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In order to understand the microstructure and mechanical behavior of a range of 
recently-discovered, very high strength FeNiMnAl spinodal alloys, ingots of Fe35Ni15Mn25Al25 
were prepared by arc melt and drop cast separately. Then the drop-cast ingots were directionally 
solidified at a rate of 18 mm h-1 in a modified Bridgman furnace under Ar at 1873 K. 
 
Previous studies using transmission electron microscope (TEM) found that these spinodal alloys’ 
microstructure consisted of alternating coherent body center cubic (b.c.c.) and B2 (ordered b.c.c.) 
phases aligned along <100> directions.[1] The microstructures of three different states (as 
processed, 30min annealed, 2hrs annealed) of directionally solidified (DS) Fe35Ni15Mn25Al25 

were characterized by using the high angle annular dark field (HAADF) scanning transmission 
electron microscope (STEM) viewed along <001>. The annealing temperature is 873 K. As 
showed in Figure 1, Mn-rich precipitates began to form and grow larger as annealing time went 
on. The SEM image in Figure 2 showed the spinodal structure clearly as well. 
 
An Imago Inc. LEAP was used to determine the composition profile and overall phases’ 
chemistry. In the LEAP, individual atoms were stripped and identified layer by layer by a high 
electric field from a sharp-needle like specimen sitting in a high vacuum. The composition 
distribution in Figure 3 showed that one phase (b.c.c.) was rich in Fe and Mn while the other (B2) 
was rich in Ni and Al. This result agreed with previous study of energy dispersive spectroscopy 
(EDS). A 3-D iso-concentration atom map was built in Figure 4 using the LEAP data. 
 
Hardness measurements were performed on the specimens with different initial conditions as a 
function of annealing time at 823 K in Figure 5. The directionally solidified specimen showed a 
steady increase in hardness from 462 HV with annealing time. Hardness of the drop cast 
specimen experienced a drop from 530 HV for un-annealed to 472 HV for 30min annealed then 
increased steadily but after 120hrs annealing dropped back to 502 HV. The arc melt specimen 
was initially harder at 538 HV and behaved more complex. After 72hrs annealing, the 
appearance of the large Mn-rich precipitates caused the increase of the hardness. 
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Fig.1. HAADF STEM images showed the spinodal structure of Fe35Ni15Mn25Al25 in three states. 
A. As directionally solidified. B. 30 min annealed at 873 K. C. 2hrs annealed at 873 K. 

 
Fig.2. SEM image of drop cast 
Fe35Ni15Mn25Al25 LEAP tip. 

 
Fig.3. LEAP composition profile of drop cast 
Fe35Ni15Mn25Al25. 

 

Fig.4. 3-D iso-concentration atom map for drop 
cast Fe35Ni15Mn25Al25. 
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Fig.5. Hardness behavior of Fe35Ni15Mn25Al25 

as a function of annealing times. 
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