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Abstract

We previously presented a computational protocol to predict the enzymatic (enantio)selectivity
of anω-transaminase towards a set of ligands (Ramírez-Palacios et al. (2021) Journal of Chemical
Information andModeling 61(11), 5569–5580) by counting the number of binding poses present
in molecular dynamics (MD) simulations that met a defined set of geometric criteria. The
geometric criteria consisted of a hand-crafted set of distances, angles and dihedrals deemed to be
important for the enzymatic reaction to take place. In this work, the MD trajectories are
reanalysed using a deep-learning approach to predict the enantiopreference of the enzyme
without the need for hand-crafted criteria. We show that a convolutional neural network is
capable of classifying the trajectories as belonging to the ‘reactive’ or ‘non-reactive’ enantiomer
(binary classification) with a good accuracy (>0.90). The newmethod reduces the computational
cost of the methodology, because it does not necessitate the sampling approach from the
previous work. We also show that analysing how neural networks reach specific decisions can
aid hand-crafted approaches (e.g. definition of near-attack conformations, or binding poses).

Introduction

The information obtained from molecular dynamics (MD) simulations of protein–ligand
complexes can be leveraged to predict enzymatic activity. The most common strategy is to use
the MD trajectory to compute the binding energy of the complex, which is expected to be
correlated with the enzymatic activity (Limongelli, 2020). The main challenge of calculating
binding energies from simulations is that enough conformational space needs to be explored,
making the approach expensive (Li and Gilson, 2018). Another strategy is to directly analyse how
the ligand interacts with the enzyme during the simulation. The behaviour of the complex of
interest during the simulation can hint to how well the enzyme will be able to accommodate the
ligand, and hence catalyse the reaction (Bruice, 2002; Voss et al., 2018; Ramírez-Palacios et al.,
2021). However, identification of the set of geometric criteria that can distinguish good from bad
ligands or enzymes is a laborious task.

Deep learning (DL) can help in the identification of interesting molecular events taking place
during an MD simulation (Berishvili et al., 2019; Terao, 2020; Wang et al., 2020). The main
advantage of DL is the reduced manual intervention needed to perform analysis of data, often
yielding better accuracies than traditional methods (i.e. hard-coded algorithms). The high-
dimensionality of MD trajectories complicates any analysis, and DL can help alleviate this factor
by, for example, meaningfully projecting the high-dimensional (high-d) trajectory into a low-d
space to facilitate visualisation and analysis (Taufer et al., 2020; Frassek et al., 2021; Glielmo et al.,
2021). There are several possibilities for projecting simulations into low-d representations, but
which one to use will depend on the type of representation used to describe the trajectories. For
example, one can view trajectories as a regular-grid of pixels (images), and use the repertory of
computer vision machine learning methods to perform the desired task. Or one can view
trajectories as time-series data, and use DL to perform time-series forecasting.

The architecture of excellence in DL is the convolutional neural network (CNN; LeCun et al.,
1989). CNNs work by sequentially performing convolution operations on subsets of pixels across
the entire input image. The convolution operation between an input signal, f , and a filter, g, can
be computed as: st= f⋆gð Þt=

Pa=∝
a=�∝ f að Þg aþtð Þ , where st is the feature map. The filter, g , is

learned through training. The most popular CNN is 2D-CNN, which works on 2D images, but a
simplified version, the 1D-CNN, is more appropriate for trajectories (Jiang and Zavala, 2021). A
3D-CNNhas also been proposed (Tran et al., 2015) to be used inmolecular representations but it
is not as common (Fukuya and Shibuta, 2020). In this work, both 1D-CNNand 2D-CNNare used
to analyse the MD trajectories.

Additionally, analysis of MD simulations by DL algorithms can be done through time-series
forecasting. Time-series forecasting aims tomaking predictions about the future values of a series
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based on its history (e.g. predict tomorrow’s temperature given
historical weather data of temperature and humidity). Recurrent
neural networks (RNNs) are the standard architecture for time-
series forecasting (Petneházi, 2019; Hewamalage et al., 2021). A
potential pitfall of RNN-based models is that they can suffer from
vanishing or exploding gradients if the distance from the input to
the output layers becomes too large (Bengio et al., 1994). The most
popular RNNs are long short-term memory (LSTM; Hochreiter
and Schmidhuber, 1997) and the simpler gated recurrent unit
(GRU; Chung et al., 2014). Both LSTM and GRU use gating units
to control the flow of information from the distant past to the
distant future, preventing degradation of the input signal
(Sherstinsky, 2020). A promising alternative for long sequences
are attention-based architectures (Vaswani et al., 2017). Autoenco-
ders (AEs) have also been used for time-series forecasting of MD
trajectories (e.g. time-lagged AEs), where the aim of the AE is not to
reproduce the current but a future simulation frame (Wehmeyer
and Noé, 2018). The LSTM architecture was chosen to model the
time-series, because of its ability to identify patterns at multiple
frequencies (Lange et al., 2020), and molecular events emerge from
the combination ofmolecularmotions taking place at different time
scales. A neural network trained on a time-series forecasting task
may implicitly learn to separate trajectories in classes. Then, pro-
jecting the latent space representations of the trajectories into some
orthogonal vector in a way that reproduces proximity or passing the
embeddings through a dense layer should allow for binary classi-
fication. Algorithms for making meaningful projections from high-
d to low-d representations are principal component analysis (PCA;
Wold et al., 1987), time-independent component analysis (TICA;
Molgedey and Schuster, 1994), t-distributed stochastic neighbour
embedding (t-SNE; van der Maaten and Hinton, 2008), among
others (Das et al., 2006; Ceriotti et al., 2011; Ferguson et al., 2011;
Spiwok and Králová, 2011; Tribello et al., 2012; Noé and Clementi,

2015; Chen and Ferguson, 2018; Lemke and Peter, 2019; Spiwok
and Kříž, 2020). t-SNE aims to reproduce proximities rather than
distances (PCA) or divergences (TICA).

ω-Transaminases are pyridoxal-50-phosphate (PLP)-dependent
enzymes that can catalyse the conversion of chiral amines frommore
accessible achiral ketones (Cassimjee et al., 2015). ω-Transaminases
are desirable catalysts in industry for the production of chiral amines
but the substrate scope and selectivity usually need to be fine-tuned to
the molecule of interest (Breuer et al., 2004; Kelly et al., 2018). Hence,
thedevelopmentof computational algorithms topredict the selectivity
of ω-transaminases can accelerate enzyme design and discovery
campaigns. Previously, we presented a framework for predicting the
enantiopreference of anω-transaminase fromVibrio fluvialis (Vf-TA;
Ramírez-Palacios et al.,2021).The approach consisted in counting the
number of near-attack conformations (NACs) observed during MD
trajectories to quantitatively predict the enantiopreference of the
enzyme towards a given ligand (Fig. 1a). However, some fine-tuning
was needed to find appropriate geometric criteria to define a NAC.
Herein, we use a machine learning approach to tackle the same
problem (Fig. 1b). The MD trajectories are viewed as vectors consist-
ing of descriptors (distances, angles and dihedrals) and labelled as
‘reactive’ when containing the preferred enantiomer and as ‘non-
reactive’ otherwise. The dataset to train the DL models consists of
100 examples per class and per ligand, summing up to a total of
(100 � 2 � 49) 9,800 examples, split into training (80%) and valid-
ation (20%) datasets. Binary classification is achieved by supervised
(CNN) or semi-supervised (LSTM) training of a neural network.

The trained CNNs achieved excellent accuracy in the binary
classification task. Nonetheless, from a molecular modelling per-
spective, it is more useful if explanations can also be retrieved from
the trainedmodels to identify descriptors that the CNN found to be
relevant in achieving the assigned task. Knowledge on the import-
ance of each descriptor can be useful, for example, to refine the set

Fig. 1. Computational prediction of the ω-TA selectivity by (a) geometric analysis of near-attack conformations (NACs) and (b) deep learning. In both methodologies, short MD
simulations (20 ps) are run using the docked complex as starting conformation. In the NAC-based methodology, presented in Ramírez-Palacios et al. (2021), a combination of
docking andMD simulations was needed to sample through a slow-moving dihedral (χ1). The DL-basedmethodology, presented in this work, does not necessitate such a strategy of
sampling through slow-moving parameters, which reduces the number of MD simulations required. Furthermore, no hand-crafted geometric features are needed for the NN to learn
to distinguish between trajectories that contain ‘reactive’ or ‘non-reactive’ enantiomers, which would reduce the number of man-hours required for its implementation to new
systems.
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of geometric criteria used to define binding poses or to identify
interesting events taking place in the trajectories that might char-
acterise the classes. Many deep-learning models are explainable by
design (intrinsic interpretability), while others are built as black
boxes and obtaining explanations requires actions (post hoc inter-
pretability; Bodria et al., 2021). Owing to the visual nature of the
representations used as input to train CNNmodels (and thematur-
ity of the architecture), convolutional networks allow a more visual
description of the decision-making process in the form of saliency
maps. A saliency map shows the relative contribution from each
input region (pixel) to the final prediction. One of the first saliency
maps proposed was class activation map (CAM; Zhou et al., 2016)
but it requires the feature maps to directly precede the softmax
layers (which means that not every topology allows this type of
saliency map). CAMwas later improved to gradient-weighted class
activation map (Grad-CAM) and guided Grad-CAM (Selvaraju
et al., 2017). Other saliency maps worth mentioning are LIME
(Ribeiro et al., 2016), RISE (Petsiuk et al., 2018), IntGrad
(Sundararajan et al., 2017) and SmoothGrad (Smilkov et al.,
2017). Bodria et al. (2021) provide an excellent up-to-date review
on explanation methods.

Methods

MD simulations

Enzyme–ligand complexes obtained by Rosetta docking were used
as starting conformations for 20 ps-long atomistic MD simula-
tions. The enzyme is the wild-type Vf-TA (PDB: 4E3Q), and the
ligand is the external aldimine intermediate of a set of 49 com-
pounds (Fig. 2, Fig. 3). Exact details about the methodology for

running the MD simulations was presented in Ramírez-Palacios
et al. (2021).

Dataset construction

The dataset was constructed from 9,800 MD trajectories (100 per
ligand), half belonging to the class labelled as ‘reactive’ and the
other half to the class ‘non-reactive’. The trajectories containing the
preferred enantiomer [typically the (S)-enantiomer] were labelled
as ‘reactive’, whereas the trajectories containing the non-preferred
enantiomer [typically the (R)-enantiomer] were labelled as ‘non-
reactive’. The input tensors used for training the DL models con-
sisted of 15 descriptors (distances, angles and dihedrals) taken from
each 1,000-frame trajectory (20 ps of simulation), xi ∈ℝN�F, where
N is the number of timesteps and F is the number of descriptors per
trajectory. The descriptors are distances, angles or dihedrals that are
considered important for the transamination reaction to take place
(Fig. 3, Fig. 4; Cassimjee et al., 2015). Descriptors relating to a water
molecule near Lys285 and Thr322 were also included. Some
descriptors are redundant (e.g. d5 and d6). The training dataset
was split into training (80%) and validation sets (20%). To facilitate
– but not guarantee – generalisation to unseen ligands, the split
between training and validation sets was not random but ligand-
dependent: all trajectories containing ligands 01–38 were assigned
to the training dataset, and all trajectories containing ligands 39–49
were assigned to the validation dataset.

Class labels

Each trajectory was labelled as either ‘reactive’ or ‘non-reactive’,
depending exclusively onwhether the ligand contained in the complex

Fig. 2. Structures of the compounds used in this study. The ligands were the external aldimine form of the amines shown in the figure. Following CIP rules, all compounds shown are
(S)-enantiomers, except 32, 33, 35, 36 and 45 which formally are (R)-enantiomers.
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was the preferred enantiomer (class ‘reactive’) or the non-preferred
enantiomer (class ‘non-reactive’). The label is referring to whether the
ligand can be accommodated byVf-TA and lead to catalysis. Typically
forVf-TA, the (S)-enantiomer is thepreferred enantiomer (Fig. 2). The
assumption is that all simulations obtained from thepreferred enantio-
mer would behave similar among each other but dissimilar from the
simulations of the opposite enantiomer, and vice versa. Here, the word
similar is in terms of the metric found by the neural network to better
accomplish the binary classification task.

Network building and training procedure

All models were built using the TensorFlow 2.4 library (Abadi et al.,
2016; sequential API). Unless otherwise indicated, all layers use the
rectified linear unit (ReLU) activation function. Hereby a descrip-
tion of the construction and training procedure for the CNN (1D-
and 2D-CNN) and LSTM models for the binary classification of
MD trajectories, as well as the CAM and latent space visualisation
(Fig. 5).

Fig. 3. (a) Structure of the complex of Vf-TA with the external aldimine intermediate of compound (S)-01. (b) Transamination reaction. The fully reversible transamination reaction
consists of multiple steps in which an amino group is transferred from the substrate to the cofactor or, in the reverse direction, from the cofactor to the substrate. Among the
reaction intermediates, we only modelled the external aldimine intermediate, because it is most likely involved in the rate-limiting step of the reaction. In this step, the nucleophilic
proton abstraction of the external aldimine by the catalytic lysine leads to the formation of the quinonoid intermediate. Short MD simulations of the external aldimine intermediate
complex were used as input for the neural networks, which were tasked with classifying them.

Fig. 4. Descriptors used to represent the MD trajectories. Colour codes are: blue, distances; green, angles; red, dihedrals. The 15 descriptors are shown in two parts only for clarity.
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1D-CNN model
Input vectors for the 1D-CNNmodel were of shape [batch,1000,15].
The 1D-CNN model was constructed using the following stack of
Keras layers: (1) Conv1D (16 filters, kernel of length 7), (2)MaxPoo-
ling1D (size of poolingwindow= 5), (3) Conv1D (16 filters, kernel of
length 7), (4) GlobalMaxPooling1D and (5) Dense (one output unit,
sigmoid activation). The network was trained via backpropagation
for 10 epochs using the RMSprop (learning rate = 1 � 10�4) opti-
miser in minibatches of eight examples. Binary cross-entropy was
used as the loss function.

2D-CNN model
Input vectors for the 2D-CNN model were of shape [batch,
15,1000,1]. The model was constructed using the following stack of
Keras layers: (1) Conv2D (eight filters, kernel of size 1� 5), (2)Max-
Pooling2D (pool size = 1 � 3), (3) Dropout (dropout rate = 0.3),
(4) Conv2D (four filters, kernel of size 1 � 5), (5) MaxPooling2D
(pool size = 1� 3), (6) Flatten, (7) Dense (one output unit, sigmoid
activation). The network was trained in minibatches (size 16) via
backpropagation for 20 epochs using the RMSprop (learning
rate = 1 � 10�4) optimiser. Binary cross-entropy was used as the
loss function.

LSTM model
The LSTM model was constructed using the following stack of
Keras layers: (1) LSTM (16 units, tanh activation function),
(2) LSTM (8 units, tanh activation function), (3) Dense (1 output
unit, without activation). Input vectors were of shape [batch,50,15].
The networkwas trained for five epochs using theADAMoptimiser
(Kingma and Ba, 2017; learning rate= 0.01) with a batch size of 128.
The dataset contained ~500,000 input vectors. The task of the
LSTM model can be simplified as: given the following input vector
containing 15 descriptors measured at 50 timesteps (xi ∈ℝ50�15),
predict the value of the query descriptor (d4) at the next timestep
( byi ∈ℝ). The mean-squared error (MSE) between the predicted (byi)

and true (yi) label was used as the loss function. After training the
LSTM model, the embeddings obtained from the penultimate layer
(hLSTMi ∈ℝ8) were used as input data.

2D-CNN model for CAM visualisation
The 2D-CNN model used to create the activation maps used pixel
images as input vectors. The input vectors were created using the
ImageDataGenerator Keras class to resize the trajectories to
[batch,320,320,1]. The overparameterised model was constructed
using the following stack of Keras layers: (1) Conv2D (128 filters,
kernel of size 3 � 3), (2) MaxPooling2D (pool size = 2 � 2),
(3) Conv2D (64 filters, kernel of size 3 � 3), (4) MaxPooling2D
(pool size = 2 � 2), (5) Conv2D (32 filters, kernel of size 3 � 3),
(6) MaxPooling2D (pool size = 2 � 2), (7) Conv2D (16 filters,
kernel of size 3 � 3), (8) MaxPooling2D (pool size = 2 � 2),
(9) Flatten, (10) Dense (256 units) and (11) Dense (one output
unit, sigmoid activation). The network was trained in minibatches
(size 1) via backpropagation for 20 epochs using the RMSprop
(learning rate = 1 � 10�4) optimiser. Binary cross-entropy was
used as the loss function.

Latent space visualisation
A two-dimensional projection of the vector embeddings produced
by the penultimate layer of the 1D-CNN (hi ∈ℝ16 ) model were
produced by t-SNE (t-distributed stochastic network embeddings;
van der Maaten and Hinton, 2008), as implemented in the SkLearn
library (Pedregosa et al., 2011; with perplexity = 30).

Results and discussion

Dynamics of the studied system

The length of the MD trajectories was capped at only 20 ps to keep
the computational cost low, which is useful for its applicability in
high-throughput screening. Longer simulations in the order of

Fig. 5. Configuration of the NNs used to classify the MD trajectories. Each trajectory consists of 1,000 frames and each frame is represented by 15 descriptors (distances, angles and
dihedrals thought to be relevant in the studied reaction). (a) In the 1D-CNNmodel, anMD trajectory is treated as a signal withmultiple channels (descriptors). The input signal (sized
1,000� 15) passes throughmultiple convolutional, pooling and dense layers until the final neuron outputs 0 or 1 to represent the class ‘non-reactive’ or ‘reactive’, respectively. (b) In
the 2D-CNNmodel, the trajectory is represented as an image of size 1,000� 15 (binary classification) or 320� 320 (CAM visualisation), with one colour channel (analogous to a black-
and-white picture). The input image passes through multiple convolutional, pooling, dropout and dense layers until the final neuron outputs the class prediction. (c) The LSTM
model is trained to predict the next frame based on information from all other frames that came before it. After training, the embeddings obtained from the second LSTM layer are
used to predict the trajectory’s class.
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hundreds of ns can easily differentiate between ‘reactive’ and ‘non-
reactive’ enantiomers, because the ‘non-reactive’ enantiomer has
enough time to evolve and adopt a non-catalytic orientation
(χ1 = d3 = þ90°), whereas the ‘reactive’ enantiomer remains in a
catalytic orientation (χ1= d3=�90°; Ramírez-Palacios et al., 2021).
However, the initial conformation is mostly retained during the
shorter simulations, as shown in Supplementary Fig. 1. We were
unable to tell the two classes apart by visual inspection of the
trajectories, and wondered whether a NN could.

Distribution of input descriptors

To assess whether a NN is even needed to classify the trajectories,
one can first look at the distribution of the input descriptors to see
if differences between classes are already present. The distribu-
tion of descriptors used as input data shows no difference in
distribution between the two classes (Supplementary Fig. 2). This
means that any algorithm used for classification of the trajector-
ies cannot rely solely on the position-dependent values of one
descriptor, and instead needs a combination of descriptors
[as was shown in the previous work (Ramírez-Palacios et al.,
2021)] or patterns (e.g. time-dependent changes in position).
CNNs can do both, and are thus a good choice to classify the
trajectories.

Trained CNNs achieve high accuracy in the binary classification
of MD trajectories

The trained CNNs achieved a good accuracy in the binary clas-
sification task in both the training and validation datasets
(Table 1; see below for the LSTM model). The training and
validation datasets contained trajectories from ligands 01–38
and 39–49, respectively. The split between training and valid-
ation datasets was done based on the ligand identity instead of
randomly, to allow testing the model’s generalisation to unseen
ligands. While it is impossible to know for certain whether the
probability distribution of the training dataset is large enough to
cover every possible ligand, the high accuracy the model achieves
in the validation dataset, which contains unseen ligands, does
suggest some generalisation. Fig. 6 shows that most ligands in
both the training and validation datasets had a low number of
misclassified trajectories. For example, ligand 01 had only one
misclassified trajectory: the trajectory belonged to the class
‘reactive’ (blue) but the NN incorrectly classified it as belonging
to the class ‘non-reactive’ (red). The ligand with the highest
number of misclassified trajectories was ligand 35 (see Ramírez-
Palacios et al., 2021 for more details on ligands 35 and 36). Most
ligands had only a small number of misclassified trajectories, and
11 of them did not have any misclassified trajectory.

Disentanglement of input channels

After seeing the 1D-CNNmodel was accurate in the classification
of trajectories, an obvious step forward is to understand what the
NN is looking at to arrive to a final decision about the class to
which the input vector belongs. The simplest would be to deter-
mine on which descriptors (input channels) the NN relies the
most. However, disentanglement of the input channels is not an
easy task (Cui et al., 2020), because individual channels are not
processed individually in a 1D-CNN architecture. For this reason,
an ablation study was performed to evaluate the contribution of
each channel to the model’s performance. An ablation study
consists of evaluating the performance of the model after remov-
ing one or more of its components (Sheikholeslami et al., 2021).
To get an overall picture about the importance of each channel,
15 independent 1D-CNNs were constructed, and each were
trained and evaluated using only one descriptor as input vector
( xi ∈ℝN�1). While the approach of using one descriptor at a time
does not tell the whole story (because it ignores synergies between
descriptors), it does give an impression of which descriptorsmight
be important, for example, for the enzymatic reaction to take
place. The results of these 15 1D-CNNs are presented in Fig. 7.
For the neural network, descriptor d1 is not a good descriptor by
itself to discriminate between the two classes, which is surprising,
because d1 corresponds to the distance from the proton to be
abstracted to the attacking atom (Hα – Nz), and thus a close
distance would be needed for the reaction to take place. And
similarly, neither is the distance between Nz – Cα (d15) a good
descriptor for the classification task. It is important to clarify that
this result is only telling us that neither d1 nor d15 alone are
enough for the NN to do the classification task, but a combination
with other descriptors might produce a different outcome. Fig. 7
shows that while the distance from the water molecule to the
oxygen in Thr-OH (d12) is not important, the distance from the
same water to the Lys-NH2 is important (d11). Lys285 is believed
to require water assistance for proton abstraction from the exter-
nal aldimine intermediate, but there is an alternative mechanism
that does not require water (Cassimjee et al., 2015). The descriptor
that better achieves a good accuracy is the angle between
Hα – Nz – CE (d4), which is expected, because Lys285-NH2 needs
to be positioned at the correct angle for the nucleophilic proton
abstraction to take place. An interesting observation is that the
two ‘siblings’ of d4 [d5 and d6, both refer to the same angle
(Hα – Nz – Hz; see Fig. 4)] do not achieve the same accuracy as
d4. The observation is interesting, because in the previous protocol
(Ramírez-Palacios et al., 2021), the angles betweenHα –Nz –Hz1,2

(d5,6, previously known as θ1 and θ2) were part of the geometric
criteria used to define the reactive conformations of interest, but
these results suggest that using the angle Hα – Nz – CE instead
might have been a better choice.

Table 1. Results of the tested NNs in the binary classification of MD trajectories

Model

Training Validation

↑Acc. ↓Loss ↑ROC-AUC ↑Acc. ↓Loss ↑ROC-AUC

1D-CNN 0.93 0.24 0.99 0.91 0.25 0.93

2D-CNN 0.91 0.22 0.97 0.89 0.24 0.91

LSTM 0.50 0.69 0.50 0.50 0.70 0.50

Abbreviations: LSTM, long short-term memory; ROC-AUC, area under the curve of the receiver-operator characteristic curve.
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Visualisation of the latent space representations

Visualising the latent space representations ( hi ) onto which the
trained models project the input vectors ( xi↦hi,xi ∈ℝ1000�15,
hi ∈ℝ16) is useful, because it can provide visual clues about whether
subclasses are present (Fig. 8). The presence of subclasses would
indicate that on top of trajectories being different, because they belong
to distinct classes, they are also different in some other way. Here, the
word different is according to the metric the NN learned through
training as best-suited to do the classification task. The latent space
visualisation did not reveal any major subclasses for the class ‘react-
ive’, but was indicative of 3–4 subclasses (i.e. clusters of points
separated from each other) for the class ‘non-reactive’ (Fig. 8). How-
ever, because the LSTM approach was unsuccessful in the binary
classification task (see later), these subclasses were not investigated
any further.

CAM visualisation

Visualising how a model arrives to a particular decision about the
input data can by itself be very useful, sometimesmore than the task
the model was assigned to perform (see below). Fig. 9 shows the
CAM visualisation from the 1D-CNN model. The activations are
evenly spread out throughout the trajectory which indicates that the
neural network is looking at processes happening throughout the
trajectory and not at just some specific portion of it. It also suggests
that shorter trajectories (<<20 ps) would be enough to do the

Fig. 6. Bar plot showing the number of misclassified trajectories per ligand molecule when evaluated with the trained 1D-CNN model. We want the number of misclassified
trajectories to be small. The total number of trajectories per ligand is 200, half of which are labelled as ‘non-reactive’ and the other half are labelled as ‘reactive’. For example, ligand
06 has 100 trajectories containing the non-preferred enantiomer (class ‘non-reactive’) of which 37 were misclassified (red bars), and 100 trajectories containing the enantiomer
preferred by Vf-TA (class ‘reactive’) of which 23 were misclassified (blue bars) by the NN. There are 49 ligands in total, adding up to a total of 9,800 trajectories.

Fig. 7. Accuracy obtained by using one input channel for training, xi ∈ℝN�1, and the
accuracy obtained by using all the input channels, xi ∈ℝN�15 (first bar, labelled as ‘All’).
The error bars are standard deviations over five replicas.

Fig. 8. t-SNE of the latent space representations ( hi ∈ℝ16 ) obtained from the
penultimate layer of the 1D-CNN model. The evaluations were made in the validation
dataset (n = 2,200 examples). The reader can think of the latent space as follows:
imagine you show an image of a molecule to a chemist and scan their neurons to see
which neurons are active and which are not. You then repeat the experiment with a
non-expert in chemistry and compare the two scans. The scans will be different,
because the expert can give meaning to the image shown. We expect the scan of the
neuron activations of the expert to tell us something about the molecule that is not
necessarily encoded in the input image (e.g. whether the molecule is realistic or not),
coming from the experience (training) of the expert (neural network). That is latent
space.
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classification (Supplementary Fig. 3). An overlap of the input
descriptors and the activations produced (Fig. 9b) shows the
dependency of the activations on the input signal. Some activations
occur when the descriptor reaches a peak, a dip or a plateau, but the
activation comes from all the descriptors taken together as a whole.
This type of visualisation can be useful in identifying the temporal
location of interesting molecular events.

Visualisation of 2D-CNN is more illustrative than that of
1D-CNN. For this reason, a second CNN model was trained, this
time using a 2D-CNN architecture. The CAM visualisation is
presented in Fig. 10. As it can be seen, the neural network activates
(yellow) in the regions of the 2D image where a trajectory signal is
present. As expected, activations were low in the regions in-between
channels.

As mentioned earlier, disentanglement of the contributions of
each input descriptor to the classification is not an easy task. A way
to make use of the trained model is to visualise the position-
dependent activations of each descriptor. This would be useful,
for example, in helping define reactive poses or simply to know
which values are preferred. For example, in Supplementary Fig. 2 it
is shown that descriptor d1 has the same distribution in the two
classes, which means that one cannot simply choose a cut-off value
for d1 and hard-code a solution for the classification task. Fig. 11
shows that the 1D-CNN model has no apparent position-
dependent preference for descriptors d1, d8, d9, d12 and d15, as both
classes show the same distribution. On the other hand, descriptor
d4, the angle between Hα – Nz – CE, is preferred to be large for the
NN to classify the simulation as ‘reactive’ and small to classify it as
‘non-reactive’. This makes sense as a larger angle implies that the

electrons in Nz can be pointing directly towards Hα (Fig. 4).
Descriptor d11 is similar: the NN prefers it to have small values
for ‘non-reactive’ trajectories and large values for ‘reactive’ trajec-
tories. Descriptor d11 is the distance between Lys285 and a water
molecule in the vicinity of Lys285 andThr322. Nevertheless, itmust
be noted that everything rationalised in this paragraph about Fig. 11
is only true for the filter number 4 of the trained 1D-CNN model,
and that other filters might have different criteria for discerning
between classes. Furthermore, Fig. 11 shows only the position-
dependent component that makes the activation happen, and does
not include the pattern-dependent component or the individual
effect that each descriptor had in the activation. Therefore, while
Fig. 11 can be useful, conclusions should be drawn with care of the
context.

Semi-supervised learning through LSTM

This approach was not successful in either the semi-supervised
learning or the binary classification tasks. First, the results of the
LSTM model on predicting the values of descriptor d4 in the 51st
timestep given the values of all descriptors (d1–d15) in the previous
50 timesteps gave a MSE of 0.114. For reference, the results of
simplermodels are as follows: baseline (0.155), linear (0.154), dense
(0.152), 1D-CNN (0.121); where the number in parenthesis is the
accuracy from the validation dataset (Supplementary Fig. 4). We
tried, unsuccessfully, to improve the performance of the LSTM
model by using time-lagged input data (i.e. instead of using every
frame, use every third or fifth frame; Zeng et al., 2021) but the
performance of the LSTMmodel was still poor. Therefore, it is not

Fig. 9. (a) Heatmap showing the CAM activations of the 1D-CNN model of one input trajectory, presented as example. The y-axis is the filter number, and the x-axis is the time
dimension. (b) CAM activations (heatmap) of filter number 4 overlapped to the input vectors of descriptors 3, 4 and 10 (line plot), along a small 2.0 ps window (x-axis). The y-axis
contains the normalised values from each descriptor. The hand-drawn arrows show the direction each descriptor follows. At 1.67 ps, the activations are at their highest, and at
1.55 ps, activations are low. The red rectangle shows a region with little activations but where descriptor 3 looks visually similar to the region in which the activations were at their
maximum (~1.67 ps).
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surprising that using the embeddings generated from the LSTM
model from the time-series ( xi↦h

LSTM
i ,xi ∈ℝ1000�15,hLSTMi ∈ℝ8 )

as input data for binary classificationwas unsuccessful in separating
the time-series as belonging to either of the two classes (loss= 0.699,
acc = 0.500).

Results suggest an alternative to the sampling strategy
presented in our previous work

Wehad presented a protocol for predicting the enantioselectivity of
Vf-TA towards a query compound (Ramírez-Palacios et al., 2021).
The protocol consisted in counting the number of frames in which a
set of geometric criteria were simultaneously met. Because one of
the descriptors (d3, known as χ1 in the previous work) evolved too
slowly for a 20 ps simulation to sample enough conformational
space, a combination of docking and MD simulations was needed.
The method hereby presented does not necessitate such a strategy
(Fig. 1). Instead, all complexes are docked in a catalytic orientation
(χ1 = �90°) and a neural network analyses the simulations. Even
with the slowly moving descriptor, d3, the neural network is still

able to extract patterns that differentiate trajectories from the class
‘non-reactive’ and the class ‘reactive’ (Fig. 7: descriptor 3). Such
patterns are difficult to describe but one can imagine, for example,
that the descriptor of one class might move up–down–up–down,
whereas the descriptor of the other class might move up–up–
down–down. Finding what those patterns are could also help refine
the geometric criteria formerly used to predict the Vf-TA enantios-
electivity. For example, our current analysis points to the import-
ance of the angleHα –Nz –CE, which could be included in the NAC
definition to obtain better predictability.

Conclusions

Using DL to analyse MD simulations leverages the adaptability of
neural networks to learn without manual intervention which
descriptors are important in telling classes apart. The trained CNNs
were capable of binary classification of MD trajectories with high
accuracy, but the same is not true for the LSTM model. Knowing
which descriptors are important can be useful in searching and fine-
tuning geometric parameters to be used in the definition of binding

Fig. 10. (a) Example of an input image of size 320 � 320 pixels, and (b) the CAM produced by the image after passing it through a 2D-CNN. Viridis colourmap: the regions with the
lowest activations (low importance) are coloured blue, the regions that produce the highest activations are in yellow and the regions with middle importance are in green. The
highest activations come from the pixels containing trajectory information.

Fig. 11. Violin plots showing the position-dependent values (y-axis) at which each descriptor (x-axis) showed the maximum CAM activation to be classified as either class ‘reactive’
(blue) or class ‘non-reactive’ (red). The plot shows all 9,800 trajectories. CAM visualisation was obtained from the 1D-CNN model (filter 4 of Fig. 9).
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poses. Furthermore, the trained models can highlight the time
regions of the trajectory where interesting events (i.e. events that
are important for discerning classes) are taking place. An updated
framework is still needed to better explain the manner in which the
neural network arrives to its final decisions. Better explanations
could facilitate the integration of DL into MD workflows.

Abbreviations

CAM class-activation map
CNN convolutional neural network
DL deep learning
LSTM long short-term memory
MD molecular dynamics
NN neural network
RNN recurrent neural network
Vf-TA ω-transaminase from V. fluvialis
ω-TA ω-transaminase
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