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Abstract

The problem of positive points in polar lattices, discussed by Hossain and Worley for the distance
functions F,(xl,x2) = | x i | + |«x2| a n c ' G ^ i , ^ ) = (xf +12x|)*, is considered for a general distance
function F. Best possible results are obtained.

1980 Mathematics subject classification (Amer. Math. Soc.): 10 E 05.

1. Introduction

Let F be a distance function on R2 for which the set

CF = {x in R2 : F(x) < 1}

is a convex body, symmetric in the axes, and let nF denote the area of CF. Let A be a
lattice in R2 and let

A* = {y in R2 : x-y is in Z for all x in A}

denote the polar lattice of A. By Minkowski's convex body theorem, there is a
nonzero point x in A such that F(x) ^ 2/ip *d(A)*. Since d(A*)d(A) = 1, we see that
there are nonzero points x in A and y in A* such that

Now let P denote the positive quadrant

P = {(xl,x2) in R2 : xx Ss 0, x2 ^ 0}

and let P° denote the interior of P. We seek a bound /? such that, for every lattice A,
there are nonzero points x in A n P and y in A* n P° for which
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We introduce the following notations. For a distance function F and a lattice A,
we set

)3(F, A) = min {fiF F(\) F(y): x in A n P, x # 0, y in A* n P°}

and we write fi(F) for the maximum of fi(F, A) over all lattices A. The special distance
functions

x j , |tx2|},

(^/ 1)j/(t2 — t^/2 +1) and the
special lattice A, generated by (1,0) and 0, t~*) will play a particular role in what
follows.

Hossain and Worley (1978) have shown that P(Ft) = 2(t + t~1) and
J?(G,) = (t2 + r 2 )* ; in both these cases fi{F, A,) = j?(F). De Silva (1977) has shown
that 2(t +1~l) s£ P(F) ^ 4(t +1~l) where t = F(0,1)/F(1,0). She has also shown that,
for t ^ y]2, P(F, At) ^ 4t, equality being required for the distance function Et. In the
present paper, the following results will be proved.

THEOREM 1. Let F be a convex distance function, symmetric in the axes, and let
t = F(0, l)/F(l,0). Then /J(F) = J?(F, Ar).

THEOREM 2. With F and t defined as in Theorem 1, we have

!

9(t + t-l-j2) if 1/V2 < t < 72,

4t if t

Moreover, )3(F,) = 2(t + r J ) , P(Et) = 4 max {t,t~1}, and f}(Ht) = 8(t + r 1-y/2)for
< t < 72.

It should be remarked that # , satisfies tf((0, l)/#,(l,0) = t only for
1/^2 < t ^ ^/2- A careful analysis of the proof will show that E and H are the only
distance functions F for which the upper bound in Theorem 2 is attained. In the case
of//,, A, is the only lattice A with )?(//„ A) = fi{Ht). However, if t < 1/^/2, we have
/?(£„ A) = /?(£,) when A is a lattice generated by (k, 0) and (km, kt'1 h) for any k and w
and any h ^ 1. If t ^ ^ 2 . we have $(£,, A) = /?(£,) when A is a lattice generated by
(0,/ct"1) and (kh,km) for any fc and m and any Ji ̂  1.

Theorem 2 remains valid if we weaken the condition that y be in P° in the
definition of )3(F, A) and merely require that y be in P. This is easily seen by
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considering, in place of A,, lattices generated by (1, e) and (e, t l) where e is a small
positive number.

2. The proof of Theorem 1

Since /?(F, A) = P{kxF, k2 A) for any positive constants /q and k2, we can normalize
F and A as follows : we take F such that F(l,0) = 1 and F(0,1) = t and we take A
such that F(x) ^ 1 for all nonzero x in A n P and F(x°) = 1 for some x° in A n P. Let
x° = (a, am). After interchanging the roles of the xr and x2-axes if necessary, we may
further suppose that m ^ t. (Interchanging the axes and renormalizing F and A has
the effect of replacing t by t~l and m by m~1, or by 0 if x° = (0, t~').) The situation is
illustrated in Fig. 1. The curve F(x) = 1 for x in P lies entirely within the rectangle

(1 ,0 )

FIGURE 1.

with vertices (0,0), (1,0), {l,t l) and (0, t x) and is decreasing as shown. Indeed,
F(xl5x2) = F( — xu x2) by symmetry in the axes and, if | x\ \ < \xx |, the point (x\,x2)
lies on the line joining (x1;x2) and ( —x1?x2), so F(x\,x2) ^ F(xl5x2) by convexity.
Similarly, if | x2 | < | x2 |, then F(x1; x'2) ^ F(xu x2).

Now consider the special lattice A, generated by (1,0) and (0, t"1). The polar
lattice A* is the lattice generated by (1,0) and (0, t), so by the preceding remarks

min {F(x): x in A, n P, x # 0} = 1

and
min {F(y): y in A* r> P°} = F(l, t).

We wr i t e /= F(l,t), so that

For a general lattice A, the polar lattice is

A* = {(-x2,x,)MA): (x,,x2) in A},
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where d(A) is the determinant of A. Let Q denote the quadrant

Q = {(xux2):x1 <0 ,x 2 >0}

and set F*(xux2) = F( — x2,xl). Then we have

j8(F, A) = nFd(A)~x min {F*(x): x in A n £>}.

The points of A may be regarded as lying on the lines
x2 = mxl +ke (k = 0, ± 1, ±2,...), whence d(A) = ae.

We set B = min {F*(\): x in A n Q}, so that

Let ( — r,s) be the first point of A to the left of the x2-axis lying on the line
x2 = mx! + e; we will show that this point lies on or outside the curve F *(x) = B. The
situation is illustrated in Fig. 2.

( - B f ' , 0 ) . . . • • • • • " 0' ,0) >.•

FIGURE 2.

From the definition of the point ( — r,s) we have 0 < r ^ a and s > — am.
Consequently, the lattice point ( — r + a,s + am) is in P and it lies on or outside the
curve F(x) = 1 and in the strip 0 < x i < a. In particular, this point lies above the line
joining (a, am) and (0, t"1), giving the inequality

s = e — mr ^ rt~l(a'1 —mi).

Now am ^ t~l since (a,aw) lies in the rectangle drawn in Figure 1 so

r ^ aet and s ^ 0.

Moreover, if s = 0, then am = t~1 and A contains the point (r, 0) with 0 < r < a ^ 1.
Our normalization of A gives r = a = 1, so A contains the points (1,0),
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(a,am) — (I,*"1) and (I,*"1) —(1,0) = (O.f1) and no other points inside or on the
rectangle with vertices 0, (1,0), (l.f"1) and (0, t~l). Thus s = 0 implies A = A,.

For the remainder of the argument, we may suppose s > 0. To complete the proof
of Theorem 1, we have to show

B^aef.

We shall establish this inequality by several stages.
First suppose B < e. Since we have chosen m ^ t, the point (a, am) lies to the right

ofthe point Y= (/ ~ \ tf~l) on the curve F(x) = 1, whence a/^ 1. We therefore have
B < aef in this case.

Now suppose B ^ e, so that the point (eB~1,0) lies inside or on the curve F(\) = 1.
From what we have already shown, the point (sB~ 1,rB~l) lies in P and it is on or
outside the curve F{\) = 1, since F(sB'\rB~l) = F*(-rB~\sB-1) Ss 1. If r *c st,
then the point (sB~', rB~l) lies to the right ofthe line joining (eB~ i,0) and Yand it
follows that

(The second inequality follows from the observation that (a, am) lies above the line
joining (1,0) and (0, t'1), so that am ̂  t~1{l—a).) On the other hand, if r > st, then
the point (sB~i, rB~2) lies above the horizontal line through Y, so that rB~1 ^ tf~l

and

B^rft'1 ^aef.

3. The proof of Theorem 2

We normalize F and A as in the previous section. After interchanging the axes if
necessary, we may also suppose that t ^ 1. Since the point (1, t) is outside the curve
F(x) = 1, we have/= F(l,t) > 1. From the previous section, /?(F,A,) =ffiF, so we
need estimates for this quantity.

Consider a tac-line to the curve F(x) = 1 at the point F = (f~\tf~l), as
illustrated in Fig. 3. Now %/j.F is at least as large as the area of the quadrilateral
with vertices 0, (1,0), Y and (O,^1), so

which is the lower bound in Theorem 2.
On the other hand, %fiF cannot exceed the area of the pentagon with vertices 0,

(1,0), R, S and (O,^1). If we set t\ = TR, then the area ofthe triangle RS T is
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(O,t"

'.tf"1)

(1.0)

FIGURE 3.

As a function of r\, this expression decreases over the interval
t'l-tf~l <t}< 2(t~1-tf~1) and then increases for r\ > 2(t'1-tf~1). The ad-
missible range for t] is t~J — tf~l < r\ ^ t~l, so two cases arise. If/^ 2f2, the area of
the triangle RST is a minimum when r\ = t~l. This gives the corresponding
maximum value for fiF, so

Now, for/satisfying/^ max {l,2t2}, the above expression is a decreasing function
of/ and so its maximum occurs at / = 1 when t s$ 1/̂ /2 and at / = 2t2 when
t > 1A/2. In both cases, we obtain

On the other hand, if / < 2t2, then the maximum value of nF occurs at
rj = 2(rl-tf-1), giving

This expression attains its maximum at / = t yj2 and so we have

(Note that the constraint/ ^ 1 means that this case can only arise for 1/̂ /2 < t ^ 1.)
Combining the two estimates for//xF gives the upper bound in Theorem 2.

In order to show that Et and Ht provide the only cases for which fl(F) is maximal,
as claimed after the statement of Theorem 2, we must investigate when B = aef'm the
proof of Theorem 1. We must then find when/uF attains the maxima given in the
proof of Theorem 2.

Firstly, it is clear that B = aef only if a(l +mt) = 1. Disregarding the possibility
that F = F, as fi(Ft) is never large enough, we conclude that a = 1, m = 0 if p(F, A) is
maximal.

Secondly, it is clear that//*F attains the required maxima only when either (i)/ = 1,
f7 = r \ ^F = 4f"1 and F = E,, or (ii) / = t^2, r\ = 2(t~1-y/2),
AiF = 4 { r 1 - 2 ( l - / " 1 ) ( r 1 - f / " 1 ) } and/=i f ( . Taking account of the extra
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normalization condition used in Theroem 2, case (ii) arises for 1/̂ /2 < t < y/2 and
case (i) arises for t < 11 y/2 (because/> t2). We consider these cases separately.

If F = Et, f= 1, a = 1, m = 0 and B = aef, we have B = e = s and A must be
generated by (1,0) and ( — r,e). Clearly e^t'1 for the point (1— r,e) not to
contradict the definition of x°. On the other hand, it is easy to verify that if A is
generated by (1,0) and {-r,e) withe Ss t~x andt < 1/̂ /2 then £(£„ A) = 4t~K After
allowing for the normalizations made, this justifies the claim concerning the
maximum for t ^ 1 y/2 and t ^ ^/2.

If F = Ht,f= ty/2, a = 1, m = 0, 1/^2 < t < y/2, and B = aef= ety/2, then the
point (— r, s) = (— r, e) must lie on the curve F*(x) = B = et y/2. However, if
r ^ e-^2, then et ^ 1 (else the point (1 — r,e) contradicts the definition of x°). Thus

F*( - r, e) = t{e(V2 -1) + r(t V2 - l)}/(t2 - 1 ^ 2 +1).

This equals et ^/2 only when et = r. If r < 1 the point (1 — r, rt'1) contradicts the
definition of x° (as 1/^/2 < t < ^/2) so we have r = et = 1. Thus A is generated by
(1,0) and ( - 1 , t~:), that is A = A,, showing that for 1/̂ /2 < t < y/2, fi(F, A) attains
the maximum only for F = H, and A = A(.
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