′ that is strictly earlier than tx in txs.

(4) For every i ∈ tx ∈ txs, if txs(i) is defined then validates(txs(i), tx@i) (Definition 3.2.6(2)).

Remark 3.4.2. So to sum Definition 3.4.1 up in a single line: a chunk is a list of transactions such
that a position can only ever be shared between a single pair of an earlier output o to a later input
i, which o validates – and otherwise positions are distinct.

Notation 3.4.3. (1) Write
ChunkT ⊆ [TransactionT] for the set of chunks over T.

We may drop the T subscripts; the meaning will always be clear.
(2) We may also call a transaction-list valid, when it is a chunk. That is, chunks are precisely

the valid transaction-lists.
https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1046 M. J. Gabbay

Remark 3.4.4. The way we have formulated the structure of chunks in Definition 3.4.1 reminds
this author of the π-calculus, where positions correspond to π-calculus channel names (and
outputs are outputs and inputs are inputs).

When we have this intuition in mind, we may occasionally call positions channels, as in the
blocked channels of Subsection 5.5. See also the discussion in Remark 4.3.4.

With the intuition of Remark 3.4.4 in mind, we give a simple definition, which refines
Definition 3.2.3:

Definition 3.4.5. Suppose T= (α, β , Transaction, Validator) is an IEUTxO model and suppose
tx= (I,O) ∈ Transaction is a transaction. Then define

• the input channels or positions input(tx)⊆fin A of tx to be the finite set of atoms that are
positions of inputs in tx, and

• the output channels or positions output(tx)⊆fin A of tx to be the finite set of atoms that are
positions of outputs in tx.

In symbols:
input(tx)= {p | (p, k) ∈ I}

output(tx)= {p | (p, d,V) ∈O}.

An important special case of Notation 3.4.3 is when the chunk is a singleton list, that is it
contains just one transaction:

Lemma 3.4.6. Suppose T is an IEUTxO model and suppose tx ∈ Transaction. Then
[tx] ∈ Chunk if and only if input(tx)∩ output(tx)=∅.

Proof. We consider the conditions in Definition 3.4.1 and see that condition 3 forces the input
and output channels of the transaction to be disjoint, and then none of the other conditions are
relevant.

Remark 3.4.7. Definition 3.4.5 refines Definition 3.2.3, and another way to phrase Lemma 3.4.6
is that [tx] is a chunk precisely when pos(tx)= inputs(tx) outputs(tx), where denotes disjoint
sets union.

3.4.2 UTxOs, UTxIs . . .
Definition 3.4.8. Suppose T is an IEUTxO model and txs ∈ [Transaction].

(1) If i ∈ tx ∈ txs and txs(i) is not defined18 then call the unique atom a ∈ pos(i)⊆A an unspent
transaction input, or UTxI. Write

utxi(txs)⊆fin A for the UTxIs of txs.

(2) If o ∈ tx ∈ txs and o �= txs(i) for all later i ∈ tx ∈ txs 19 then call the unique atom a ∈ pos(o)⊆
A an unspent transaction output, or UTxO. Write

utxo(txs)⊆fin A for the set of UTxOs of txs.

(3) If o ∈ tx ∈ txs and o= txs(i) for some later i ∈ tx ∈ txs, then call the atom a ∈ pos(o)⊆A a
spent transaction channel, or STx. Write

stx(txs)⊆fin A for the set of STxs of txs.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1047

Figure 5. A blockchainB = [tx1, tx2, tx3, tx4].

Figure 6. B chopped up as a blockchain [tx1, tx2] and a chunk [tx3, tx4].

Figure 7. B chopped up as a blockchain [tx1, tx3] and a chunk [tx2, tx4].

Remark 3.4.9. Some comments on the interpretation of utxi and utxo and stx from
Definition 3.4.8:

utxi(txs), utxo(txs), and stx(txs) are all finite sets of atoms, but we interpret them somewhat
differently:

(1) Intuitively, an atom a ∈ utxo(txs) identifies an output o ∈ tx ∈ txs with position a. So
utxo(txs) is a finite set of names of outputs in txs.

(2) Intuitively, an atom a ∈ utxi(txs) identifies an input-in-context tx@i, for i ∈ tx ∈ txs with
pos(i)= a.
We say this because the validator of an output takes as argument an input-in-context tx@i ∈
Transaction!. So utxi(txs) is a finite set of names for inputs-in-contexts.

(3) Intuitively, an atom a ∈ stx(txs) identifies a pair of an output and the input-in-context that
spends it. Thus, a could be thought of as this pair, or a could be thought of as an edge in a
graph that joins a node representing the output, to a node representing the input.
So stx(txs) is a finite set of internal names of already-spent communications between
outputs and inputs-in-context within txs.

3.4.3 . . .and blockchains
With the machinery we have now have, it is quick and easy to define blockchains:

Definition 3.4.10. A blockchain is a chunk ch ∈ Chunk such that utxi(ch)=∅. In words: a
blockchain is a chunk with no unspent inputs. Diagrammatic examples follow in Example 3.4.11:

Example 3.4.11. Recall we observed in Subsection 2.1 that (in the terminology that we now have)
the key operation of an IEUTxO is to attach a transaction’s inputs to a chunk’s outputs.

Example transaction-lists, blockchains and chunks are illustrated in Figures 2, 3, 5, 6, 7 and 8.20
In the Figures, a blue circle denotes a validator on an output at some position (a, b, c, . . .) that

has accepted an input and connected to it, and a red circle denotes an unspent input or output,
meaning one that has not connected up with a validator to form a spent output-input pair:

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1048 M. J. Gabbay

Figure 8. The blockchainB′ = [tx1, tx3, tx2, tx4].

(1) B, B′, [tx1, tx2] and [tx1, tx3] are blockchains, because they have unspent outputs (in red)
but no unspent inputs.
In these blockchains, tx1 is what is called the genesis block, meaning the first block in the
chain. It follows from the definitions that the genesis block has no inputs.21

(2) [tx] (Figure 2) and [tx1], [tx3, tx4] and [tx2, tx4] are chunks, but not blockchains because
they have unspent inputs (in red).

(3) [tx2, tx1] is neither a blockchain nor chunk, because the b-input of tx2 points to the later
b-output of tx1. It is just a list of transactions.

We note two alternative characterisation of blockchains (Definition 3.4.10):

Lemma 3.4.12. A chunk is a blockchain when . . .

(1) . . . the ‘at most one’ in Definition 3.4.1(2) is strengthened to ‘precisely one’.
(2) . . . the function i �→ txs(i) (Definition 3.4.1(2)) is a total function on the inputs in txs (so that

every input points to precisely one output in an earlier transaction).

Remark 3.4.13. We step back to reflect on Definition 3.4.10. This is supposed to be a paper
about blockchains; why did it take us this long to get to them? Because they are a special case
of something better and more pertinent: chunks.

A blockchain is just a left-closed chunk. There is nothing wrong with blockchains, but
mathematically, chunks seem more interesting:

(1) A sublist of a blockchain is a chunk, not a blockchain (we prove this in a moment, in
Corollary 3.5.2).

(2) A composition of blockchains is possible, but uninteresting, whereas composition of
chunks is clearly an interesting operation.22

(3) If we cut a blockchain into n pieces then we get one blockchain (the initial segment) . . . and
n− 1 chunks.

(4) Chunks can in any case be viewed as a natural generalisation of blockchains, to allow UTxIs
as well as UTxOs.

Definitions and results like Definition 3.5.3, Theorem 3.5.4 and Lemma 3.5.9 inhabit a universe of
chunks, not blockchains.

Even in implementation, where we care about real blockchains on real systems, a lot of develop-
ment work goes into allowing users in practice to download only partial histories of the blockchain
rather than having to download and store a complete record – the motivation here is practical,
not mathematical – and in the terminology of this paper, we would say that for efficiency we
may prefer to work with chunks where possible, because they can be partial and so can be more
lightweight.

So the focus of this paper is on chunks: they generalise blockchains, have better mathe-
matical structure, and chunks are in any case where we arrive even if we start off asserting
(de)compositional properties of blockchains, and finally – though this is not rigorously explored
in this paper, but we would suggest that – chunks are also where we arrive when we consider
space-efficient blockchain implementations.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1049

Finally, we mention that blockchains have a right monoid action given by concatenating
chunks. Thus, by analogy here with rings and modules, we could imagine for future work a mathe-
matics of blockchains generalising Definition 3.4.10 such that a ‘blockchain set’ is just any set with
a suitable chunk action.

3.5 Properties of chunks and blockchains
3.5.1 Algebraic and closure properties of chunks
Lemma 3.5.1 expresses that a list of transactions is a valid chunk if and only if every sublist of it of
length at most two is a valid chunk. In this sense, (in)validity is a local phenomenon:

Lemma 3.5.1. Suppose T= (αT, βT, TransactionT, ValidatorT) is an IEUTxOmodel, and suppose
[tx1, . . . , txn] ∈ [Transaction]. Then the following conditions are equivalent:

• [txi, txj] ∈ Chunk for every 1≤ i< j≤ n 23

• [tx1, . . . , txn] ∈ Chunk
Proof. We note of the well-formedness conditions on chunks from Definition 3.4.1 that they all
concern relationships involving at most two transactions.

Corollary 3.5.2. (Validity is down-closed). Suppose we have an IEUTxO model T=
(α, β , Transaction, Validator) and l, l′ ∈ [Transaction].

Recall from Notation 2.2.3 that we order lists by sublist inclusion, so l′ ≤ l when l′ is a sublist of l.
Then

ch ∈ Chunk ∧ l′ ∈ [Transaction] ∧ l′ ≤ ch implies l′ ∈ Chunk.
In words: every sublist of a chunk, is itself a chunk.

Proof. From Lemma 3.5.1.

We can wrap up Corollary 3.5.2 in a nice mathematical package:

Definition 3.5.3. Suppose (X,≤, •, e) has the following structure:

(1) X is a set.
(2) (X,≤) is a partial order, for which e is a bottom element.
(3) • is a partial monoid action on X, meaning that (x • y) • z exists if and only if x • (y • z) exists,

and if both exist then they are equal.24
(4) • is down-closed, meaning that if x′ ≤ x and x • y exists, then so does x′ • y, and similarly for

y • x and y • x′.
(5) • ismonotonewhere defined, meaning that if x′ ≤ x then x′ • y≤ x • y (provided x • y exists),

and similarly for y • x and y • x′.

In this case, call (X,≤, •, e) a partially ordered partial monoid.

Theorem 3.5.4. Suppose T is an IEUTxO model (Definition 3.1.9).
Then, its set of chunks ChunkT (Definition 3.4.1) forms a partially ordered partial monoid

(Definition 3.5.3), where

• ≤ is sublist inclusion,
• • is list concatenation, and
• the unit element is [] the empty set.

Proof. By facts of lists, and Corollary 3.5.2.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1050 M. J. Gabbay

3.5.2 Some observations on observational equivalence
Remark 3.5.5. Lemmas 3.5.6 and 3.5.9 apply to IEUTxO models and essentially give criteria for
observational equivalence when positions are disjoint.

We find them echoed in the theory of abstract chunk systems as Definitions 4.4.1(5)
and 4.4.1(4), and we need them for Proposition 4.4.8.

Lemma 3.5.6. Suppose T= (α, β , Transaction, Validator) is an IEUTxO model and ch, ch′ ∈
ChunkT. Then

pos(ch)∩ pos(ch′)=∅ implies ch • ch′ ∈ ChunkT.
Proof. By routine checking of possibilities, using the fact that if pos(ch)∩ pos(ch′)=∅
(Definition 3.2.3) then they have no positions in common, so no output in one can be called on to
validate an input in the other.

Definition 3.5.7. Suppose ch, ch′ ∈ ChunkT. Then call ch and ch′ commuting when

ch • ch′ ∈ ChunkT ⇐⇒ ch′ • ch ∈ ChunkT.

Remark 3.5.8. Definition 3.5.7 is clearly a notion of observational equivalence between ch • ch′
and ch′ • ch where the observable is ‘forms a valid chunk with’. This observable does not depend
on internal structure, so we will develop it further once we have abstract chunk systems; see
Definition 4.3.16.

For now, Definition 3.5.7 gives us just enough of the background theory of observational
equivalence, to state and prove Lemma 3.5.9, Proposition 3.5.12, and Theorem 3.6.1.

Lemma 3.5.9. Suppose T= (α, β , Transaction, Validator) is an IEUTxO model. Then:

(1) If tx, tx′ ∈ Transaction and pos(tx)∩ pos(tx′)=∅ (Definition 3.2.3) then the following all
hold:

[tx, tx′] ∈ Chunk ⇐⇒ [tx′, tx] ∈ Chunk ⇐⇒ [tx], [tx′] ∈ Chunk
(2) As a corollary, if ch, ch′ ∈ Chunk and pos(ch)∩ pos(ch′)=∅ then ch and ch′ are commuting

(Definition 3.5.7).

Proof. (1) By routine checking of possibilities, using the fact that if pos(tx)∩ pos(tx′)=∅ then
they have no positions in common, so no output in one can be called upon to validate an
input in the other.

(2) It is a fact that if tx ∈ l then pos(tx)⊆ pos(l) and similarly for tx′ ∈ l′. The corollary now
follows by a routine argument from part 1 of this result and Lemma 3.5.1.

3.5.3 Properties of UTxOs and UTxIs
We return to Definition 3.4.8: Lemma 3.5.10 uses Definition 3.4.8 to note some simple properties
of Definition 3.4.1.

Lemma 3.5.10. Suppose T is an IEUTxO model and ch, ch′ ∈ ChunkT Then:

(1) utxi(ch)∩ utxo(ch)=∅
(2) If ch • ch′ ∈ ChunkT then pos(ch)∩ pos(ch′)⊆ utxo(ch)∩ utxi(ch′).

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1051

(3) ∅= utxi(ch)∩ stx(ch)
∅= utxo(ch)∩ stx(ch)

pos(ch)= utxi(ch) utxo(ch) stx(ch) is disjoint union

Proof. (1) An input cannot point to a later output, because of Definition 3.4.1(3), and if it
points to an earlier output then by construction in Definition 3.4.8 this position no longer
labels a UTxO orUTxI. Furthermore a position can be used atmost once in an input-output
pair, by Definition 3.4.1(2).

(2) From Definition 3.4.1(3), as for the previous case.
(3) All facts of Definition 3.4.8 and Figure 4.

Remark 3.5.11. Proposition 3.5.12 can be viewed as a stronger version of Lemma 3.5.6. It is an
important result because it relates the following apparently different observables:

(1) A statically observable property, that ch and ch′ mention disjoint sets of positions.
(2) A locally observable property, that ch and ch′ compose in both directions.
(3) An abstract global observable, that ch • ch′ and ch′ • ch can be commuted in any larger

chunk.

Compare also with Proposition 4.4.8, which is a similar result but for the differently-constructed
abstract chunk systems.

Proposition 3.5.12. SupposeT= (α, β , Transaction, Validator) is an IEUTxOmodel and ch, ch′ ∈
ChunkT. Then the following are equivalent:

(1) pos(ch)∩ pos(ch′)=∅
(2) ch • ch′ ∈ ChunkT ∧ ch′ • ch ∈ ChunkT.
(3) ch and ch′ are commuting.

Proof. The top-to-bottom implication is Lemma 3.5.6.
For the bottom-to-top implication, suppose that ch • ch′, ch′ • ch ∈ ChunkT. From

Lemma 3.5.10(2) we have

pos(ch)∩ pos(ch′)⊆ (utxo(ch)∩ utxi(ch′))∩ (utxo(ch′)∩ utxi(ch)).

We can rearrange this:

pos(ch)∩ pos(ch′)⊆ (utxi(ch)∩ utxo(ch))∩ (utxi(ch′)∩ utxo(ch′)).

Now we use Lemma 3.5.10(1).
The final part is direct from Lemma 3.5.9(2).

Remark 3.5.13. Proposition 3.5.12 is a resource separation result: if two chunks depend on dis-
joint resources (disjoint sets of positions) then they commute. This is in the spirit of separation
logic (Reynolds, 2002), which is a family of logics for reasoning about programs with resource sep-
aration in programs – intuitively, that if two programs depend on disjoint resources (e.g. channels
or pointers), then they should not interfere with one another, just as we see in Proposition 3.5.12.

It is also in the spirit of a short paper Nester (2021) (which appeared after this paper went into
initial review) which uses monoidal categories to reason on resources in a broadly similar spirit,
albeit using different methods. A quote from that paper makes a related point:We have seen how
the resource theoretic interpretation of monoidal categories, and in particular their string diagrams,

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1052 M. J. Gabbay

captures the sort of material history that concerns ledger structures for blockchain systems.More on
this in the Conclusions.

We conclude with Lemma 3.5.14, which we will need later in Lemma 5.2.1:

Lemma 3.5.14. Suppose T ∈ IEUTxO is an IEUTxOmodel and π ∈ Perm is a permutation of atoms
and txs ∈ [TransactionT]. Then:

f (π ·txs)= π ·f (txs)
= {π(a) | a ∈ f (txs)}

for f ∈ {utxi, utxo, stx, pos}

In the terminology of Definition 2.3.5: utxi, utxo, stx, and pos are all equivariant.

Proof. Direct from Figure 4 and Definitions 3.4.8 and 2.3.3.

3.6 An application: UTxO systems are ‘Church-Rosser’, in a suitable sense
We now come to Theorem 3.6.1 which is an application of our machinery so far:

Theorem 3.6.1. Church-Rosser for UTxO. Suppose T ∈ IEUTxO and y, x, x′ ∈ ChunkT. Suppose
further that

y • x • x′ ∈ ChunkT and utxi(y • x′)= utxi(y • x • x′).
Then we have that:

(1) x and x′ are commuting (Definition 3.5.7).
(2) y • x′ • x ∈ ChunkT.

Proof. We know by Corollary 3.5.2 (because y • x • x′ is a chunk) that x • x′ is a chunk, so pos(x)∩
pos(x′)⊆ utxo(x)∩ utxi(x′).

We also know that utxi(y • x′)= utxi(y • x • x′) and it follows from Definition 3.4.8 that
(utxo(y)∩ utxi(x)=∅ and) utxo(x)∩ utxi(x′)=∅.25

Therefore, pos(x)∩ pos(x′)=∅. By Proposition 3.5.12, x and x′ are commuting, and it follows
(since y • x′ • x ∈ ChunkT) that y • x • x′ ∈ ChunkT.

Recall the definition of a blockchain (Definition 3.4.10) as being a chunk with empty utxi. Then,
we can specialise Theorem 3.6.1 as follows:

Corollary 3.6.2. Suppose T ∈ IEUTxO and y, x, x′ ∈ ChunkT and suppose y • x′ is a blockchain.
Then:

(1) If y • x • x′ is a blockchain then x and x′ commute.
(2) If x and x′ do not commute then y • x • x′ is not a blockchain.

Proof. Direct from Theorem 3.6.1, for the case that utxi(y • x′)= utxi(y • x • x′)=∅.

Remark 3.6.3. Corollary 3.6.2 models a situation where someone designs a chunk x′ that will
successfully attach to a blockchain y, but because this is a distributed system, somebody else gets
in and attaches x first.

Then this can only happen if x and x′ are commuting; conversely, if x and x′ are not commuting
then one of y • x • x′ or y • x′ must fail to be a blockchain.

What makes this interesting is that it is an important correctness property from the point of
view of the user who created x′: if x′ is accepted onto both y and y • x without failure, then it does
not matter that x got in first – y • x • x′ and y • x′ • x are equivalent up to observable behaviour.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1053

Note that:

• Theorem 3.6.1 and Corollary 3.6.2 do not state that IEUTxO systems are insensitive to order,
and

• Theorem 3.6.1 and Corollary 3.6.2 do not state that all transactions always commute (this is
simply not what is written on the page).

Theorem 3.6.1 and Corollary 3.6.2 can be viewed as a purity property, in the sense of functional
programming: if x′ successfully combines with y, then inputs to x′ may not be modified by an
intervening environment x – there are no side-effects!

More specifically, these results can be viewed as playing a role analogous to a ‘Church-Rosser’
or ‘confluence’ property. To see why, contrast with the situation in an accounts-based system –
corresponding to an imperative paradigm – where a transaction may be successfully appended
even if parameters to it on the blockchain get modified by intervening transactions.

To take a concrete scenario: I could check my bank account, observe I have enough money for
a purchase, submit my transaction – and then go into overdraft and be subject to overdraft fees,
because a direct debit happened to arrive in-between (a) my checking my balance and designing
my purchase transaction and (b) the payment request for the purchase transaction arriving at my
account. This error clearly comes from the use of a stateful, imperative programming style and
Theorem 3.6.1 expresses a rigorous sense in which a corresponding phenomenon is impossible in
a UTxO style system.26

With this comparison in mind, we see that Theorem 3.6.1 is a purity result: state is local, and
composition of chunks succeeds or fails locally.

3.7 The category IEUTxO of IEUTxOmodels
We can organise our IEUTxO models into a category:

Definition 3.7.1. Let IEUTxO be a category such that:

(1) Objects S,T are IEUTxO models (Definition 3.1.2).
(2) An arrow f : S→T is a map

f : TransactionS → ChunkT
such that if tx, tx′ ∈ TransactionS then

[tx, tx′] ∈ ChunkS implies f (tx) • f (tx′) ∈ ChunkT. (2)
Above, • denotes monoid composition, which on chunks is list concatenation; see
Notation 2.2.3(4).

(3) The identity arrow maps tx to [tx].
(4) Composition of arrows is pointwise, meaning that if

f : S→ S′ tx ∈ TransactionS
f ′ : S′ → S′′ f (tx)= [tx′

1, . . . , tx′
n]

then f ′f : S→ S′′ is such that
tx ∈ TransactionS �−→ f ′(tx′

1) • . . . • f ′(tx′
n) ∈ ChunkS′′ .

We prove this mapping is indeed an arrow – thus, it maps to chunks – in Corollary 3.7.4.

Lemma 3.7.2. An arrow f : S→T (Definition 3.7.1(2)) induces a mapping of chunks ChunkS →
ChunkT, by acting on the individual transactions and composing the results:

f ([tx1, . . . , txn])= f (tx1) • . . . • f (txn).

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1054 M. J. Gabbay

Proof. The nontrivial part is to check that

• if ch= [tx1, . . . , txn] is a valid chunk in ChunkS,
• then f (tx1) • . . . • f (txn) is a valid chunk in ChunkT.

This follows by combining condition 2 of Definition 3.7.1 with Lemma 3.5.1 and Corollary 3.5.2.

Corollary 3.7.3. Condition 2 of Definition 3.7.1 is equivalent to either of the following conditions:

(1) [tx1, . . . , txn] ∈ ChunkS implies f (tx1) • . . . • f (txn) ∈ ChunkT.
(2) f induces a monoid homomorphism on chunks.

Proof. The equivalence of conditions 1 and 2 above is routine, given that every chunk factors into
singletons. Then, condition (2) in part 2 of Definition 3.7.1 is just a special case of condition 1
above, and the reverse implication is Lemma 3.7.2.

Corollary 3.7.4. Composition of arrows as given in Definition 3.7.1(4) is well-defined; that is, the
composition f ′ f really is a map from transactions to chunks.

Proof. Continuing the notation of Definition 3.7.1(4), by assumption f maps tx ∈ TransactionS
to some f (tx) ∈ ChunkS′ , and then by Lemma 3.7.2 the action of f ′ maps f (tx) to a valid chunk
f ′(f (tx)) ∈ ChunkS′′ .

Remark 3.7.5. (Comment on design). We briefly discuss the design decisions embedded in
Definition 3.7.1:

(1) The conditions in Corollary 3.7.3 are more readable than condition (2) of
Definition 3.7.1(2), but this comes at the cost of an additional universally quantified
parameter n. It is a matter of taste which version we take as primitive: the one in the
Definition has fewest parameters and is easiest to check (a higher-level view will be taken
later when we develop abstract chunk systems in Section 4).

(2) We could relax the condition to allow f to be a partial map.
This would exhibit IEUTxO as a subcategory of a larger category with the same objects but
more arrows, and in particular, it would allow chunks in S to cease to be valid whenmapped
to T – we would still insist that f be a partial monoid homomorphism on chunks, where
everything is defined.
We did not choose this design for this paper, but it might be useful for future work; for
example following an intuition that S is a liberal universe of chunks, and f maps it to
a stricter universe T in which additional restrictions are appended to validators. Thus,
chunks in the liberal world might cease to be valid in the stricter universe.

(3) We could also restrict f further so that f : TransactionS → TransactionT.
This would yield fewer arrows, and we prefer to allow the flexibility of mapping a single
transaction in S to a chunk of transactions in T, following an intuition that S is a coarse-
grained representation which f maps into a finely grained representation where something
that was considered a single transaction is now a chunk.

3.8 Idealised UTxO
One special case of IEUTxO deserves its own discussion:

Remark 3.8.1. (Idealised UTxO). Recall from Figure 1 that validators take as input a pointed
transaction:

Transaction! ⊆ fin!(Input)× fin(Output).
https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1055

Recall also from Notation 2.2.3(2) and that a pointed transaction is a transaction with one dis-
tinguished input of that transaction. For convenience, we will call this the input-point of the
transaction.

The UTxO model – on which Bitcoin is based – is the special case of EUTxO where validators
just examine the input-point. So intuitively, in the UTxO model a validator of an output sees
just the input that points to that output, in the sense of Notation 3.1.3, and it does not pay any
attention to the transaction in which that input occurs.

We therefore obtain an Idealised UTxO (IUTxO) model from Figure 1 just by changing the
line for validators to:

Validator⊆ pow(β × Input).
There is an easy embedding map which we can write 1, taking an IUTxO model to an IEUTxO

model, derived from the embedding
pow(β × Input)−→ pow(β × Transaction!)

which is itself derived from the projection taking a pointed transaction to its input-point:
Transaction! −→ Input.

Then we can define a category of IUTxOmodels such that

• objects are IUTxO models, and
• arrows are functions exactly as defined in Definition 3.7.1.

Proposition 3.8.2. The mapping e extends to a categorical embedding27 IUTxO→ IEUTxO.

Proof. Direct from the construction, since an IUTxO model is identified with an IEUTxO model
whose validators ignore the transaction and just look at the input-point.

Remark 3.8.3. For convenience, we may treat IUTxO as a direct subset of IEUTxO – abusing nota-
tion we could write IUTxO⊆ IEUTxO – thus identifying an IUTxO model with an IEUTxO model
whose validators only check the input-point of their transaction. Thus for instance, we wrote ‘is
identified with’ in Proposition 3.8.2. It will always be clear what is intended and we could always
unroll the injections if required.

4. Abstract Chunk Systems: ACS
4.1 Basic definitions
Remark 4.1.1. IEUTxO models are good, because they abstract key features of blockchain archi-
tectures in a simple and (I would argue) clear manner: output, input and (valid) combination of
transactions to form chunks and then blockchains.

However, IEUTxOs are concrete. An IEUTxO model is full of internal structure, by its very
construction as a solution to type equations in Figure 1. We will now set about developing an
axiomatic, algebraic account of the essential features that make IEUTxOs interesting.

We recall some basic definitions:

Definition 4.1.2. Suppose X is a set and ≤ ⊆ X2 is a relation on X. Call (X,≤) a well-ordering
when:

(1) ≤ is a partial order (reflexive, transitive, anti-symmetric), and
(2) ≤ is well-founded (every descending chain is eventually stationary).28

As per Notation 3.1.5, X and ≤ are also assumed equivariant.
https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1056 M. J. Gabbay

Example 4.1.3. This should be familiar, but we give examples:

• (Z,≤) is not well-founded.
• (pow(A),⊆) and (fin(A),⊆) are well-founded.
• [N] (lists of numbers) with sublist inclusion is well-founded.

Definition 4.1.4. Suppose (X, e, f,≤) is a partial order with an equivariant least element e and an
equivariant greatest element f. Call x ∈ X atomic when

(1) e� x� f and
(2) for every x′ ∈ X if x′ ≤ x then either x′ = e or x′ = x.

Write atomic(X) for the set of atomic elements of X (see also Definition 4.2.5).
If we call x ∈ X proper when it is neither e nor f (following the standard terminology of proper

subset), then an atomic element is “a minimal proper element”.

Remark 4.1.5. The set of atomic elements atomic(X) is not to be confused with the set of atoms
A from Definition 2.2.1. This name collision is just a coincidence.

Lemma 4.1.6 will be useful later:

Lemma 4.1.6. Suppose T ∈ IEUTxO and consider ChunkT (valid lists of transactions; see
Definition 3.4.1) as a partial order under sublist inclusion ≤.

Then the atomic elements in (ChunkT,≤) are precisely the singleton chunks (Notation 3.4.3).

Proof. Using Corollary 3.5.2.

4.2 Monoid of chunks
Definition 4.2.1. Assume we have equivariant data (X, e, f,≤, •) where:

• X is a set.
• e, f ∈ X are called unit and fail respectively.
• ≤ ⊆ X2 is a relation.
• • : X2 → X is a composition.

Call (X, e, f,≤, •) amonoid of chunks when:

(1) e • x= x= x • e.
(2) f • x= f= x • f.
(3) ≤ is a well-ordering for which the unit e is a bottom element and the paradoxical element

f is a top element.
(4) Composition • is associative, andmonotone in both components, meaning that

x′ ≤ x implies x′ • y≤ x • y and
y≤ y′ implies x • y≤ x • y′.

(5) Composition is increasing in the sense that

x≤ x • y and y≤ x • y.

(6) If x1, . . . , xn ∈ X and x1 • . . . • xn = f, then there must exist 1≤ i< j≤ n such that xi • xj = f.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1057

Remark 4.2.2. A few comments on Definition 4.2.1:

(1) This is a clearly an abstraction of IEUTxO structure, where • is chunk composition and ≤
is list inclusion (proof in Proposition 5.1.3).
This is the key instance of the axioms that motivates the definition – IEUTxOs have more
structure, but monoids of chunks is where we start. See also Example 4.2.6(6).

(2) x • y is not necessarily a least upper bound for {x, y}.
Take X = {1, 2} and x= [1] and y= [2] in Example 4.2.6(4) (finite lists with a top element).
Then x • y and y • x are distinct and incomparable, so both are upper bounds for {x, y} but
x • y �≤ y • x and y • x �≤ x • y.

(3) We see that condition 6 of Definition 4.2.1 closely resembles Lemma 3.5.1, and indeed, the
condition is inspired by that very Lemma. We will use this in Proposition 5.1.3.

Notation 4.2.3. As is standard, we may write X for both a monoid of chunks and its carrier set.
See for instance the first line of Definition 4.2.4.

Definition 4.2.4. Suppose X= (X, e, f,≤, •) is a monoid of chunks.

(1) If x ∈ X and [x1, . . . , xn] ∈ [atomic(X)] is a finite list of atomic elements29 in X and

x= x1 • . . . • xn then say that x factorises as [x1, . . . , xn].

(2) Say that X is generated by its atomic elements when every x ∈ X \ {f} has a (possibly non-
unique) factorisation into atomic elements.

Definition 4.2.5.

(1) Call a monoid of chunks X= (X, e, f,≤, •) atomic when:
a. X is generated as a monoid by its atomic elements (Definition 4.2.4).
b. There exists a factorisation function factor : X \ {f} → [atomic(X)] such that for every

x, y ∈ X \ {f}
i.factor(x) factorises x (Definition 4.2.4) and
ii.factor(x • y)= factor(x) • factor(y) (the right-hand • denotes list concatenation; the left-
hand • is the monoid action in X).

In other words, we say that X is atomic when there is a homomorphism of partially ordered
monoids from X \ {f} to the space of possible factorisations of its elements. The relevance
of this condition is discussed in Remark 6.4.4.

(2) Call X perfectly atomic when it is atomic and furthermore:
a. factorisations into atom elements are unique and
b. if x≤ y< f and x= x1 • . . . • xm and y= y1 • . . . • yn then [x1, . . . , xm]≤ [y1, . . . , yn]

(sublist inclusion).
The relevance of this condition is discussed in Proposition 7.3.6.

Example 4.2.6. Suppose X is an equivariant set. Then:

(1) pow(X) forms a monoid of chunks, where e=∅ and f= X, and ≤ is subset inclusion, and
composition • is sets union. It is atomic if and only if X is finite (recall: factorisations must
be finite).
We obtain a factorisation function by choosing any order on X, and listing elements of any
X′ ⊆ X in order.

(2) pow(X) forms a monoid of chunks, where:
– e=∅ and f= X.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1058 M. J. Gabbay

– ≤ is subset inclusion.
– x • y= x ∪ y if x ∩ y=∅, and x • y= f otherwise.
It is atomic if and only if X is finite.

(3) fin(X)∪ {X} (finite sets of atoms, with a top element) forms an atomic monoid of chunks,
using either of the two definitions above for pow(X).

(4) Finite lists with a top element [X]� –meaning finite lists of elements from X, plus one extra
‘top’ element � – form a perfectly atomic monoid of chunks as follows:
– e= [] and f= �.
– ≤ is sublist inclusion (Notation 2.2.3(5)) and l≤ f for every finite list l.
– Composition • is list concatenation on lists, and x • f= f= f • x for any x (list, or f).

(5) Finite lists with a top element [X]� form an atomic (but not perfectly atomic) monoid of
chunks as above, where ≤ and • are defined as follows:
– l≤ l′ holds when l is not a singleton list and l is a sublist of l′.
So []≤ [x] and []≤ [x, z]≤ [x, y, z] but [x] �≤ [x, y]; and the proper atomic elements are
singleton and two-element lists.

– [] • l= l • []= l for any list.
– f • x= f= x • f for any x.
– If l and l′ are nonempty lists, then l • l′ is linit concatenated with l′tail, where linit is every-
thing except for the last element of l, and l′tail is everything except for the first element of
l′.

(6) As touched on above, if T is an IEUTxO model then T gives rise to a perfectly atomic
monoid of chunks. See Proposition 5.1.3.

Remark 4.2.7. It might seem counterintuitive to make failure f a top element in Definition 4.2.1,
especially if we are used to seeing domain models where ‘failure’ is intuitively ‘non-termination’
and features ⊥ as a bottom element.

We have a concrete reason for this: our canonical IEUTxO models are based on lists ordered
by sublist inclusion, so bottom is already occupied by the empty list [] which plays the role of e
(see Definition 5.1.1).

But also we have abstract justifications: if we think of a chunk system as a many-valued logic
(in which truth-values are chunks or blockchains and≤ reflects how they accumulate transactions
over time), then to exhibit a � is to fail to exhibit a concrete witness. Or (thinking perhaps of
callCC Clinger et al. 1986) we can think of f as a ‘final’ or ‘escape’ element.

4.3 Behaviour, positions and equivalence
4.3.1 Left and right behaviour
Definition 4.3.1. Suppose X= (X, e, f,≤, •) is a monoid of chunks. Then we have natural left- and
right-behaviour functions:

leftB : X→ pow(X) rightB : X→ pow(X)
leftB : x �→ {y∈X | y • x< f} rightB : x �→ {y∈X | x • y< f}

Lemma 4.3.2. Suppose X is a monoid of chunks. Then we have:

(1) leftB(e)= rightB(e)= X \ {f}.
(2) leftB(f)= rightB(f)=∅.

Proof. A fact of Definition 4.2.1(1&2).

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1059

Remark 4.3.3. If we think of f as a failure element, and we think of x • y as being a composition of
which we can observe whether it fails or succeeds, then

• rightBmaps x ∈ X to its right-observational behaviour, and
• leftBmaps x ∈ X to its left-observational behaviour.

Remark 4.3.4. Parallels can be made in Definition 4.3.1 with the λ-calculus (Barendregt, 1984)
and the π-calculus (Milner, 1999):

(1) In the λ-calculus, a standard observable is non-termination.
Here we are doing something similar, except that (as noted in Remark 4.3.3) instead of
failure to terminate (⊥) we observe failure to compose (f), and we consider combination
both to the left and to the right.
Continuing the analogy, in the untyped λ-calculus, the left-behaviour set of a term t would
be those s such that st terminates; and the right-behaviour set of t would be those s such
that ts terminates.

(2) The π-calculus has notions of communications across channels, and as noted in
Remark 3.4.4, we see a resemblance with communication of an input and output on a
position. However there are differences, including:
a. Validation is not primitive in the π-calculus but it is a core precept here.
b. Communication in the plain π-calculus (without considering dialects) is non-

deterministic – one channel name can be invoked by multiple inputs and outputs –
whereas here a key assumption is that every channel name (i.e. position) must have one
input and one output – and if not, the chunk collapses to a failure error-state f (cf. the
conditions in Definitions 3.4.1 and 3.4.10).

c. Name restriction in the π-calculus is not automatic but instead is managed by an explicit
restriction term-former. In contrast here, a communicating channel (an output-input
pair) automatically closes when used once. We say ‘closed’ and not ‘bound’ because the
name remains visible in up (see also stx in the IEUTxOmodels); it is just that no further
communication may occur along it. We discuss garbage-collecting names in chunks in
Subsection 8.2.

Remark 4.3.5. Definitions 4.3.6 and 4.3.9 will build on Definitions 4.2.1 and 4.3.1 to derive a full
notion of an observable interface of amonoid element, all derived just from the partiality of compo-
sition. We will make good use of this in the rest of the development, for instance Definition 6.2.1
depends on it.

4.3.2 Positions
Definition 4.3.6. Suppose X is a monoid of chunks. Define posi(x)⊆A the positions of x ∈ X as
follows:

posi(fX)= ∅

posi(x)= {a ∈A | ∀π∈fix(a).π ·x �∈ leftB(x)∪ rightB(x)} (x ∈ X \ {fX}).
(fix(a) from Definition 2.3.4.)

Thus, a ∈ posi(x) when x �= fX and π ·x �∈ leftB(x)∪ rightB(x), for any π such that π(a)= a.

Remark 4.3.7. Note that the · in π ·x in Definition 4.3.6 above refers to the atoms-permutation
action from Definition 2.3.2, not to the partial monoid action • from Definition 3.5.3.

Remark 4.3.8. In words, posi(x) from Definition 4.3.6 is those atoms such that there is no
permutation fixing a such that π ·x can be successfully combined (left or right) with x.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1060 M. J. Gabbay

What is the intuition here?
The name posi reminds us of pos from Definition 3.2.3, though the definitions are quite differ-

ent. They are indeed related; in fact, they are equal in a sense made formal in Proposition 5.2.2
(see also Lemma 6.3.2(2)).

We do not have all the machinery in place yet, so it may be helpful to point forwards here and
observe that conditions 3 and 4 of Definition 4.4.1 can be read as a way to make name-clash into
an observable.

So intuitively, Definition 4.3.6 – once combined with the notion of an oriented monoid from
Definition 4.4.1 – can use permutations to observe name-clash: it measures the live communica-
tion channels a ∈A in an element x by forcing name-clashes between a-channels with π-renamed
variants π ·x for π ∈ fix(a). More details will follow, and see Remark 5.2.3.

Definition 4.3.9. Suppose X= (X, e, f,≤, •) is a monoid of chunks, and suppose x ∈ X and a ∈A.

(1) If
a ∈ posi(x) and ∃y∈leftB(x).a ∈ posi(y),

then say that a points left in x.
Write left(x)⊆A for the set of atoms that point left in x.

(2) If
a ∈ posi(x) and ∃y∈rightB(x).a ∈ posi(y),

then say that a points right in x.
Write right(x)⊆A for the set of atoms that point right in x.

(3) If a points neither left nor right in a and yet a ∈ posi(x), so that
a ∈ posi(x) and ∀y∈leftB(x)∪ rightB(x).a �∈ posi(y),

then say that a points up in x.
Write up(x)⊆A for the set of atoms that point up in x.

Lemma 4.3.10 expresses intuitively that atoms that point ‘up’ in a transaction cannot engage in
successful (non-failing) combination; they are ‘stuck interfaces’:

Lemma 4.3.10. Suppose X is a monoid of chunks and x, y ∈ X and a ∈ up(x). Then
a ∈ posi(y) implies x • y= y • x= f.

Proof. Direct from Definition 4.3.9(3).

Remark 4.3.11. The reader who sees similarities between the left, right and up of Definition 4.3.9,
and the utxi, utxo and stx of Definition 3.4.8 is right: see Proposition 5.2.2, Lemma 5.3.1, and
Proposition 5.5.4.

A simple lemma will be helpful:

Lemma 4.3.12. Suppose X is a monoid of chunks and x ∈ X. Then:
up(x)= posi(x) \ (left(x)∪ right(x))

∅= left(x)∩ up(x)
∅= right(x)∩ up(x)

posi(x)= left(x)∪ right(x)∪ up(x)

Proof. This just rephrases clause 3 of Definition 4.3.9.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1061

Remark 4.3.13. Lemmas 4.3.12 and 3.5.10(3) are similar but note that the status of the underlying
data types is somewhat different:

• A chunk ch ∈ Chunk of an IEUTxO model is full of internal structure, and operations on it
are defined in terms of that structure, whereas

• an element x ∈ X in a monoid of chunks is an abstract entity and we assume nothing about its
internal structure.

Thus, a similarity between them has significance: it is a sanity check on our model and indi-
cates that something rather abstract (monoids of chunks) is accurately following the behaviour
of something more concrete (IEUTxO models).

Remark 4.3.14. Lemma 4.3.12 expresses that every position in some x ∈ X (Definition 4.3.6) must
point in a direction in {left, right, up}, and it cannot point both left and up, or both right and up.

Note that Definition 4.3.9 admits a possibility that an atom could point both left and right;
this cannot happen in the IEUTxO models (see Lemma 3.5.10(1)). We will exclude this when we
introduce the notion of an oriented monoid of chunks; see Corollary 4.4.5.

Lemma 4.3.15.

(1) left(e)= right(e)= up(e)=∅.
(2) left(f)= right(f)= up(f)=∅.
(3) As a corollary using Lemma 4.3.12, posi(e)= posi(f)=∅.30

Proof. We check the behaviour of e and f as specified in Definition 4.2.1 against the definitions of
left, right, and up in Definition 4.3.9 and see that this is true.

4.3.3 Observational equivalence
Definition 4.3.16. Suppose X is a monoid of chunks.

(1) Call x and x′ in X observationally equivalent and write

x∼ x′ when leftB(x)= leftB(x′)∧ rightB(x)= rightB(x′).

(2) Say that x and y commute (up to observational equivalence) when

x • y∼ y • x.

We start with a simple but useful sanity check:

Lemma 4.3.17. Suppose X is a monoid of chunks and x, y ∈ X. Then if x and y commute then

x • y< f⇐⇒ y • x< f and x • y= f⇐⇒ y • x= f.

Proof. We unpack Definitions 4.3.16(1&2) and 4.3.1 and conclude that

x • y • e< f⇐⇒ y • x • e< f.

The result follows, since e is the unit for •.

Lemma 4.3.18. Suppose X is a monoid of chunks. Then if x∼ x′ (Definition 4.3.16) then

left(x)= left(x′) and right(x)= right(x′) and up(x)= up(x′).
Proof. A fact of Definitions 4.3.16(1) and 4.3.9.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1062 M. J. Gabbay

4.4 Orientedmonoids
4.4.1 Definition and properties
Definition 4.4.1. Suppose X= (X, e, f,≤, •) is a monoid of chunks.

Call X oriented when for all x, y ∈ X:
(1) posi(x)⊆fin A.
(2) If posi(x)=∅ then x ∈ {e, f}.
(3) If left(x)∩ right(y) �=∅ then x • y= f.
(4) If posi(x)∩ posi(y)=∅ then x and y commute up to observational equivalence

(Definition 4.3.16(2)).
(5) If posi(x)∩ posi(y)=∅ and f �∈ {x, y} then x • y< f.

Remark 4.4.2. We discuss the conditions of Definition 4.4.1 in turn:

(1) An element x ∈ X can only be accessible on finitely many channel interfaces.
(2) The only elements without any interface (meaning atoms that point left right or up) are

the unit element (≤-bottom) and the failure element (≤-top). Compare with the IEUTxO
property Lemma 3.2.5.
We use this in Lemmas 4.4.6 and 6.3.1.

(3) Interfaces always try to connect, but can only successfully connect if the directions of their
interfaces match up; if not, the whole combination fails.
We use this in Lemma 4.4.6, which is required for Proposition 4.4.8.

(4) This condition echoes Lemma 3.5.9(2). We use it in Proposition 4.4.8.
(5) Elements with no channels in common, cannot fail to compose.

We will show later that the IEUTxO models from Definition 3.1.9 are models of Definition 4.4.1
in a suitable sense; see Proposition 5.3.3.

We can strengthen Definition 4.4.1(2) to a logical equivalence:

Lemma 4.4.3. Suppose X is an oriented monoid of chunks and x ∈ X. Then
posi(x)=∅ if and only if x ∈ {e, f}.

Proof. The right-to-left implication is direct from Definition 4.4.1(2). The left-to-right implica-
tion is Lemma 4.3.15.

Lemma 4.4.4 is a nice way to repackage Definition 4.4.1(3) in a slightly more accessible wrapper.
In its form it resembles Lemma 3.5.10(2), and we use it for Corollary 4.4.5:

Lemma 4.4.4. Suppose X is an oriented monoid of chunks and suppose x, y ∈ X. Then
x • y< f implies posi(x)∩ posi(y)⊆ right(x)∩ left(y).

Proof. We consider the possibilities, using Lemma 4.3.12:

• Suppose a ∈ left(x)∩ posi(y). From Definition 4.4.1(3) a �∈ right(x), and by Lemma 4.3.12 a ∈
posi(x). It follows from Definition 4.3.9(2) that x • y= f.

• Suppose a ∈ right(y)∩ posi(x). From Definition 4.4.1(3) a �∈ left(y), and by Lemma 4.3.12 a ∈
posi(y). It follows from Definition 4.3.9(1) that x • y= f.

• Other cases are from Lemma 4.3.10 (or by direct reasoning from Definition 4.3.9(3)).

Corollary 4.4.5 is a slightly magical result, in the sense that it is perhaps not immediately obvi-
ous that it should follow from our definitions so far. In its form, if not its proof, it clearly resembles

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1063

Lemma 3.5.10(1). We need it for Lemma 6.2.5, that atomic elements in X generate valid singleton
chunks under a mapping to IEUTxO models F:

Corollary 4.4.5. Suppose X is an oriented monoid of chunks and x ∈ X. Then:31
left(x)∩ right(x)=∅.

Proof. Suppose a ∈ left(x), we will show that a ∈ right(x) is impossible. Consider some y ∈ X with
a ∈ posi(y), so that by Lemma 4.3.12 a ∈ left(y)∪ right(y)∪ up(y). Then:

• If a ∈ left(y) then a ∈ left(x)∩ left(y) and by Lemma 4.4.4 x • y= f.
• If a ∈ right(y) then a ∈ left(x)∩ right(y) and by Lemma 4.4.4 x • y= f.
• If a ∈ up(y) then a ∈ left(x)∩ up(y) and by Lemma 4.4.4 x • y= f.

Thus, a ∈ posi(y) implies x • y= f and so y �∈ rightB(x). It follows from Definition 4.3.9(2) that a �∈
right(x) as required.

We use Lemma 4.4.6 for Proposition 4.4.8:

Lemma 4.4.6. Suppose X= (X, e, f,≤, •) is an oriented monoid of chunks. Then at least one of the
following must hold:

x • y= f y • x= f posi(x)∩ posi(y)=∅

Proof. If x or y are equal to e or f then posi(x)∩ posi(y)=∅ is immediate from Lemma 4.4.3.
So suppose x, y �∈ {e, f}, from which it follows by Lemma 4.4.3 (or direct from

Definition 4.4.1(2)) that posi(x) �=∅ and posi(y) �=∅. Suppose we have some a ∈ posi(x)∩ posi(y).
We reason by cases using our assumption that X is oriented (Definition 4.4.1):

• If a ∈ left(x)∩ right(y) then x • y= f by Definition 4.4.1(3).
• If a ∈ right(x)∩ left(y) then y • x= f by Definition 4.4.1(3).
• If a ∈ up(x) or a ∈ up(y) then x • y= y • x= f by Lemma 4.3.10.
• Other cases are no harder.

Remark 4.4.7. Proposition 4.4.8 is a partial converse to Definition 4.4.1(4) (compare also with
Proposition 3.5.12, which is the same result but for a different structure, and with a very different
proof). It is significant because it equates

• a static property of positions, with
• a local property of being combinable in either order, with
• a global operational property of being commutative up to observation.

Commutativity is of particular interest in the context of blockchains, because they are by design
intended to be distributed, so that we cannot in general know or assume in what order transactions
get appended.

Proposition 4.4.8. Suppose X= (X, e, f,≤, •) is an oriented monoid of chunks, and x, y ∈ X. Suppose
further that x • y< f or y • x< f (not necessarily both). Then, the following conditions are equivalent:

(1) posi(x)∩ posi(y)=∅.
(2) x • y< f∧ y • x< f.
(3) x and y commute up to observational equivalence (Definition 4.3.16(2)).

Proof. First, note that since x • y< f or y • x< f, it must from Definition 4.2.1(2) be the case that
x< f and y< f.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1064 M. J. Gabbay

If x • y< f∧ y • x< f then posi(x)∩ posi(y)=∅ by Lemma 4.4.6. Conversely if posi(x)∩
posi(y)=∅ then (since x< f and y< f) by Definition 4.4.1(5) x • y< f and y • x< f.

If posi(x)∩ posi(y)=∅ then x and y commute by Definition 4.4.1(4). Conversely, if posi(x)∩
posi(y) �=∅ then by Lemma 4.4.6 (since x • y< f or y • x< f) we have that y • x= f or x • y= f,
respectively, and in particular, we have that x • y �= y • x. Using Lemma 4.3.17 we conclude that
x and y do not commute.

Remark 4.4.9. (Comment on design). There is design freedom to Definition 4.4.1, and we
mention this briefly for future work. One plausible condition is:

up(x • y)⊆ up(x)∪ up(y)∪ (right(x)∩ left(y)).

Intuitively, this states that combining x and y can only bind positions that point right in x and
point left in y. An even stricter variant would be to insist on equality provided that x • y �= f.

4.4.2 A brief discussion
Wemight ask:Why bother with monoids of chunks? Why not just work with IEUTxOs?

The answer is that we need both: IEUTxOs are the motivating concrete model, and monoids of
chunks are their abstraction.

Of course, the IEUTxO equations from Figure 1 themselves are an abstraction and generalisa-
tion of a concrete inductive definition in Chakravarty et al. (2020, Figure 3), so in overview this
paper has the following hierarchy of models, given in increasing order of generality –

• The inductive EUTxO structures from Chakravarty et al. (2020).
• IEUTxO models from Definition 3.1.2.
• Abstract chunk systems (ACS) from Definition 4.5.1.

– though there is also more going on, because we also map from ACS back down to IEUTxO
(Theorem 7.3.4 and surrounding discussion).

Programmers can think of APIs, which abstract away from internal structure of a concrete
implementation; this makes programs more modular, and easier to test and document.

Modern programming languages make it easier to program efficiently using abstract denota-
tions, instantiating only when needed – one might call this just-in-time instantiation. So even if
we have just one concrete model and want one implementation, a good algebraic theory is still
relevant to producing working code, because

• it may help structure the mathematics and the code – the algebraic graphs with class Haskell
package illustrates how effective this marriage of theory and practice can be Mokhov (2017)
– and

• an abstraction can be read as a library of testable properties, against which implementations
can be checked. If an implementation fails an axiom – it’s wrong.

So perhaps a better question is this:What are the essential properties of IEUTxO that make it inter-
esting? How are these properties layered, and nested; and how can they be compactly represented?
Definitions 4.2.1 and 4.4.1 are one set of answers to these questions. And then, a further question
is this:What other models, aside from IEUTxOmodels, exist of the ACS axioms? This paper contains
one answer (plus examples; see Subsection 4.6): in Definitions 6.2.1 and 6.4.1 and Proposition 6.4.3
we give a functor taking any oriented monoid of chunks to IEUTxOs. We also map functorially in
the other direction in Definitions 5.1.1 and 5.4.1 and Theorem 5.4.4.

The overall results are packaged up in Theorem 7.3.4.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1065

4.5 The category ACS of abstract chunk systems
We are now ready to give the algebraic account of IEUTxOs promised in Remark 4.1.1:32

Definition 4.5.1. An abstract chunk system (ACS) is an oriented atomic monoid of chunks
(Definitions 4.4.1, 4.2.5, and 4.2.1).

Definition 4.5.2. Define ACS the category of abstract chunk systems by:

(1) Objects are abstract chunk systems (Definition 4.5.1).
(2) Arrows g : X→ Y are sets functions from X to Y such that:

a. g(eX)= eY and g(fX)= fY
b. x≤ y< fX implies g(x)≤ g(y)< fY
c. g(x) • g(y)= g(x • y)

Composition of arrows is composition of functions, and the identity arrow is the identity function.

Remark 4.5.3. (Comment on design).

(1) We do not insist in Definition 4.5.2 that g(x) must be atomic if x is. This corresponds to
our choice in Definition 3.7.1(2) to let f map from transactions to chunks, and not from
transactions to transactions.

(2) We do insist in Definition 4.5.2(2b) that if x is not the failure element fX in X then g(x) is
also not the failure element fY in Y. This corresponds to our choice in Definition 3.7.1(2) to
make f a total function from transactions to chunks, rather than a partial one (cf. discussion
in Remark 3.7.5(2)).
We could relax this condition by allowing g to map x< fX to fY. There would be nothing
wrong with this, and it would just exhibit ACS as embedded in a larger category with the
same objects but more arrows.

Lemma 4.5.4 just repackages Definition 4.2.5 for objects in ACS:

Lemma 4.5.4. Suppose X, Y ∈ ACS and x ∈ X and g : X→ Y ∈ ACS. Then:
• If x �= f then there exists some finite (possibly empty, possibly non-unique) list of atomic
elements x1, . . . , xn ∈ atomic(X) such that x= x1 • . . . • xn.

• If x �= f (and in particular by Definition 4.1.4(1) if x is atomic) then there exists some finite
(possibly empty, possibly non-unique) list of atomic elements y1, . . . , yn ∈ atomic(Y) such that
g(x)= y1 • . . . • yn.

Proof. Immediate since by Definition 4.5.1 X is atomic (Definition 4.2.5).

Proposition 4.5.5.

(1) An arrow g : X→ Y ∈ ACS (Definition 4.5.2(2)) is uniquely determined by its action on
atomic(X).

(2) As a corollary, if g, g′ : X→ Y are two arrows, then to check the equality of arrows g = g′ it
suffices to check that g(x)= g′(x) for every x ∈ atomic(X).

Proof. (1) Consider some x ∈ X. If x ∈ {f, e} then the action of f is determined by
Definition 4.5.2(2a).

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1066 M. J. Gabbay

Otherwise, using Lemma 4.5.4 write x= x1 • . . . • xn for atomic x1, . . . , xn ∈ atomic(X). We
then have from Definition 4.5.2(2c) that

f (x1) • . . . • g(xn)= g(x).

Thus g(x) is determined by the values of g(x1), . . . , g(xn).
(2) By a routine argument from Definition 4.2.5 (since X is atomic) and

Definition 4.5.2(2c).

4.6 Examples of abstract chunk systems
We created abstract chunk systems in (Definition 4.5.1) to abstract away the internal structure of
IEUTxO models (Definition 3.1.2).

This is a standard move in mathematics: axiomatise, then generalise. As we argued in
Subsections 1.1 and 4.4.2, even if the reader only cares about practical hands-on implementation,
for which internal structure is available because we have the code, it is still useful – and arguably
indispensable – to take a moment to get a good higher-view of what it is that is implemented,
since axioms provide a language for the higher-level enterprises of comparison, description,
specification, correctness, testing and exposition.

Now we take a moment to go back and consider what the space of concrete models of the ACS
axioms looks like. We give a list of examples, which is not intended to be exhaustive but which we
hope may illustrate the scope, character, and structure of our definition:

(1) Consider the set of all finite sets of atoms A= {a1, . . . , an} ⊆fin A and A itself:

X= fin(A)∪ {A}.
X forms an ACS such that
– A≤ B when A⊆ B.
– A • B=A B (disjoint union) if A and B are disjoint, and A • B=A otherwise.
Unpacking definitions, we can check that:
– Atomic elements are singletons {a}.
– A factorisation function factor (Definition 4.2.5(1b)) is obtained by ordering atoms and
listing the finite set in order.

– posi(A)= up(A)=A and left(A)= right(A)=∅.
(2) Consider some data type Terms of term syntax over variable symbols a, b, c, . . . (terms

of first-order logic s, t ::= a | f (t, . . . , t) for some term-formers f , or terms of the untyped
λ-calculus s, t ::= a | ss | λa.s would suffice).
Let finite substitutions be finite partial maps from variable symbols to terms generated by
atomic substitutions

σ = [a:=t].
Composition is defined in a standard way by acting on terms as sσ .
If a �∈ dom(σ) then aσ = a (so the substitution acts as the identity on variable symbols not
in its domain).
Now, add a fail top element f, such that sf= s always (so f is a formal element that acts as
the identity). If the reader likes, we could take f to be [a:=a | all a].
Then substitutions with f form an ACS, where
– σ ≤ σ ′ when dom(σ)⊆ dom(σ ′), and σ ≤ f always.
– If dom(σ)∩ dom(σ ′)=∅ then σ • σ ′ is the finite substitution that maps a to aσσ ′ for
each a ∈ dom(σ)∪ dom(σ ′), and

– if dom(σ)∩ dom(σ ′) �=∅ then σ • σ ′ = f

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1067

The ‘disjoint domains or fail’ condition ensures that composition is monotone in ≤.
Unpacking definitions, we check that:
– Atomic elements are the generators [a:=s].
– A factorisation function factor (Definition 4.2.5(1b)) is obtained by ordering atoms and
listing a substitution as a list of atomic substitutions in order of the atom on the left.33

– posi(σ)= left(σ)= dom(σ) and right(σ)= up(σ)=∅.

5. The Functor F : IEUTxO→ ACS
5.1 Action on objects
Definition 5.1.1. Suppose T= (α, β , Transaction, Validator) ∈ IEUTxO is a model
(Definition 3.1.9) and recall ChunkT from Notation 3.4.3. Then, we define an abstract chunk
system

F(T)= (ChunkT ∪ {fail}, [], fail,≤, •) ∈ ACS
as follows:

• The underlying set is ChunkT ∪ {fail} – so if we write “x ∈ F(T)” this means “either x= fail
or x ∈ ChunkT”.

• e= [] and f= fail.
• ≤ is sublist inclusion (Notation 2.2.3(5)) on chunks that are lists of transactions, with f as a
top element, so ch≤ f always.

• x • f= f= f • x, and if x and y are both chunks then • is validated concatenation of chunks,
defaulting to the failure element f if validation fails.

Remark 5.1.2. So if x, y ∈ ChunkT but x • y ∈ [TransactionT] \ ChunkT in T – so the two chunks
cannot be validly combined in T – then x • y= fail in F(T). We will always be clear whether •

means ‘concatenate as lists’ or ‘compose in F(T)’.
F(T) resembles T, except with an explicit failure element fail added. This makes monoid com-

position total: not every pair of chunks composes to form a list of transactions that is a chunk – as
per the criteria in Definition 3.4.1 – thus any combination of chunks that is not a chunk, can be
set to fail.

We still need to prove that F(T) is an abstract chunk system (Definition 4.5.1) in the category
ACS (Definition 4.5.2(1)) thus:

• F(T) is a monoid of chunks (Definition 4.2.1),
• F(T) is atomic (Definition 4.2.5) – in fact it is perfectly atomic (Definition 4.2.5(2)) – and
• F(T) is oriented (Definition 4.4.1).

We do this next, culminating with Theorem 5.3.4.
Note that this gives us a dual view of a chunk:

• as a chunk in the IEUTxO universe, and
• as an abstract element in the ACS universe.

To what extent do these two views correspond, and how can we make this formal? We prove
Proposition 5.2.2, which verifies that the positions in a chunk as an element in the IEUTxO uni-
verse, coincide with its positions as an element in the ACS universe. This is refined in further
results; notably Lemma 5.3.1 and its sharper corollary Proposition 5.5.4.

Proposition 5.1.3.

(1) F(T) from Definition 5.1.1 is a perfectly atomic (Definition 4.2.5(2)) monoid of chunks
(Definition 4.2.1).

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1068 M. J. Gabbay

Unpacking Definition 4.2.5(2), any x ∈ F(T) \ {f} can be uniquely decomposed as a (possibly
empty) finite list of atomic elements

x= x1 • . . . • xn,
and if x≤ y< fF(T) then the factorisation of x is a sublist of the factorisation of y.

(2) Furthermore, the atomic elements xi ∈ atomic(F(T)) are singleton lists of the form [tx] for
tx ∈ TransactionT.

Proof. Most of the properties in Definition 4.2.1 are facts of sublist inclusion and concatenation.
Condition 6 of Definition 4.2.1 is Lemma 3.5.1.

Recall that being a chunk is down-closed by Corollary 3.5.2, so in a perfectly atomic monoid
of chunks, every chunk is above its atomic chunks. It is just a fact of lists, sublist inclusion and
the construction in Definition 5.1.1 that F(T) is perfectly atomic with atomic elements singleton
chunks of the form [tx] for tx ∈ TransactionT.

5.2 Relation between the partial monoid ChunkT and themonoid of chunks F(T)
Lemma 5.2.1. Suppose that:

• T ∈ IEUTxO and ch ∈ ChunkT and a ∈ pos(ch).
• π ∈ Perm is a permutation and π(a)= a, and write ch′ = π ·ch (Definition 2.3.3).

It is a structural fact that ch • ch′, ch′ • ch ∈ [TransactionT] since a concatenation of two lists is a list.
However:

ch′ • ch �∈ ChunkT and ch • ch′ �∈ ChunkT.
Proof. By assumption a ∈ pos(ch), so using Lemmas 3.5.10(3) and 3.5.14 (since π(a)= a) precisely
one of

a ∈ utxi(ch)∩ utxi(ch′),
a ∈ utxo(ch)∩ utxo(ch′),

or a ∈ stx(ch)∩ stx(ch′)

must hold. In each of these three cases, the result follows from Lemma 3.5.10(2).

Proposition 5.2.2. Suppose T is an IEUTxO model and x ∈ ChunkT, and
• recall pos(x) from Definition 3.2.3, and
• noting from Proposition 5.1.3 that x can also be viewed as an element x ∈ F(T), recall also
posi(x) from Definition 4.3.6.

Then
pos(x)= posi(x).

Proof. By a routine calculation from Definitions 3.4.1 and 4.3.6 using Lemma 5.2.1.

We continue Remark 4.3.8:

Remark 5.2.3. pos from Definition 3.2.3 and posi from Definition 4.3.6 have different construc-
tions yet give equal results, in a sense made formal in Proposition 5.2.2. Aside from being a useful
equality, what does this tell us?

pos is intensional – it has and requires full access to the internal structure of its argu-
ment – whereas posi is extensional – it treats its argument as a black box in which it can

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1069

only permute atoms and observe compositional behaviour. See also a similar observation in
Remark 4.3.13.

A significance of Proposition 5.2.2 is as a (nontrivial) correctness assertion about the overall
algebraic framework in which these definitions have been embedded: that the abstract interface of
x viewed extensionally matches the concrete interface of x when viewed intensionally.

Put another way, Proposition 5.2.2 has the flavour of being a weak but indicative soundness
and completeness result relating a class of concrete models with a class of abstract ones.

Lemma 5.3.1 refines this, and we will continue to build on these ideas, culminating with
Theorem 7.3.4.

5.3 F(T) is oriented, so F(T) ∈ ACS
Lemma 5.3.1. Suppose T ∈ IEUTxO. By Proposition 5.1.3 F(T)= ChunkT ∪ {fail} is a monoid of
chunks, so it has notions of left, right, and up from Definition 4.3.9.

Then for x ∈ ChunkT we have:34

left(x)⊆ utxi(x)
right(x)⊆ utxo(x)
stx(x)⊆ up(x)

Proof. We consider each line in turn:

(1) If a ∈ left(x) then by Lemma 4.3.12 a ∈ posi(x) so by Proposition 5.2.2 also a ∈ pos(x). By
Definition 4.3.9, there exists y ∈ ChunkT such that a ∈ posi(y), so by Proposition 5.2.2 also
a ∈ pos(y), and y • x ∈ ChunkT. It follows from Lemma 3.5.10(2) that (a ∈ utxo(y) and) a ∈
utxi(x) as required.

(2) If a ∈ right(x), then a ∈ pos(x), and by Definition 4.3.9, there exists y ∈ ChunkT such that
a ∈ pos(y) and x • y ∈ ChunkT, so by Lemma 3.5.10(2) (a ∈ utxi(y) and) a ∈ utxo(x) as
required.

(3) The reasoning to prove stx(x)⊆ up(x) is no harder.

Remark 5.3.2. Lemma 5.3.1 is interesting as much for what it is not, namely it is not the equality
left= utxi and right= utxi and up= stx that one might initially expect. Why?

(1) Consider a chunk ch ∈ ChunkT with an IEUTxO output located at a but with an empty
validator (one which validates no inputs). Then a ∈ utxo(ch) in T, but a ∈ up(ch) in
F(T).

(2) Similarly consider a chunk ch with an input located at a but such that no validator will
validate it – just because an input exists, does not mean a validator must exist to accept it.
Then a ∈ utxi(ch) in T, but a ∈ up(ch) in F(T).

We return to this with the notion of a blocked channel, in Subsection 5.5.

Proposition 5.3.3. F(T) from Definition 5.1.1 is oriented (Definition 4.4.1).

Proof. We check each condition of Definition 4.4.1 in turn:

(1) We check that posi(x)⊆fin A.
It is a structural fact of Definition 3.2.3 that pos(x)⊆fin A. We use Proposition 5.2.2.

(2) We check that posi(x)=∅ implies x= eF(T) or x= fF(T).
An element x ∈ F(T) is either a chunk or the failure element:

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1070 M. J. Gabbay

– If x is a chunk and posi(x)=∅ then by Proposition 5.2.2 posi(x)=∅ and by Lemma 3.2.5
x= [], which by Definition 5.1.1 is eF(T).

– If x= fail then there is nothing to prove, since fail= fF(T).
(3) We check that left(x)∩ right(y) �=∅ implies x • y= f.

If x or y are fail then x • y= f.
So suppose that x and y are chunks, that is, suppose x, y ∈ ChunkT. By Lemma 5.3.1
utxi(x)∩ utxo(y) �=∅. We use Lemma 3.5.10(2).

(4) We check that if posi(x)∩ posi(y)=∅ then x and y commute (Definition 4.3.16(2)).
From Proposition 5.2.2 and Lemma 3.5.9(2).

(5) We check that if posi(x)∩ posi(y)=∅ and f �∈ {x, y} then x • y< fF(T).
Using Proposition 5.2.2, this just rephrases Lemma 3.5.6 in the language of a monoid of
chunks.

Theorem 5.3.4. F(T) (Definition 5.1.1) is an abstract chunk system in ACS (Definition 4.5.1). In
symbols:

F(T) ∈ ACS.
Proof. From Propositions 5.1.3 and 5.3.3.

5.4 Action of F on arrows
Definition 5.4.1. Suppose f : S→T ∈ IEUTxO is an arrow (Definition 3.7.1(2)). We define an
arrow

F(f) : F(S)→ F(T) ∈ ACS
by

F(f)([tx1, . . . , txn]) = f (tx1) • . . . • f (txn)
F(f)(fail

S
) = fail

T
.

Lemma 5.4.2. F(f) from Definition 5.4.1 does indeed map from F(S) to F(T).

Proof. We need to check that validity is preserved, meaning that if [tx1, . . . , txn] is a chunk then
so is f (tx1) • . . . • f (txn). This is Lemma 3.7.2.

Proposition 5.4.3. Continuing Definition 5.4.1, we have that

f : S→T ∈ IEUTxO implies F(f) : F(S)→ F(T) ∈ IEUTxO.
Furthermore, F(f ′ f)= F(f ′) F(f) and F(idS)= idF(S).

Proof. We check the properties in Definition 4.5.2(2) in turn:

(1) We check that F(f)(eF(S))= eF(T) and F(f)(fF(S))= fF(T).
This is just the fact that F(f)([])= [] and F(f)(fail

S
)= fail

T
.

(2) We check that x≤ y< failF(S) implies F(f)(x)≤ F(f)(y)< fF(T).
It is a fact of the construction in Definition 5.4.1 that x≤ y (x is a sublist of y) implies
F(f)(x)≤ F(f)(y).

(3) We check that F(f)(x) • F(f)(y)= F(f)(x • y).
A fact of the first clause of equation (3) in Definition 5.4.1.

We can check F(f ′ f)= F(f ′) F(f) and F(idS)= idF(S) by routine calculations which we elide.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1071

Theorem 5.4.4. The map F, with the action on IEUTxOmodels from Definition 5.1.1, and with the
action on arrows from Definition 5.4.1, is a functor

F : IEUTxO→ ACS.

Proof. This is Theorem 5.3.4 and Proposition 5.4.3.

5.5 Blocked channels
Recall from Remark 3.4.4 that we can think of positions as communication channels in the π-
calculus sense. We conclude this Section by taking a little time to refine the subset inclusions
from Lemma 5.3.1. For this, we need to consider the possibility of a channel which is (intuitively)
blocked, in the sense that no successful validation can occur across it:

Definition 5.5.1. Suppose that T is an IEUTxO model and ch ∈ ChunkT and a ∈A.

(1) Suppose that
– a ∈ utxi(ch) and
– for every ch′ ∈ ChunkT with a ∈ utxo(ch′), ch′ • ch is not a chunk.
Then call a a blocked utxi in ch. Write blockedUtxi(ch) for the blocked utxis of ch.

(2) Similarly define blockedUtxo(ch) the blocked utxos of ch to be those a ∈A such that
– a ∈ utxo(ch) and
– for every ch′ ∈ ChunkT with a ∈ utxi(ch′), ch′ • ch is not a chunk.

Remark 5.5.2. So a blocked UTxI or UTxO in a chunk is an input or output that exists, but which
fails if you try to interact with it. This could happen for an output whose validator is the empty
set (it fails on any input), or for an input such that no validator in T exists to validate it (see
Remark 5.3.2).

Lemma 5.5.3. Suppose T is an IEUTxO model and x, y ∈ ChunkT and x • y ∈ ChunkT. Then
utxo(x)∩ utxi(y)⊆ right(x)∩ left(y).

Proof. Suppose a ∈ utxo(x)∩ utxi(y). In particular then by Lemma 3.5.10(3) a ∈ pos(x)∩ pos(y)
so by Proposition 5.2.2 also a ∈ posi(x)∩ posi(y).

F(T) is a monoid of chunks by Proposition 5.1.3, and since x • y ∈ ChunkT it follows that x • y<

fF(T). It follows from Definition 4.3.1 that y ∈ rightB(x) and x ∈ leftB(y).
The result now follows by Definition 4.3.9.

Proposition 5.5.4. Suppose T ∈ IEUTxO and x ∈ F(T)\{f} (that is, x ∈ ChunkT). Then:
left(x)= utxi(x) \ blockedUtxi(x)

right(x)= utxo(x) \ blockedUtxo(x)
up(x)= stx(x)∪ blockedUtxi(x)∪ blockedUtxo(x)

Proof. We know by Lemma 5.3.1 that left(x)⊆ utxi(x) and right(x)⊆ utxo(x). Now suppose
a ∈ utxi(x) and a �∈ blockedUtxi(x); unpacking Definition 5.5.1 this means that there exists a
y ∈ ChunkT such that a ∈ utxo(y) and y • x ∈ ChunkT. By Lemma 5.5.3 it follows that (a ∈ right(y)
and) a ∈ left(x).

The case of right(x) is similar, and the case of up(x) follows from the previous two cases and
Lemma 5.3.1.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1072 M. J. Gabbay

6. The Functor G : ACS→ IEUTxO
6.1 A brief discussion: why represent?
In Subsection 4.4.2, we observed a hierarchy of models, from concrete EUTxO structures to
IEUTxO models to abstract chunk systems.

Themapping from IEUxO toACS is the functor F : IEUTxO→ ACS from Section 5.Wewill now
exhibit a functor G : ACS→ IEUTxO back down from the abstract to the concrete structures.35

This is interesting for two reasons: one specific and one general. We consider each in turn.
G is interesting because:

(1) It gives a sense in which the abstraction reasonably represents the concrete models. That is,
there is nothing the abstract model could do that is so crazy that it cannot be engineered
back down to a concrete structure. Thismay involve some ugly concrete fiddling, emulation
and choices – as one might expect going from an abstract to a concrete object – but it can
be done, and seeing how, can be helpful for understanding both worlds.

(2) Sometimes, theorems are better proved in the concrete world than the abstract world. This
can be particularly useful to prove negative properties, that something cannot happen in
the abstract world, because it would correspond to something that would be impossible in
the concrete world.
A well-known example is that every Boolean Algebra can be represented as a power set, and
thus, every finite Boolean Algebra has cardinality a power of two. Thus, to prove that some
abstract structure does not admit any Boolean Algebra structure, it suffices if its carrier set
is finite and has cardinality that is not a power of two.36

Now to understand the relevance of G specifically for this paper, consider the following question:
In what sense is Definition 4.5.1 a good abstraction of Definition 3.1.2?

Design decisions are embedded in the conditions of Definition 4.5.1, and some of these were
not trivial and hadmore than one plausible outcome.Why did we choose as we did? How do these
choices interact? In what sense were they appropriate?

To answer these questions, F is not necessarily the greatest help on its own. To illustrate why,
consider that we can obtain a general ‘theory of blockchains’ merely by insisting that an ‘abstract
chunk system’ is a set. We impose no further structure: et voilà: instant generality!37 But this
tells us little; for example F would just be the forgetful functor, mapping an IEUTxO model to its
underlying set. We could map just to monoids, if we add the failure element, and again an F would
exist, but this would be only slightly less uninformative.

So where is the sweet spot, and why? As we observed, merely exhibiting an F-style functor does
not help: we need to get an algebraic measure of what it is about Figure 1 that gives it its essential
nature.

We get a formally meaningful measure of an appropriate level of abstraction by locating one at
which we can build a sensible functor G going back, and seeing how conditions in Definition 4.5.1
interact with its construction – and, we can observe how tweaking them can affect, or even break,
these constructions. A discussion of such tweaks, and their effects, is in Remarks 6.4.4 and 7.1.5,
and Proposition 7.3.6.

Remark 6.1.1. (Comment on design). What counts as a ‘sensible’ G is a design decision in itself.
We consider several options in this paper (listed here in increasing order of size of the category of
denotations ACS):

(1) a categorical equivalence (Proposition 7.3.6); or
(2) a categorical embedding (Theorem 7.3.4 and Remark 7.3.5); or
(3) just an injection on objects (Remark 6.4.4).

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1073

All these possibilities are justifiable.38 So to be clear: G and the choices we make in building it are
not intended as direct value judgements; they are a way to measure and explore the structure of a
large, abstract and interesting design space.

6.2 Action on objects
Recall from Definition 3.1.2 the notion of an IEUTxO model, and the accompanying discussion
in Remark 3.1.8 about the status of the injection ν : Validator ↪→ pow(β × Transaction!).

Continuing that Remark, in Definition 6.2.1 we must be explicit about ν:

Definition 6.2.1. Suppose (X, e, f,≤, •) ∈ ACS. We define an IEUTxO model G(X)
G(X)= (α, β , Transaction, Validator, ν : Validator ↪→ pow(β × Transaction!))

as follows:

(1) We take α = β = atomic(X) (Definition 4.1.4).
(2) We take:

Validator= {∗}
where {∗} is a unit type.

(3) For each atomic x ∈ atomic(X), we admit a transaction
tx(x) ∈ Transaction

such that:
input(tx(x))= {(a, x) | a ∈ left(x)}

output(tx(x))= {(b, x, ∗) | b ∈ right(x)∪ up(x)}.
Thus,

Transaction= {tx(X) | x ∈ atomic(X)}
for tx defined as above.

(4) We define ν : Validator ↪→ pow(β × Transaction!) to map ∗ ∈ Validator as follows (@i
from Notation 3.1.3):

ν(∗)= {(x, tx@(p, y)) | (p, y) ∈ input(tx), x • y< f}.
Thus, ν(∗) is the function that inputs x and a pointed transaction tx@(p, y), extracts the
data y from the input, and then checks that x • y< f in X.39

Remark 6.2.2. Continuing Remark 3.8.1, we see that the validator used by G in Definition 6.2.1
is UTxO style; it only examines the (pointed) input of the transaction to be validated. So in fact, G
maps not just to IEUTxO models but to the IUTxO models noted in Subsection 3.8. We will use
this observation in Theorem 7.3.4(3).

An easy sanity check:

Lemma 6.2.3. Suppose X ∈ ACS and x, y ∈ X. Then tx(x) • tx(y) is a chunk if and only if x • y< f.

Proof. By construction, unravelling Definition 6.2.1.

Remark 6.2.4. (Comment on design). In Definition 6.2.1(3) we set

• input(tx(x))= {(a, x) | a ∈ left(x)} and
• output(tx(x))= {(b, x, ∗) | b ∈ right(x)∪ up(x)}.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1074 M. J. Gabbay

So up-atoms in xmap to output-atoms in tx(x). Why? For two reasons:

• The short reason is that it makes Lemma 6.3.2 work: all atoms in posi(x) get recorded in an
input or output (even the ones in up(x), which cannot participate in a non-failing interaction),
along with a copy of x (to get injectivity).

• The longer reason is as follows:
An ACS element x ∈ X has no internal structure and thus no explicit structural notion of
inputs or outputs. Our only interaction with x is by combining it with other elements and
observing partiality (cf. Remark 4.3.5).
But suppose our ACS X was obtained concretely from an IEUTxO model using F from
Definition 5.1.1, so that x is ‘secretly’ a singleton chunk, presented as an atomic element in an
ACS. Then p ∈ up(x) could occur for two reasons:
– either p is the position of an input which no output will accept (perhaps it is labelled with
some data that all validators disapprove of);

– or p is the position of an output that will not validate any available input (e.g. it has the
empty validator).

When we come to map x back to a transaction tx(x), the simplest way to record p is to attach
it to an IEUTxO output located at p, with a validator that always fails.
The other option would be to attach p to an input in tx(x), to tag the data carried by that
input with some special ‘fail-me’ tag and remember to create only validators that recognise
this tag and reject the input. But this is clearly a more complicated way of doing things, and
the design adopted in Definition 6.2.1(3) seems the natural and simple approach.

Several things about Definition 6.2.1 need checked. We start with Lemma 6.2.5:

Lemma 6.2.5.

(1) If X ∈ ACS and x ∈ atomic(X) then tx(x) has the right type to be a transaction as per Figure 1.
(2) If X ∈ ACS and x ∈ atomic(X) then [tx(x)] is a chunk.
(3) As a corollary, atomic elements in F(X) are precisely the singleton chunks of tx(x), where x

ranges over atomic elements of X – or more concisely in symbols:
atomic(F(X))= {[tx(x)] | x ∈ atomic(X)}.

Proof.

(1) From Definitions 4.4.1(1) and 6.2.1(3) and Lemma 4.3.12, tx(x) has finitely many inputs
and outputs; so as per Figure 1 it is indeed a pair of a finite set of inputs and a finite set of
outputs.

(2) By Lemma 3.4.6, to show [tx] is a valid chunk it would suffice to show that input(tx(x))∩
output(tx(x))=∅. This follows from Lemma 4.3.12 and Corollary 4.4.5.

(3) By construction and Lemma 4.1.6, noting that in lists ordered by subset inclusion, atomic
elements are singleton lists.

Remark 6.2.6. (Comment on design). We mention an alternative definition of G from
Definition 6.2.1, just to illustrate that more than one encoding is possible:

(1) We take α = β = Validator= atomic(X) (Definition 4.1.4).
(2) For each atomic x ∈ atomic(X), we admit a transaction tx(x) ∈ Transaction such that:

input(tx(x))= {(a, x) | a ∈ left(x)}
output(tx(x))= {(b, x, x) | b ∈ right(x)∪ up(x)}

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1075

(3) We define ν : Validator ↪→ pow(β × Transaction!) to map x ∈ Validator as follows:
ν(x)= {(x, tx(y)@i) | x • y< f, i ∈ input(tx(y))}.

Remark 6.2.7. It remains to prove that ν is well-defined and (as required by Definition 3.1.2(5))
is injective, and that G(X) is indeed an IEUTxO model. See Corollaries 6.3.3 and 6.3.4.

6.3 ν is injective
Lemma 6.3.1. Suppose X ∈ ACS (Definition 4.5.2). Then

x ∈ atomic(X) implies posi(x) �=∅.

Proof. Suppose x is atomic. By Definition 4.1.4(1) x �∈ {e, f}. We use Lemma 4.4.3.

Lemma 6.3.2. Suppose X ∈ ACS. Then:
(1) The assignment

x ∈ atomic(X) �−→ tx(x) ∈ TransactionG(X)
from Definition 6.2.1(3) is injective.

(2) posi(x)= pos(tx(x)).

Proof. (1) By Lemma 6.3.1 (since x is atomic) posi(x) �=∅, so by Lemma 4.3.12 at least one of
left(x) or right(x) or up(x) must be nonempty.
If left(x) is nonempty then tx(x) has an input and we can read x off the data in that input.
Otherwise, tx(x) has an output and we can read x off the data in that output.

(2) It follows fromDefinition 6.2.1(3) and Figure 4 that pos(tx(x))= left(x)∪ (right(x)∪ up(x)).
Also, by Lemma 4.3.12 pos(x)= left(x)∪ right(x)∪ up(x).

As promised in Remark 6.2.7, we prove:

Corollary 6.3.3. The map

ν : Validator ↪→ pow(β × Transaction!)
from Definition 6.2.1(4) is well-defined and injective.

Proof. By Lemma 6.3.2(1), we can deduce y from tx(y). The result follows.

Corollary 6.3.4. If X is an abstract chunk system (Definition 4.5.1) then G(X) is an IEUTxO model
(Definition 3.1.2).

Proof. We just need to check the conditions of Definition 3.1.2; the only nontrivial part is that ν

is an injection, and that is Corollary 6.3.3.

6.4 Action on arrows
Definition 6.4.1. Suppose g : X→ Y ∈ ACS and recall from Definition 3.7.1(2) that an arrow

G(g)=G(X)→G(Y) ∈ IEUTxO
should be a mapping from TransactionG(X) to ChunkG(Y). Recall factor from Definition 4.2.5(1b),
which factorises non-failure elements into atomic constituents, and recall from
Definition 4.5.2(2b) that g maps non-failure elements to non-failure elements.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1076 M. J. Gabbay

Then define G(g) by

G(g) : tx(x) �−→ tx(y1) • . . . • tx(yn) ∈ ChunkG(Y)
where factor(g(x))= [y1, . . . , yn] ∈ [atomic(Y)].

Lemma 6.4.2. G(g) from Definition 6.4.1 is well-defined.

Proof. Wemust check that tx(y1) • . . . • tx(yn) is a chunk; this follows by Lemma 3.7.2.

Proposition 6.4.3. The map G, with the action on abstract chunk systems from Definition 6.2.1,
and with the action on arrows from Definition 6.4.1, is a functor

G : ACS→ IEUTxO.

Proof. Given the results above, the only remaining thing to check is that if g : X→ Y and g′ :
Y→ Z then G(g′ g)=G(g′)G(g). This follows by a routine argument from the definitions, using
Definition 4.2.5(1(b)ii).

Remark 6.4.4. (Comment on design). The significance of condition 1b of Definition 4.2.5 is not
that elements can be factored into atomic elements – this follows already from condition 1a – but
that a factorisation can be selected, as a monoid homomorphism.

We use this condition in just one place: to define the action of G on arrows in Definition 6.4.1
and prove it functorial in Proposition 6.4.3.

It would be legitimate to remove condition 1b of Definition 4.2.5. This would exhibit our cat-
egory ACS as a subcategory of a larger category which would include more objects – ‘even more
abstract’ abstract chunk systems – at a cost of no longer being able to functorially map this larger
space back down to IEUTxO.

Intuitively, this larger space behaves more like a space of all possible denotations rather than
a space of IEUTxO-representable ones, which might be worthwhile if it admits other interesting
examples; whether or not this will be the case cannot be predicted at time of writing.

Note that the action on objects from Definition 6.2.1 would still be well-defined even without
Definition 4.2.5(1b), so that we can still represent our ‘even more abstract’ abstract chunk systems
concretely in IEUTxO models: this just would not correspond to a functor.40

7. An Adjunction between F : IEUTxO→ ACS and G : ACS→ IEUTxO
7.1 The counit map εX : FG(X)→ X exists and is a surjection
Remark 7.1.1. Suppose X ∈ ACS, we wish to define an arrow εX : FG(X)→ X ∈ ACS. Unpacking
Definitions 6.2.1 and 5.1.1, we see that an x ∈ FG(X) has one of the following forms:

• x= failFG(X) for failFG(X) the failure element added by F to ChunkG(X) in Definition 5.1.1.
• x= [tx(x1), . . . , tx(xn)] for some unique [x1, . . . , xn] ∈ [atomic(X)].

We also know from Lemma 6.3.2 that tx : atomic(X)→ Transaction(G(X)) is injective, and it
follows that we can recover each xi from the unique corresponding [tx(xi)] above.

Definition 7.1.2. Let εX : FG(X)→ X be determined by:

(1) εX([])= eX (this would be a special case of the next clause, for n= 0)
(2) εX([tx(x1), . . . , tx(xn)])= x1 • . . . • xn for n≥ 1 and x1, . . . , xn ∈ atomic(X)
(3) εX(fFG(X))= fX

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1077

Lemma 7.1.3. Definition 7.1.2 is well-defined and determines an arrow in ACS.

Proof. Well-definedness follows as per Remark 7.1.1 from Lemma 6.3.2, since we can recover each
xi from its [tx(xi)]. It remains to check the arrow conditions from Definition 4.5.2(2):

(1) We check that εX(eFG(X))= eX and ε(fFG(X))= fX.
A fact of Definition 7.1.2.

(2) We check that x≤ y< fFG(X) implies εX(x)≤ εX(y)< fX.
By Proposition 5.1.3, FG(X) is perfectly atomic, and if x≤ y< fFG(X) then x and y fac-
torise uniquely into a composition of lists of singleton chunks, which by construction in
Definition 6.2.1(3) have the form tx(xi) and tx(yj), such that the factorisation of x is a sublist
of the factorisation of y.
The result follows by a routine calculation from Definition 7.1.2.

(3) εX(x) • εX(y)= εX(x • y)
A fact of Definition 7.1.2, again using the fact that by Proposition 5.1.3 FG(X), is perfectly
atomic.

Proposition 7.1.4. The counit map εX : FG(X)→ X ∈ ACS is a surjection on underlying sets.

Proof. Suppose we are given x ∈ X, we want to exhibit an element in FG(X) that maps to it under
εX.

If x= fX then by construction in Definition 5.1.1 failFG(X) = fFG(X) and also by construction
εX(failFG(X))= fX so we are done.

Otherwise by Proposition 5.1.3 (or just by Definition 4.2.5), we can write

x= x1 • . . . • xn
for some atomic x1, . . . , xn ∈ atomic(X), and looking at Definition 7.1.2 we immediately have that

εX([tx(x1), . . . , tx(xn)])= x1 • . . . • xn = x.

Remark 7.1.5. (Comment on design). By Proposition 7.1.4, εX surjects FG(X) onto X as sets, but
is it not necessarily surjective on the ≤ structure, meaning that εX(ch)≤X εX(ch′) does not imply
ch≤FG(X) ch′.

We can have this if we add condition 2b of Definition 4.2.5, that: if x≤ y< f then factor(x)≤
factor(y) (the right-hand ≤ denotes sublist inclusion; the left-hand ≤ is the partial order on X).
More on this in Proposition 7.3.6. Further tweaks to the design of abstract chunk systems are also
mentioned in Remark 6.4.4.

7.2 The unit map ηT :T→ GF(T) exists and is an isomorphism
Remark 7.2.1. SupposeT= (α, β , Transaction, Validator) ∈ IEUTxO. We wish to define an arrow

ηT :T→GF(T).

We can make some observations:

• By construction in Definition 5.1.1, F(T) is isomorphic as a partial ordering to T, with the
addition of the fail top element.
As noted in Proposition 5.1.3, it follows that the atomic elements of F(T) correspond precisely
with the singleton chunks in ChunkT and thus with transactions in TransactionT.
The chunks in F(T) are then determined by combining the singleton chunks, subject to
the well-formedness conditions of Definition 3.4.1 and the locality properties noted in
Lemma 3.5.1.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1078 M. J. Gabbay

• By construction in Definition 6.2.1, the atomic elements of GF(T) are isomorphic to
atomic(F(T)), and by Lemma 6.2.5(3) also to TransactionT.

Definition 7.2.2. Let ηT :T→GF(T) be determined by mapping tx ∈ TransactionT to [tx(tx)] ∈
ChunkGF(T). Thus using Lemma 3.7.2 we have:

ηT([tx1, . . . , txn])= [tx(tx1), . . . , tx(txn)].

Lemma 7.2.3. If

• x= [tx1, . . . , txn] ∈ ChunkT, then
• ηT(x)= [tx(tx1), . . . , tx(txn)] ∈ ChunkGF(T).

As a corollary, Definition 7.2.2 does indeed map chunks to chunks.

Proof. By a routine check on Definition 6.2.1(3), using Proposition 5.5.4.

Lemma 7.2.4. Recall the notions of utxi, utxo and stx from Definition 3.4.8 and the notion of
blockedUtxi from Definition 5.5.1. Recall η from Definition 7.2.2 and suppose x ∈ X ∈ ACS. Then:

(1) utxi(ηT(x))= utxi(x) \ blockedUtxi(x)
(2) utxo(ηT(x))= utxo(x)∪ blockedUtxi(x)
(3) stx(ηT(x))= stx(x)

Proof. By routine calculations using Proposition 5.5.4.

Proposition 7.2.5. The unit map ηT : ChunkT → ChunkGF(T) ∈ IEUTxO is a bijection on underly-
ing sets.

Proof. Using Lemma 6.3.2 and the fact that fromDefinitions 5.1.1 and 6.2.1, any element ofGF(T)
has the form [tx(tx1), . . . , tx(txn)] for some transactions tx1, . . . , txn ∈ TransactionT.

7.3 F is left adjoint to G
Remark 7.3.1. Naturality of ε and η is Propositions 7.3.2 and 7.3.3. The proofs are by diagram
chasing. We do need to be a little careful because of the choice made in the factor function
(Definition 4.2.5(1b)), which propagates to the action of G on arrows (Definition 6.4.1). In the
event, the diagram chasing is all standard and it works fine.41

Proposition 7.3.2. The counit map ε is a natural transformation from FG to 1ACS.

Proof. Consider some arrow g : X→ Y ∈ ACS. We must check a commuting square in ACS that

εY FG(g)= g εFG(X).

Using Proposition 4.5.5(2) it suffices to check for each x′ ∈ atomic(FG(X)) that

εY(FG(g) (x′))= g(εFG(X) x′).

From Lemma 6.2.5(3), x′ = [tx(x)] for x ∈ atomic(X).
Write g(x)= y1 • . . . • yn where factor(g(x))= [y1, . . . , yn] ∈ [atomic(Y)] (Definition 4.2.5(1b)),

so that

(FG(g))([tx(x)])= [tx(y1), . . . , tx(yn)] ∈ FG(Y).

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1079

Then

εY(FG(g)([tx(x)]))= εY([tx(y1), . . . , tx(yn)])= y1 • . . . • yn = y

and

g(εX([tx(x)]))= g(x)= y

as required.

Consider f : S→T and F(f) : F(S)→ F(T) and some [tx] ∈ ChunkS and f (tx)=
[tx1, . . . , txn] ∈ ChunkT. Then ηS([tx1, . . . , txn])= [tx(tx1), . . . , tx(txn)] and

F(f)([tx]) ([tx1, . . . , txn])

Proposition 7.3.3. The unit map η is a natural transformation from 1IEUTxO to GF.

Proof. Consider some arrow f : S→T ∈ IEUTxO. We must check a commuting square in IEUTxO
that

ηT f =GF(f) ηS.

Using Lemma 3.7.2 it suffices to check for each tx ∈ TransactionS that
ηT(f ([tx]))=GF(f)(ηS([tx])).

Suppose f (tx)= [tx1, . . . , txn] ∈ ChunkT. Then
ηT(f ([tx]))= ηT([tx1, . . . , txn])= [tx(tx1), . . . , tx(txn)]

and

GF(f)(ηS([tx]))=GF(f)([tx(tx)])= [tx(tx1), . . . , tx(txn)]

as required.

Theorem 7.3.4.

(1) The functors

F : IEUTxO→ ACS and G : ACS→ IEUTxO

from Definitions 5.1.1 and 5.4.1 (for F) and from Definitions 6.2.1 and 6.4.1 (for G) form an
adjoint pair. In symbols:

F �G : IEUTxO→ ACS

(2) F is full and faithful (a bijection on homsets), and G is full (a surjection on homsets).
Thus, F is a full embedding of IEUTxO into ACS.42

(3) The image G(X) of X ∈ ACS is in fact a pure IUTxO model – meaning that its validators
examine only the input-point of the transaction passed to them, not the entire transaction –
and Gmaps more specifically to the full subcategory IUTxO of IEUTxO (Subsection 3.8).
Thus, have the following short chain of maps

IUTxO e � GF−→ IEUTxO F � G−→ ACS (3)

where on the left e denotes the trivial inclusion/embedding map (Remark 3.8.1) with right
adjoint GF.43

(4) The image GF(T) of T ∈ IEUTxO is a pure IUTxO model and as a corollary, every IEUTxO
model T is isomorphic via ηT :T→GF(T) to an IUTxO model GF(T),

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1080 M. J. Gabbay

Proof.

(1) The natural transformations are ε : FG→ 1 and η : 1→GF from Definitions 7.1.2
and 7.2.2. They are natural by Propositions 7.3.2 and 7.3.3.

(2) By Proposition 7.2.5, the unit η is a bijection and it follows that f is full and faithful. By
Proposition 7.1.4, the counit ε is a surjection and it follows that G is full (this also follows
from the fact that η is a bijection and so an injection).

(3) This is a structural fact of Definition 6.2.1, as observed in Remark 6.2.2.
(4) From Proposition 7.2.5 and part 3 of this result.

Remark 7.3.5. We can present the diagram in (3) in Theorem 7.3.4(3) (recall that 1 and IUTxO
are from Subsection 3.8) quite nicely as a loop of embeddings:

ACSIEUTxOIUTxO
1 F

G

Intuitively, ACS denotations seem to be the largest denotational class which conveniently maps
back down into IEUTxO models as above (this is an intuitive observation, not a theorem). But if
we wish to optimise differently and make our denotation more specific, then we can be rewarded
with a tighter result:

Proposition 7.3.6. If we strengthen Definition 4.5.1 so that an abstract chunk system is a perfectly
atomic oriented monoid of chunks (Definition 4.2.5(2)) instead of just being an atomic one, then

• εX in Proposition 7.1.4 becomes a bijection, and
• the embedding F �G in Theorem 7.3.4 becomes an equivalence of categories, and
• the loop illustrated in Remark 7.3.5 becomes a loop of equivalences.

Thus, the full subcategory in ACS of perfectly atomic abstract chunk systems, and all arrows between
them, is the ‘properly IEUTxO-like’ abstract chunk systems.44

Proof. The bijection is just a structural fact: if by Definition 4.2.5(2a) an element x ∈ X ∈ ACS fac-
torises uniquely into a list of atomic elements x1 • . . . • xn, then x can be identified with that list and
G just maps it to a list of transactions [tx(x1), . . . , tx(xn)] – which, by design in Definition 6.2.1,
has the same composition behaviour in G(X) as x does in X.

Then, Definition 4.2.5(2b) is exactly what is required for FG(X) to ‘remember’ all the ≤-
structure of X.

8. Conclusions
We have presented the EUTxO blockchain model in a novel and compact form and derived from
it an algebra-style theory of blockchains as partially ordered partial monoids with channel name
communication. This builds on previous work (Brünjes and Gabbay, 2020).

We hope this paper will make two contributions:

(1) its specific definitions and theorems and also
(2) an idea that blockchain structures can be subjected to this kind of analysis.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1081

Or to put it another way: we illustrate that an algebraic theory of blockchains is possible, and what
it might look like.

The reader can apply these ideas to their favourite blockchain architecture, and if this were
widespread practice then this might help make the field accessible to an even broader audience,
ease technical comparisons between systems, add clarity to a fast-changing field – and as we have
argued, it might suggest structures and tests for practical programs, as is already reflected in a
recent work (Brünjes and Gabbay, 2020; Gabbay, 2020b).

We now reflect on the design decisions made along the way and suggest possibilities for future
work.

8.1 Observational equivalence
We touched on notions of observational equivalence in Subsections 3.5.2 and 4.3.3.

The theory of EUTxO observational equivalence is a little weaker than we might like, in the
sense that not as many things get identified as one might first anticipate.

This is because a validator gets access to the whole transaction from which an input emanates
– see the line for Validator in Figure 1. (This is specific to EUTxO; UTxO is more local, see
Remark 3.8.1.)

This makes it hard to factor out internal structure. For instance, even if all but one of the
inputs and outputs of a transaction have been spent, so that it has just one dangling input – then
that entire transaction is still observable at the final dangling input. Recall Proposition 3.5.12 and
consider tx, tx′ ∈ Transaction such that pos(tx)∩ pos(tx′)=∅, so that tx and tx′ are commuting.
We might reasonably wish to identify tx • tx′ and tx′ • tx with a composite transaction which we
might write tx∪ tx′, but we cannot do this because a validator could see the difference.

Thus, currently the EUTxO framework can observe the difference between

• one large transaction and
• a composite chain (i.e. a chunk; see Definition 3.4.1) of smaller ones

– even if they are ‘morally’ the same. This is not good for developing compositional theories of
observational equivalence.

We propose it might be helpful if the EUTxO model allowed us to limit access to the channels
in a transaction, such that an input can limit validators to access only certain inputs and outputs in
a transaction, for example by nominating positions that are ‘examinable’ along that input.45 The
pure UTxOmodel (Remark 3.8.1) would correspond to the special case when an input nominates
only itself for validators to access.

Then, we would in suitable circumstances be able to switch between a single large transaction
and a composite chunk with the same inputs and outputs.

Another observable of a transaction is the names of its spent transaction channels, and this
brings us to garbage collection:

8.2 Garbage collection
Ourmodel has no garbage collection of spent positions – where by spent positionswemean the stx-
atoms fromDefinition 3.4.8; see also the up-atoms fromDefinition 4.3.9 (a connection is precisely
stated in Proposition 5.5.4).

There is nothing wrong with this; the EUTxO presentation in Chakravarty et al. (2020) does
not garbage-collect either (i.e. positions on the blockchain can be occupied at most once and can
never be un-occupied).

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1082 M. J. Gabbay

However, since we name our positions, it might be nice to consider garbage-collecting (i.e.
locally binding) the names of spent positions, by removing or α-converting them in some way.
We do this in the implementation in Gabbay (2020b).

However, the maths indicates that this does come at a certain price. For instance, consider a
very simple model of finite lists of atoms in which the first atom is an ‘input’ and the last atom is
an ‘output’, and we garbage-collect by removing matching atoms, like so:

[a, b] • [b, c]= [a, c] [a, c] • [c, b]= [a, b].

Thus,

([a, b] • [b, c]) • [c, b]= [a, b].

Now if we bracket the other way, then [b, c] • [c, b] is ill-defined, and therefore, so is [a, b] • ([b, c] •

[c, b]). We cannot have [b, b] because this would violate the condition that an input must point to
an earlier (not a later) output (Definition 3.4.1(3); we consider relaxing this condition in item 2 of
Subsection 8.6).

The partiality is no issue – chunks are already a partial monoid (Theorem 3.5.4). But, our
monoid of garbage-collecting chunks would not be associative. It would still be nearly associative,
meaning that x • (y • z)= (x • y) • z where both sides are defined. However this is a weaker property
that would be messier to work with, and for now we do not need it to make our case.

This could also be read as a mathematical hint that our uniqueness conditions are a little too
strict and that [b, c] • [c, b] should be permitted, where the leftmost b does not point to the later
b but instead points backwards in time to some earlier b, and the rightmost b points forwards
towards some later b – in the style of an interleaved scope (Gabbay et al., 2015), for example. In the
presence of garbage collection, this would make perfect sense, since we would expect both bs to
eventually get bound, that is ‘spent’.

In this paper, we do not garbage-collect. We leave deciding whether we should, and if so how,
for future work.

8.3 Tests
A few more words on the equations in Figure 1 (IEUTxO type equations) vs. those in

Definition 4.5.2 (its algebraic counterpart of abstract chunk systems):
We want the equations in Figure 1 to be short and sweet, so that the system looks simple and

solutions are easy to build and manipulate.
The design parameters in Definition 4.5.2 are somewhat different: we do not mind if there

are plenty of algebraic properties, because this means that we have captured as many interesting
properties as possible. The adjunction in Theorem 7.3.4 gives a formal sense in which the two
correspond.

(This leaves it for future work to see how these conditions could be relaxed, as discussed e.g. in
Remarks 6.4.4 and 7.1.5 and Proposition 7.3.6.)

This has mathematical interest, but not only that.
As noted in Subsection 4.4.2, modern programming languages support efficient programming

on abstract denotations, thus delaying instantiating to specific instances until truly necessary. Also,
they allow us to express and test against properties – and equality properties in particular can be
helpful for optimising transformations.

So an algebraic theory can be relevant to producing concrete working code, because:

(1) it can help structure code, and
(2) an axiom can be read both as a testable property and as a program transformation; so that
(3) the more axioms we have, the more transformations and tests are available, and the more

scope we have to transform, structure, and test our programs.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1083

8.4 Connections with nominal techniques
This paper borrows ideas from nominal techniques (Gabbay and Pitts, 2001), and in particular, it
follows the ideas on Equivariant ZFA from Gabbay (2020a) in handling the atoms which we use
to name positions. We use atoms to name positions in IEUTxO models and in abstract chunk
systems (ACS).

Partly, this is just using nominal-style names and permutations as a standard vocabulary. We
can think of this application of nominal ideas as reaching for a familiar API, typeclass, or algebra,
and there is nothing wrong with that.

The reader can find this implemented in Gabbay (2020b), where the IEUTxO equations in
Figure 1 are combined with this author’s nominal data types package to create first a Haskell
typeclass, and then a working implementation of chunks and blockchains, following the IEUTxO
model of this paper.

But in parts of this paper, something deeper is also taking place. For example:

(1) The notion of abstract chunk system – which makes up the more abstract half of this paper
– depends on that of an oriented monoids of chunks from Definition 4.4.1, which depends
on the notion of posi from Definition 4.3.6, whose definition depends on the permutation
action.
posi is a nameful definition, in the nominal sense, and it is not clear how would express it,
and thus the notion of ACS, were it not for our nominal use of names.

(2) In Gabbay (2020b), we go somewhat further than in this paper in developing IEUTxO
models, in that we permit α-conversion to garbage-collect spent positions as discussed in
Subsection 8.2. This too is a fully nominal definition, which uses the nominal model of
binding in specific ways.

Remark 8.4.1. (No support assumed). Experts on nominal techniques should note that no finite
support conditions are imposed; for example, there is nothing to insist that a validator ν(v)⊆ β ×
Transaction! should be a finitely-supported subset. This paper is in ZFA, not Fraenkel-Mostowski
set theory.

We could construct a finitely supported account of the theory in this paper in FM, just by
imposing finite support conditions appropriately – but it would cost us complexity, and since
we do not seem to need this, we do not do it. We hope we have struck a good balance in the
mathematics between being rigorous in our treatment of names, and not drowning the reader in
detail.

Note that finiteness conditions on sets of names are still important: notably in
Definition 4.4.1(1), and name management is key to some nontrivial results, notably
Corollary 4.4.5. So there is a ‘finite support’ flavour to the maths, just not as a direct translation of
the Fraenkel-Mostowski notion of finite support.

Remark 8.4.2. (Disjointness conditions). Continuing the previous remark, ‘freshness-flavoured’
set disjointness conditions like

• input(tx)∩ output(tx)=∅ in Lemma 3.4.6, and
• pos(ch)∩ pos(ch′)=∅ in Lemma 3.5.6, and
• posi(x)∩ posi(y)=∅ in Definition 4.4.1 and elsewhere,

are quite important in this paper.
We could have imported a nominal notation and written these #, as in ch#ch′ or x#y. This would

not be wrong, but it might mislead because, as discussed above, we do not assume nominal notions
of support and freshness. Thus, pos(ch) and posi(x) are not necessarily equal to the support of ch

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1084 M. J. Gabbay

and x, respectively, and if for example x and ywere in an abstract chunk system that happened also
to be finitely-supported (a plausible scenario), it would not be guaranteed that x#y would coincide
with posi(x)∩ posi(y)=∅.46

We could insist that supp(x) must exist and coincide with posi(x), of course – but that would
be an additional restriction.

8.5 Concrete formalisation
Can we implement all or parts of this paper in a theorem-prover, and use that to verify properties
of a blockchain system?

This paper has a lot of moving parts, and it is not all or nothing: a user can import whichever
components (IEUTxO or ACS) they wish – though we also hope that the overall mathematical
vision could provide useful guidance.

How the ideas in this paper might be brought to bear in the setting of a formal verification
cannot have a clear-cut answer, because it depends on interactions between the maths, what we
want to verify, the resources available,47 and what facilities are offered by a particular theorem-
proving environment.

A reasonable (but naive) implementation of the EUTxO inductive definition in Chakravarty
et al. (2020) would suggest modelling positions by numbers which are essentially de Bruijn indices.
The maths in this paper suggests against this:

• We want to talk about chunks. Indices only make sense in a blockchain which has an initial
genesis block from which we start to index.

• We want to rearrange transactions and chunks, for example to talk about how they commute,
as in (for example) Definition 4.3.16. With indices, a transaction in a different place is a dif-
ferent transaction, and potentially subject to different validation if a validator were to directly
inspect its indices.

• Because we use names, we never have to worry about reindexing functions, as can be an issue
with the de Bruijn indexed approach.

This is borne out by the practice: the developers of the EUTxO implementation underly-
ing Chakravarty et al. (2020) have explored theorem-provers and they do not reference trans-
actions by position (even though the mathematical description in the literature makes it look like
they do, at least to the uninformed reader).

What they actually do is maintain an explicit naming context. This is ongoing research, but the
interested reader can find a brief description in Melkonian et al. (2019).

The difficulty with this hands-on context-based approach is that we end up having to curate
our context of names, using explicit context-weakening and context-combining operations. These
get limited, extremely tedious to formulate and prove, and clutter the proofs of properties.48

It is standard and known that maintaining contexts of ‘known names’ can get painful. Indeed,
this is one of the issues that nominal techniques were developed to alleviate.

In the context of this paper, we would advise looking at how the implementation in Gabbay
(2020b) manages names and binding using permutations and the Nom binding context (which is
the nominal construct that closely corresponds to a local context of known names).

So it works in Haskell – but determining the extent to which this can be translated to a theorem-
prover remains to be seen. We could imitate the nominal data types package; there is a nominal
package in Isabelle Urban (2008), and this author has written some recommendations on imple-
menting nominal techniques in theorem-proving environments (Gabbay, 2020a).49 Exploring this
is future work.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1085

8.6 Future work
We discussed future work above and in the body of the paper. We conclude with some further
observations:

(1) The authors of Chakravarty et al. (2020) map their concrete models to Constraint Emitting
Machines, which are a novel variant of Mealy machines. It is future work to see whether
the idealised EUTxO solutions from Definition 3.1.2 admit corresponding descriptions.
For the interested reader, we can note that a body of work on nominal automata does
exist (Bojańczyk, 2018; Bojańczyk et al., 2014).

(2) In condition 3 of Definition 3.4.1, we restrict inputs to point to strictly earlier outputs. This
restriction makes operational sense for a blockchain, and it is unavoidable and required for
well-definedness in Chakravarty et al. (2020) because of its inductive construction.
However, there is no mathematical necessity to retain it here; it would be perfectly valid
and possible to contemplate a generalisation of Definition 3.4.1 which permits loops from
a transaction to itself, or even forward pointers from inputs to later outputs (i.e. ‘feedback
loops’).
Mathematically and structurally, loops are perfectly admissible in the framework of this
paper.
Loops from a transaction to itself are particularly interesting, because this would remove
the need for a genesis block – which has no inputs and therefore exists sui generis in that
it is not subject to the action of any validation from other blocks. So, we could insist that
all transactions have at least one input, but that input may loop to an output on the same
transaction.
This might seem like a minor difference, but it is not, because we control the set of valida-
tors (the injection ν in Definition 3.1.2), so we can enforce checks of good behaviour – even
of the first transaction, which would for example be forced to validate itself via a loop – by
controlling the set of validators.

(3) We have considered EUTxO blockchains in this paper. It would be natural to attempt a
similar analysis for an accounts-based blockchain architecture such as Ethereum. A start on
this is the Idealised Ethereum equations in Brünjes and Gabbay (2020, Figure 4); developing
this further is future work.

(4) As is often the case, in practice there are desirable features of real systems that would break
our model.
For instance, it can be useful to make transactions time-sensitive using slot ranges, also
called validity intervals; a transaction can only be accepted into a block whose slot is
inside the transaction’s slot range. Clearly, this could compromise results having to do with
chunks and commutations, because these are by design ‘pure’ notions, with no notion of
time.
It is future work to see to what extent a theory of chunks might be compatible with explicit
time dependence constraints. In one sense, this temporal aspect should be orthogonal to
the nominal techniques used so far, since atoms are just used as positions and we impose
no finite support conditions; however, in another sense it may also be possible to use-
fully import notions of for example ordered atoms from nominal automata, as presented
in Bojańczyk et al. (2014), Bojańczyk (2018). In any case, it is common to find a pure sub-
language with a nice theory embedded in a more expressive and larger language with less
good behaviour, as for example pure SML is embedded in SML with global variables.

8.7 Final words
The slogan of this paper is blockchains as algebras, and more specifically blockchains as nominal
algebras of chunks. Based on the maths above, which substantiates this slogan, we can note that:

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1086 M. J. Gabbay

(1) UTxO blockchains can be viewed as an algebraic structure, both intensionally
(Definition 3.1.2) and extensionally (Definition 4.5.1), and these views are equivalent
(Theorem 7.3.4).

(2) The natural and fundamental unit of blockchain algebras is partial blockchains – what we
call chunks in this paper – and chunks naturally organise themselves into monoids with
extra structure.

(3) It can be convenient to address inputs and outputs by name in a ‘nominal’ style – contrast
with a de Bruijn-style index (addressing a location by some kind of offset from a genesis
block; cf. Subsection 8.5), or a blockchain hash.

(4) We have proved some high-level properties (some readers might call thesemeta-theorems).
Notably: a kind of Church-Rosser property in Theorem 3.6.1; and Theorem 7.3.4(4) that
every IEUTxO system admits a presentation as an IUTxO system; and that both can be
presented as Abstract Chunk Systems, in senses made formal by a loop of embeddings in
Remark 7.3.5. These capture global properties of how the structures fit together, which are
not immediately obvious just reading the definitions.

(5) An open question is how this maths might help the blockchain community to simplify
proofs, write better programs, more quickly and safely design new systems, or accommo-
date existing and new extensions (cf. next point). The results in this paper, coupled with a
toy (but perfectly real) blockchain implementation based on these ideas (Gabbay, 2020b),
suggest that these things are plausible – but time and future research will reveal more, and
that is as it should be.

(6) We knowingly threw out concrete structure that real blockchains need. Real blockchains
have tokens, monetary policies, smart contracts and more structure that is being invented
literally on a daily basis. But instantiating algebraic structures is possible as discussed in
Subsection 2.1, and indeed, the raison d’être of algebra is just this: abstract, find instances,
and extend.

(7) One path to applying this paper is essentially to take Proposition 3.5.12 and Remark 3.5.13
seriously and use them to design domain-specific resource-aware logics for reasoning about
algebras of chunks equipped with specific features of possibly industrial relevance.
These would be logics for verifying domain-specific elaborations of Theorem 3.6.1, and for
tracing resources through the evolution of a blockchain. The nominal method of tracking
resources (e.g. as we have seen used to label inputs and outputs and define Abstract Chunk
Systems) lends itself naturally to such applications.50
Thus, the semantics here, enriched with data structures of practical interest – for exam-
ple currencies, NFTs or other ‘real’ data coming from specific user needs – could lead
to logics that are both powerful and useful, helping to prove commutativity and other
resource-based properties, using logics for algebras of chunks in the style of this paper.

In summary, this paper introduces the idea of blockchain algebra, at least as applied to UTxO style
blockchains. It is reasonable to hope that this might provide a convenient target semantics for new
programs and logics for building and reasoning about blockchain systems.

Acknowledgements. I thank the editors and three anonymous referees for their detailed and constructive feedback: thank
you for your time and input. Thanks also to Lars Brünjes, without whom this paper might not have been written. I dedicate
this paper to the memory of our colleague Martin Hofmann. May he rest in peace.

Notes
1 This is not a criticism of the original inductive definition.
2 Tip: search the pdf for ‘future work’.
3 E.g. currencies and smart contracts are eminently compatible with our models – and most likely other as-yet-unimagined
extensions too. Algebra is good at accommodating examples; how many boolean algebras, groups, or vector spaces does the
average person encounter in a lifetime (whether they know it or not)? So if this maths stimulates the reader to think “Obviously
this model could also accommodate X; why did the author not mention this?”, then everything will be just as it should be.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1087

4 It’s not that we don’t care, or think these issues are trivial. But consider: Java disallows pointer arithmetic and presents
the user with an abstraction of infinite memory addressed by uninterpreted abstract pointers. This does not imply that Java
programmers believe that memory actually is infinite, or that RAM is not linearly addressed. It’s just more productive – and
also actually safer – to handle memory-management as a distinct design issue.
5 In practice, the code of d and v is usually public and can be read directly off the blockchain. The cleverness of cryptography
is to devise systems such that from d and v it is not trivial to deduce a k such that v will accept (d, k) – unless you already know
a cryptographic secret.
6 When we write ‘irreversible’ what we mean in real life is so-called probabilistic finality, that the practical chances of a block
append getting reversed decreases rapidly and exponentially as other blocks are added after it.
7 The case where we deliberately attach a block that consumes an output and introduces no fresh outputs on the new block
to replace it, is in some contexts called a burn, because its effect is to destroy unspent outputs without replacing them with
new ones.
8 So for instance, if we had an oracle that could solve the cryptographic puzzles currently attached to validators on bitcoin,
then we would be able to ‘spend’ bitcoin by attaching new blocks to the chain. As discussed, in the real world these puzzles are
designed to be practically impossible to solve unless you have the key. Fun fact: somewhere in a rubbish dump in Newport,
UK is a hard drive with the keys to 7500 bitcoin.
9 Contrast with Chakravarty et al. (2020, Figure 3), which is truer to how an efficient implementation would actually work: it
assumes an “(opaque) type of scripts” and a generic script application function [[-]] which operates on a general-purpose type
Data of data, into which it is assumed that inputs get encoded.

The validators-as-graphs-of-function paradigm of this paper rests on two basic observations: 1. we can identify a program-
script with the function that it computes (then throw away the script and keep the function); and 2. a function can be
represented as its graph {(x, y) | y= f (x)}. (We could further insist that a validator be a computable graph, but we don’t
need to for our results here, so we don’t.)

We spell out points 1. and 2. here precisely because they may be taken as obvious by some readers, but saying this appears
to be novel in the peer-reviewed blockchain literature; and I know from conversations that either point may be novel to some
readers.
10 . . . neither did ‘plus one’ when I learned to count in school, and look what comes of that in university. Basic ideas can be
tricky like that.
11 Also called urelemente or urelements in the set-theoretic literature.
12 Uninterpreted means: “Pick whatever you want. We’ll never look inside it so we don’t care. Just make sure this set is large
enough and has whatever structure that you need for your application, and the maths will work for that choice.”
13 These correspondences are not intended to be read as mathematically precise; they illustrate how a shared intuitive
underlying structure manifests itself across the two different definitions.
14 A universe of non-wellfounded sets Aczel (1988) would also solve this. That might be overkill for this paper, but this might
become relevant if the theorems of this paper are implemented in a universe with more direct support for non-wellfounded
objects than ZFA provides.
15 This can also depend on which aspects of a structure we wish to emphasise. For example, N and ω are isomorphic, as are
pow(X) and 2X : the usage chosen in context suggests which aspects of the underlying entity (arithmetic vs. ordinals; sets vs.
functions) we find most relevant.
16 Note to experts in nominal techniques: so the support of validators, if any, is not counted in pos. See also the discussion in
Subsection 8.4.
17 There is no claim to have created a practical blockchain implementation (there is no cryptographic assurance, for example),
but the Haskell code comes out as a surprisingly direct translation of the maths in this paper, and demonstrates that this
paper has enough executable content to be a plausible reference implementation, for example, within the framework of its
own abstractions.

In particular, the design of Figure 1 was informed by the experience of creating executable code, and having types α and
β explicitly available, was useful.
18 . . . so i does not point to an earlier validating output in txs. . .
19 . . . so o does not validate some later input in txs . . .
20 These diagrams are adapted from Brünjes and Gabbay (2020), with my coauthor’s agreement.
21 If we permitted loops, i.e. connections from a later output to an input that is on the same block or earlier, then a genesis
block might have an input that addresses an output on the same or a later block. See Subsection 8.6(2). But for the definitions
as set up in this paper, that is not allowed.

Note that our definitions admit a blockchain with two genesis blocks; it suffices to have more than one transaction with
no inputs. Whether this is a feature or a bug depends on the application.
22 Blockchains have no unspent inputs, so if composed they just sit side-by-side and do not communicate. Contrast this with
chunks, for which the partial monoidal composition is clearly natural.
23 This condition holds trivially if n= 0, i.e. for the empty list.
24 A slightly weaker possibility is that (x • y) • z and x • (y • z) need not exist or not exist together, but if they both exist, then
they are equal. This is the natural notion if we bind names of spent output-input pairs. More discussion in Subsection 8.2.
25 We really use here the fact that names can only be used to link an output to an input once.

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000438

1088 M. J. Gabbay

26 In practice, programmers of smart contracts on accounts-based blockchains may write explicit tests into their smart con-
tracts that double-check values of input variables at time of attachment to the blockchain, if they anticipate this might be an
issue. More discussion of this is in Brünjes and Gabbay (2020).
27 A functor that is injective on objects and bijective on arrows.
28 Alternative and equivalent definition: every strictly descending chain is finite.
29 Functional programmers, who may be used to distinguishing between types (which are primitive) and sets (which inhabit
powerset types), may perceive this definition as subtly broken, since it appears to apply a type-former [. . .], to a set atomic(X).
This is a culture clash and is not an issue with the maths as set up in this paper.

We are working in ZFA; the carrier set X is a set and so is atomic(X) (and both are equivariant); the list set-former [. . .]
is a set-former, not a type-former. Thus, [atomic(X)] is well-defined by Notation 2.2.3(4) as the set of finite lists of atomic
elements from X.
30 posi(f)=∅ is also immediate from Definition 4.3.6.
31 It would be nice to write this as left(x)#right(x) or left(x)⊥right(x), but we prefer to trade off notational elegance for clarity
and explicitness here, so we will write out our sets disjointness conditions in full.
32 It will take more work to prove that this is so. See the functors F and G which we define in Sections 5 and 6, and
Theorem 7.3.4.
33 This can be a little subtle: if b is ordered before a then [a:=b] • [b:=c] would need to be written as [b:=c] • [a:=c].
34 . . . so we are looking at a ‘real chunk’ here, for which utxi, utxo, and stx are defined, and excluding our extra failure element,
for which they are not defined . . .
35 Note that G consists of an action on objects, and an action on arrows, and we can usefully have the former without the
latter. See Remark 6.4.4.
36 We do not exhibit any such application of our result in this paper; we are just making the general observation. Still, it is
possible that in future work our constructions might be put to such use.
37 This really happened. An author lifted an algebra from one of my papers, deleted crucial structure, and claimed supe-
rior generality. When the paper went to me to referee, I observed that deleting this structure also deleted all the interesting
theorems. This was not necessarily fatal; but what other theorems or properties were there to replace them? No reply was
forthcoming.
38 A comparison: when giving a denotation toN, the domain of denotations could be ω (equivalence), ordinals (embedding),
or just an arbitrary infinite set (injection on objects). All three possibilities are reasonable, depending on the context.
39 In fact, the only pointed transactions possible in this system are tx(y)@(p, y), so we could also extract y from tx.
40 Thus, the G in the loop of embeddings in Remark 7.3.5 would weaken a mapping on objects.
41 Let’s pause on this ‘it works fine’. This paper is populated by structures whose definitions can be quite different, and yet
which mesh together: consider Proposition 5.2.2 and Remark 5.2.3, and the adjunction here.

If aspects of the proof of the equivalence follow without fuss, then this tells us that the different elements mesh correctly
and with minimal friction. It might even have taken much thought by a certain author, and patient finessing of widely-
separated definitions and proofs, for us to enjoy this happy state of affairs. Thus: the property of this argument that it is fairly
straightforward, may in and of itself have somemathematical significance.
42 There seem to be various definitions in the literature of what an ‘embedding of categories’ should mean. By full embedding
here, we mean a functor that is injective on objects, and bijective on arrows.
43 Does G map to IEUTxO, or to IUTxO? Both, because we embedded the latter in the former: IUTxO⊆ IEUTxO. See
Remark 3.8.3.
44 G and F still have non-trivial work to do, as we see e.g. from Propositions 5.5.4 and 5.2.2.
45 So a validator would be passed the restriction of a transaction obtained by including only nominated inputs and outputs
in that transaction, and withholding the rest.
46 posi(x)#posi(y) in the nominal sense would still mean posi(x)∩ posi(y)=∅, just because nominal freshness coincides with
sets disjointness on finite sets of atoms.
47 Very important: a single person working alone will make different tradeoffs than a large team, and a short-term project
will make different tradeoffs than a longer-term project that can e.g. afford to invest in building basic tooling.
48 Properties often get calledmeta-theorems in this field. So wherever we write ‘(algebraic) property’, a reader with a theorem-
proving background can read ‘meta-theorem’, and they will not go too far wrong.
49 This last paper essentially says: make sure that permuting names in properties is a pushbutton operation. Once you have
that, the rest should follow; and if you do not then there may be trouble.
50 Nominal techniques were originally designed to track resources (namely: variable symbols in inductive definitions with
binding) and they have been elaborated considerably since e.g. through nominal rewriting, automata, and nominal algebra.
So there is a body of theory to draw on.

References
Aczel, P. (1988). Non-wellfounded Set Theory, CSLI Lecture Notes, vol. 14, Stanford, USA, CSLI. https://web.stanford.edu/

group/cslipublications/cslipublications/site/0937073229.shtml.
Barendregt, H. P. (1984). The Lambda Calculus: its Syntax and Semantics (revised ed.), Amsterdam, The Netherlands,

North-Holland. https://images-na.ssl-images-amazon.com/images/I/51k2Vh3ns4L.jpg
https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://web.stanford.edu/group/cslipublications/cslipublications/site/0937073229.shtml
https://web.stanford.edu/group/cslipublications/cslipublications/site/0937073229.shtml
https://images-na.ssl-images-amazon.com/images/I/51k2Vh3ns4L.jpg
https://doi.org/10.1017/S0960129521000438

Mathematical Structures in Computer Science 1089

Bojańczyk, M. (2018). Slightly infinite sets (book draft).
Bojańczyk, M., Klin, B. and Lasota, S. (2014). Automata theory in nominal sets. Logical Methods in Computer Science 10 1–44.

https://lmcs.episciences.org/1157.
Brünjes, L. and Gabbay, M. J. (2020). UTxO- vs account-based smart contract blockchain programming paradigms. In:

Proceedings of the 9th International Symposium On Leveraging Applications of Formal Methods, Verification and Validation
(ISOLA 2020), Springer. See arXiv preprint https://arxiv.org/abs/2003.14271.

Chakravarty, M. M., Chapman, J., MacKenzie, K., Melkonian, O., Peyton Jones, M. and Wadler, P. (2020). The extended
UTXO model. In: Proceedings of the 4th Workshop on Trusted Smart Contracts (WTSC’2020), LNCS, vol. 12063, Springer.

Clinger, W. D., Friedman, D. P. and Wand, M. (1986). A Scheme for a Higher-Level Semantic Algebra, USA, Cambridge
University Press, 237–250.

Gabbay, M. J. (2001). A Theory of Inductive Definitions with alpha-Equivalence. Phd thesis, University of Cambridge, UK.
Gabbay, M. J. (2020a). Equivariant ZFA and the foundations of nominal techniques. Journal of Logic and Computation 30

525–548.
Gabbay, M. J. (2020b). Implementation of idealised EUTxO in the nominal datatypes package. https://github.com/

bellissimogiorno/nominal/blob/6e9c/src/Language/Nominal/Examples/IdealisedEUTxO.hs.
Gabbay, M. J., Ghica, D. R. and Petrisan, D. (2015). Leaving the Nest: Nominal Techniques for Variables with Interleaving

Scopes. In: Kreutzer, S. (ed.) 24th EACSL Annual Conference on Computer Science Logic (CSL 2015), Leibniz International
Proceedings in Informatics (LIPIcs), vol. 41, Dagstuhl, Germany, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 374–
389.

Gabbay, M. J. and Pitts, A. M. (2001). A new approach to abstract syntax with variable binding. Formal Aspects of Computing
13 (3–5) 341–363.

Melkonian, O., Swierstra, W. and Chakravarty, M. M. (2019). Formal investigation of the Extended UTxO model (Extended
Abstract). https://omelkonian.github.io/data/publications/formal-utxo.pdf.

Milner, R. (1999). Communicating and Mobile Systems: the π-Calculus, New York, NY, USA, Cambridge University Press.
https://dl.acm.org/doi/book/10.5555/329902.

Mokhov, A. (2017). Algebraic graphs with class (functional pearl). SIGPLAN Notice 52 (10) 2–13.
Nester, C. (2021). A Foundation for Ledger Structures. In: Anceaume, E., Bisière, C., Bouvard, M., Bramas, Q. and Casamatta,

C. (eds.) 2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020), Open Access
Series in Informatics (OASIcs), vol. 82, Dagstuhl, Germany, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 7:1–7:13.

Reynolds, J. C. (2002). Separation logic: A logic for sharedmutable data structures. In: Proceedings of the 17th IEEE Symposium
on Logic in Computer Science (LICS 2002), IEEE Computer Society Press, 55–74.

Urban, C. (2008). Nominal reasoning techniques in Isabelle/HOL. Journal of Automatic Reasoning 40 (4) 327–356.

Cite this article: Gabbay MJ (2021). Algebras of UTxO blockchains. Mathematical Structures in Computer Science 31,
1034–1089. https://doi.org/10.1017/S0960129521000438

https://doi.org/10.1017/S0960129521000438 Published online by Cambridge University Press

https://lmcs.episciences.org/1157
http://www.gabbay.org.uk/papers.html#thesis
https://github.com/bellissimogiorno/nominal/blob/6e9c/src/Language/Nominal/Examples/IdealisedEUTxO.hs
https://github.com/bellissimogiorno/nominal/blob/6e9c/src/Language/Nominal/Examples/IdealisedEUTxO.hs
http://www.gabbay.org.uk/papers.html#newaas-jv
https://omelkonian.github.io/data/publications/formal-utxo.pdf
https://dl.acm.org/doi/book/10.5555/329902
https://doi.org/10.1017/S0960129521000438
https://doi.org/10.1017/S0960129521000438

	Algebras of UTxO blockchains
	Introduction
	Map of the paper

	Some Background
	What this paper is (not) about
	Basic data structures
	The permutation action

	Idealised EUTxO: IEUTxO
	IEUTxO equations and solutions
	Positions
	Why we have alpha and beta
	Chunks and blockchains
	Chunks
	UTxOs, UTxIs …
	…and blockchains

	Properties of chunks and blockchains
	Algebraic and closure properties of chunks
	Some observations on observational equivalence
	Properties of UTxOs and UTxIs

	An application: UTxO systems are `Church-Rosser', in a suitable sense
	The category IEUTxO of IEUTxO models
	Idealised UTxO

	Abstract Chunk Systems: ACS
	Basic definitions
	Monoid of chunks
	Behaviour, positions and equivalence
	Left and right behaviour
	Positions
	Observational equivalence

	Oriented monoids
	Definition and properties
	A brief discussion

	The category ACS of abstract chunk systems
	Examples of abstract chunk systems

	The Functor F : IEUTxO -> ACS
	Action on objects
	Relation between the partial monoid Chunk(T) and the monoid of chunks F(T)
	F(T) is oriented, so F(T) in ACS
	Action of F on arrows
	Blocked channels

	The Functor G : ACS -> IEUTxO
	A brief discussion: why represent?
	Action on objects
	nu is injective
	Action on arrows

	An Adjunction between F : IEUTxO -> ACS and G : ACS -> IEUTxO
	The counit map epsilon : FG(X) -> X exists and is a surjection
	The unit map eta : T -> GF(T) exists and is an isomorphism
	F is left adjoint to G

	Conclusions
	Observational equivalence
	Garbage collection
	Tests
	Connections with nominal techniques
	Concrete formalisation
	Future work
	Final words

